

Delft University of Technology

Label Correlation in Deep Learning-Based Side-Channel Analysis

Wu, Lichao; Weissbart, Léo ; Krcek, Marina; Li, Huimin; Perin, Guilherme; Batina, Lejla; Picek, Stjepan

DOI
10.1109/TIFS.2023.3287728
Publication date
2023
Document Version
Final published version
Published in
IEEE Transactions on Information Forensics and Security

Citation (APA)
Wu, L., Weissbart, L., Krcek, M., Li, H., Perin, G., Batina, L., & Picek, S. (2023). Label Correlation in Deep
Learning-Based Side-Channel Analysis. IEEE Transactions on Information Forensics and Security, 18,
3849-3861. https://doi.org/10.1109/TIFS.2023.3287728

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TIFS.2023.3287728
https://doi.org/10.1109/TIFS.2023.3287728

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023 3849

Label Correlation in Deep Learning-Based
Side-Channel Analysis

Lichao Wu , Léo Weissbart, Marina Krček , Huimin Li, Guilherme Perin,
Lejla Batina , Senior Member, IEEE, and Stjepan Picek , Senior Member, IEEE

Abstract— The efficiency of the profiling side-channel analysis
can be significantly improved with machine learning techniques.
Although powerful, a fundamental machine learning limitation
of being data-hungry received little attention in the side-channel
community. In practice, the maximum number of leakage traces
that evaluators/attackers can obtain is constrained by the scheme
requirements or the limited accessibility of the target. Even
worse, various countermeasures in modern devices increase the
conditions on the profiling size to break the target. This work
demonstrates a practical approach to dealing with the lack of
profiling traces. Instead of learning from a one-hot encoded
label, transferring the labels to their distribution can significantly
speed up the convergence of guessing entropy. By studying the
relationship between all possible key candidates, we propose a
new metric, denoted Label Correlation (LC), to evaluate the
generalization ability of the profiling model. We validate LC with
two common use cases: early stopping and network architecture
search, and the results indicate its superior performance.

Index Terms— Side-channel analysis, profiling analysis, deep
learning, label distribution, profiling model fitting.

I. INTRODUCTION

S IDE-CHANNEL analysis (SCA) is recognized as one of
the most powerful attack methods on the implementations

of cryptographic algorithms. Commonly, such attacks are
divided into direct attacks like Simple Power Analysis (SPA)
and Differential Power Analysis (DPA) [16], and two-stage
(profiling) attacks like template attack [7], stochastic mod-
els [34], and machine learning-based attacks [20], [23], [27].
The profiling attacks impose additional requirements as they
assume an ‘open’ device (or a copy of it). Still, the actual key
recovery might need only a few measurements or, in some
cases, a single trace [17], [31].

In recent years, machine learning-based attacks posi-
tioned themselves as a strong alternative for more ‘classical’

Manuscript received 11 November 2022; revised 5 April 2023; accepted
11 May 2023. Date of publication 19 June 2023; date of current version
30 June 2023. The associate editor coordinating the review of this manuscript
and approving it for publication was Prof. Ulrich Rührmair. (Corresponding
author: Lichao Wu.)

Lichao Wu, Marina Krček, and Huimin Li are with the Faculty of Electrical
Engineering, Mathematics and Computer Science, Delft University of Tech-
nology, 2628 XE Delft, The Netherlands (e-mail: lichao.wu9@gmail.com).

Léo Weissbart, Guilherme Perin, and Stjepan Picek are with the Faculty of
Electrical Engineering, Mathematics and Computer Science, Delft University
of Technology, 2628 XE Delft, The Netherlands, and also with the Digital
Security Group, Radboud University, 6525 EC Nijmegen, The Netherlands.

Lejla Batina is with the Digital Security Group, Radboud University,
6525 EC Nijmegen, The Netherlands.

Digital Object Identifier 10.1109/TIFS.2023.3287728

SCA [4], [17], [42], which has become a standard evaluation
approach for security evaluation and certification. The success
of such methods relies on a sufficient number of training
traces so that a machine learning classifier can accurately
map the relationship between the traces and corresponding
labels (intermediate data). In the worst-case attack scenario,
an attacker can obtain unlimited training traces from the
clone device for profiling attacks. However, an easy-to-ignore
fact, especially in SCA research, is that it is not easy to
acquire a large number of attack traces, even for a white-box
evaluation in a security lab. We rarely see research focus on
reducing the number of profiling traces number. Indeed, such a
restriction mainly comes from three factors: time constraints,
countermeasures, and the device’s life cycle. We argue the
importance of developing techniques that effectively decrease
the required number of profiling traces while keeping a similar
attack performance.

• Time constraints: An evaluation’s time budget dramat-
ically limits the number of traces one can obtain. For
instance, according to [18], measuring one million pro-
filing traces for a software RSA implementation with a
1 024-bit key could take more than a week. Additionally,
in post-analysis tasks such as trace realignment, noise
filtering, and leakage assessment, an evaluator may
not have enough budget to measure sufficient traces to
break the target. Therefore, reducing the required number
of profiling traces would save time and enhance the
evaluator’s attack capability.

• Security Countermeasures: Unlike most deep learning
applications, the SCA training data are most likely
‘protected’ - the SCA countermeasures represent a stan-
dard/default setting for the modern smart card/SoC’s
implementations. These protection mechanisms further
increase the difficulties in learning the trace-label rela-
tionship, thus increasing the demand for the number of
measurements. From a security developers’ point of view,
an increasing number of side-channel measurements to
break the target implementation means higher security
assurance of their product. If we can effectively reduce
the required number of profiling traces, such vulnerabil-
ities will be considered again.

• Application-level Protections: For a black/grey box eval-
uation, the available traces can drop to hundreds or
thousands due to the upper limit of program counters such

1556-6021 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 04,2023 at 08:23:48 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7139-732X
https://orcid.org/0000-0001-8475-1853
https://orcid.org/0000-0003-0727-3573
https://orcid.org/0000-0001-7509-4337

3850 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Fig. 1. Learning with distributed labels.

as Application Transaction Counter (ATC) or PIN Try
Counter (PTC) [3], which is commonly insufficient when
implementing an efficient profiling model. Building a
profiling model with limited profiling traces would signif-
icantly increase the capability of exploiting the potential
vulnerabilities protected by life-cycle-related counters.

There are limited evaluation metrics optimized for SCA.
Evaluation metrics are essential in the training process: by
actively monitoring the metric value, one can easily interpret
the learning process, e.g., underfitting or overfitting. How-
ever, accuracy, a commonly used metric for deep learning,
is less indicative for SCA in multi-trace attack scenarios [17].
The reasons can be explained from two aspects. First, side-
channel leakages are more difficult to classify due to the
noise/countermeasures in the traces. Second, accuracy does
not represent the success of an attack well, as we commonly
need to consider continuous attacks that are better evaluated
with metrics capturing this continuity. Guessing entropy and
success rate are the commonly used metrics for SCA. Unfor-
tunately, using such evaluation metrics would significantly
increase the training time due to their computation complexity.
Moreover, guessing entropy only evaluates the rank of the
correct key. Although effective, we argue that it can be less
indicative as the internal relationships with other (wrong) key
candidates are not considered. More discussion is available in
Section V-B.

We put the above concerns forward as the motivations
for this work. First, to reduce the required number of train-
ing traces, we transfer the one-hot encoded labels to their
Gaussian distribution centering on the corresponding labels
motivated by [10]. The proposed learning scheme is illustrated
in Figure 1. A one-hot encoded label that belongs to class
4 has been transferred to the distributed label with the value
of the fourth index with the highest probability. Based on
our experiment, regardless of the used leakage model and
deep learning architecture, if using our learning scheme, the
profiling traces can be reduced more than five times compared
with the number of profiling traces used in the literature.

One essential assumption of the distributed label is that the
label closer to the correct label is more likely to be selected.
Under the same assumption, we propose key distribution to
measure the geometric distance between the most likely key
(not necessarily the correct key) and all the other keys. From
this method and guessing entropy estimation, we propose a
novel profiling model fitting metric - Label Correlation (LC)
that calculates the correlation between key distribution and the

key guessing vector of all key guesses. As demonstrated with
experiments on publicly available datasets, the proposed metric
can indicate the generalization ability of a profiling model and
thus serve as a reliable evaluation metric of early stopping
and network architecture search. LC is more indicative than
conventional metrics, such as validation (cross-entropy) loss,
as it directly links with the attack performance. On the other
hand, compared with GE, LC requires less computation effort
as it does not rely on the averaging of multiple realizations of
key ranks [40]. Thus, it can be a good metric to monitor the
model training.

To summarize, the main contributions of this paper are:
1) We introduce a new efficient training scheme for profiling

SCA when the number of profiling traces is limited.
The attack performance is improved by learning from
the distributed labels compared to conventional one-hot
encoded labels.

2) We propose a novel method to calculate the distance
between the target key and other keys called key dis-
tribution (KD).

3) Based on the guessing entropy, we introduce a new
metric called Label Correlation (LC) that can effectively
estimate how well the profiling model fits the data.
To that end, we show that the proposed metric is reli-
able in reflecting the generality of the profiling model.
We demonstrate two use cases for potential implementors:
early stopping and network architecture search in various
testing conditions. The results show that the LC metric
performs better than other commonly used metrics.

We provide comprehensive experimental results on publicly
available datasets to validate our claims. We also consider two
commonly used deep learning architectures in SCA: multilayer
perceptron and convolutional neural networks. The source
code is available in the GitHub: https://github.com/AISyLab/
Label-distribution-and-correlation.

The paper is organized as follows. Section II provides
information about profiling SCA, commonly used evaluation
metrics, and datasets used in this paper. The related works are
discussed in Section III, followed by the proposal of the label
distribution learning and novel SCA evaluation metric LC in
Sections IV and V. Section VI validates the proposed methods
experimentally with different datasets, attack models, and
leakage models. Finally, Section VII concludes this paper and
proposes possible future research directions. In Appendix A,
we provide details about the neural network architectures we
used.

II. BACKGROUND

A. Notation

We use calligraphic letters like X to denote sets and the
corresponding upper-case letters X to denote random variables
and random vectors X over X . The corresponding lower-case
letters x and x denote realizations of X and X, respectively.
We use a sans serif font for functions (e.g., f).

k represents a key byte candidate that takes its value from
the keyspace K. k∗ is the correct key byte, and kre f is the

Authorized licensed use limited to: TU Delft Library. Downloaded on July 04,2023 at 08:23:48 UTC from IEEE Xplore. Restrictions apply.

WU et al.: LABEL CORRELATION IN DEEP LEARNING-BASED SIDE-CHANNEL ANALYSIS 3851

Fig. 2. Profiling side-channel analysis.

key byte assumed by an attacker to be correct (as the attacker
does not know the correct key).1

A dataset T is defined as a collection of traces ti , where
each trace ti is associated with a key-related label (or the key
itself) yi . A complete set of labels with c classes is denoted by
Y = {y1, y2, · · · , yc}. The number of profiling traces equals
N , the number of validation traces equals V , and the number
of attack traces equals Q. Finally, θ denotes the vector of
parameters to be learned in a profiling model.

B. Profiling Side-Channel Analysis

As depicted in Figure 2, profiling side-channel attacks
consist of two phases:

1) Learning or profiling phase. The profiling phase con-
sists of building a profiling model fθM to map the inputs
(side-channel measurements) to the outputs (classes as
obtained by evaluating the leakage model on the sensitive
operation) on a set of N profiling traces. fθM represents
the profiling model trained for a given leakage model M
and the set of learning parameters θ . This phase aims to
fit the parameters of a function that maps the side-channel
traces to the labels in the best way (minimizing the error
function). It is common to use the validation set of size
V to know when to stop the learning process.

2) Test or attack phase. The attack phase consists of
obtaining label predictions for the traces from a different
dataset of size Q to test the model. The trained model
processes each attack trace and produces the attack’s
output as a vector of probabilities pi, j ∈ K, where
each index is the probability that a trace ti is associated
with the leakage value j . We can estimate the attack
performance from this matrix of probabilities (as we have
multiple vectors - one for each attack trace).

We consider two common profiling approaches:
• Template Attack. Template attack (TA) uses Bayes’

theorem to obtain predictions, dealing with multivariate
probability distributions as the leakage over consecutive
time samples is not independent [7]. In the state-of-the-
art, template attack relies mostly on a normal (Gaussian)
distribution.

• Deep Learning-based SCA (DL-SCA). We consider
supervised machine learning and the classification task
as the side-channel attack’s goal. Supervised learning

1Note that the subkey candidates can have any number of bits that are being
guessed and while here we assume the AES cipher scenario, the concept is
algorithm-independent.

deals with the task of learning a mapping f from a set
of input variables from X to the set of output variables
Y (fθM : X → Y). For SCA, the profiling phase aims
to learn the parameters θ , minimizing the empirical risk
represented by a loss function on a dataset. In the attack
phase, the goal is to predict the classes (more precisely,
the probabilities that a certain class would be predicted)
based on the previously unseen set of traces and the
trained model fθM .

C. Evaluating the Attack Performance

An attack’s output is the logarithmic sum of all Q proba-
bility vectors of single model predictions, where each index
is associated with one key hypothesis. Sorting this vector by
decreasing probabilities leads to a key guessing vector with
increasing confidence predicted by a profiling model. The key
rank denotes the position of the correct key. Then, one can
use metrics such as guessing entropy to estimate the attacker’s
performance [35].

Definition 1 (Key Guessing Vector): The key guessing vec-
tor g is the vector of probabilities for all key candidates from
the output of the profiling model’s predictions:

g = sort

 Q∑
i

log Pr(ti ; fθM)

 , (1)

where Pr(ti ; fθM) is the prediction vector from the profiling
model fθM on a trace ti . sort is the function sorting array
elements in order of decreasing values of their probabilities.
Since the labels are key-related, the cumulative probabilities of
labels can be easily mapped to their corresponding keys. From
g, the index of g represents the likelihood of the corresponding
key candidate being the correct key candidate. g0 and g|K|−1
are the first (best) and last (worst) element of g, respectively.

Definition 2 (Key Rank): In a known-key setting, the key
rank is the number of (most likely) keys an attacker needs to
brute force until recovering the correct key. Among various key
enumeration techniques [30], one of the more popular methods
is to try every key given its probability after generating a key
guessing vector. In this scenario, the key rank is the position
of the correct key in the guessing vector.

Definition 3 (Guessing Entropy): The guessing entropy2

represents the averaged rank of the correct key k∗ in the key
guessing vector g:

G E = E (rankk∗(g)) , (2)

where rankk(g) ∈ {0, . . . , |K|−1}. E is the average of multiple
realizations of key rank, which is commonly performed by
attacking with a profiling model multiple times with randomly
selected attack traces.

D. Datasets

1) ASCAD Dataset: The ASCAD dataset is generated by
taking measurements from an ATMega8515 running a masked

2As we attack only a single key byte, the proper term is partial guessing
entropy. Nevertheless, we use the two terms interchangeably.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 04,2023 at 08:23:48 UTC from IEEE Xplore. Restrictions apply.

3852 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

AES-128 implementation and is proposed as a benchmark
dataset for SCA [1]. Side-channel traces represent the AES
encryption, where the commonly attacked trace interval rep-
resents the processing of the third byte in the S-box operation
(S-box is fixed and publicly known for AES) taking place
in the first round (the third byte is the first masked one).
The operation is masked, and we assume no knowledge about
masks in the profiling phase. There are two versions of this
dataset:

1) ASCAD_f: The first version consists of 50 000 profiling
traces and 10 000 attack traces, where each trace consists
of 700 features (pre-selected window around the leaking
spot). The profiling and attacking sets use the same fixed
key, and we denote this dataset as ASCAD_f.

2) ASCAD_r: The second version of the ASCAD dataset
contains 200 000 traces for profiling with random keys
and random plaintexts and 100 000 for the attack phase,
with a fixed key and random plaintexts. A window of
1 400 points of interest is extracted around the leaking
spot. We denote this dataset as ASCAD_r.

For both datasets, different numbers of profiling and
attack traces are used in our experiments (see Section VI
for details), and 5 000 traces are used for validation and
attack. The datasets are provided at https://github.com/ANSSI-
FR/ASCAD/tree/master/ATMEGA_AES_v1.

2) CHES CTF Dataset: This dataset refers to the CHES
Capture-the-flag (CTF) AES-128 measurements released in
2018 for the Conference on Cryptographic Hardware and
Embedded Systems (CHES). The traces consist of masked
AES-128 encryption running on a 32-bit STM micro-
controller. In our experiments, we consider 45 000 traces
for the training set, which contains a fixed key. The
validation and attack sets consist of 5 000 traces. Each
trace consists of 2 200 features. This dataset is available
at https://chesctf.riscure.com/2018/news.

E. Leakage Models

The leakage model simulates the hypothetical power con-
sumption to process one byte (as we attack the AES cipher
that is byte-oriented). Our work considers two commonly used
leakage models: the Hamming Weight (HW) and Identity (ID).
For the HW leakage model, the attacker assumes the leakage is
proportional to the sensitive variable’s Hamming weight. This
leakage model results in nine classes for a single intermediate
byte for the AES cipher. In terms of the ID leakage model,
an attacker considers the leakage in the form of an intermediate
value of the cipher. This leakage model results in 256 classes
for a single intermediate byte for the AES cipher.

III. RELATED WORKS

In Chari et al.’s seminal work, the authors proposed
the template attack (TA) and showed that it could break
implementations secure against other forms of side-channel
attacks [7]. This attack is the most powerful one from the
information-theoretic point of view, but to reach its full
potential, it requires an unbounded number of traces and noise
following the Gaussian distribution [20]. Template attack is

interesting as it is a generative technique, which means it will
commonly overfit less as it allows the user to provide more
information in the form of class conditionals.

While machine learning techniques have been widely used
for several decades, the SCA community showed interest in
such techniques only around a decade ago. In the begin-
ning, the most attention was given to techniques like random
forest [19], support vector machines [13], [15], [27], and mul-
tilayer perceptron [11] (commonly in the context of shallow
learning as it had only a single hidden layer).

The rapid development of deep learning-based SCAs started
in 2016 when Maghrebi et al. demonstrated the strong per-
formance of several neural network types, most notably,
convolutional neural networks [23].

In [1], an empirical evaluation for different hyperparameters
is conducted for CNNs on the ASCAD database. In [42],
the authors proposed a methodology to select hyperparameters
related to the size (number of learnable parameters) of layers
in CNNs. The methodology includes observations for the
number of filters, kernel sizes, strides, and neurons in fully
connected layers. Wouters et al. showed how to reach similar
attack performance with data regularization and even smaller
neural network architectures [37]. Perin et al. investigated
deep learning model generalization and demonstrated how
ensembles of random models could perform better than a
single carefully tuned neural network model [26]. Wu et al.
and Rijsdijk et al. explored different automatic hyperparame-
ter tuning strategies, namely Bayesian optimization [38] and
reinforcement learning [33] paradigms to find neural networks
that perform well. While their approach requires a significant
tuning effort (computational time), the authors improved state-
of-the-art results. These works showed that deep learning
models’ good performance relies on an efficient selection of
hyperparameters for specific datasets. If those hyperparameters
are not selected properly, the attack will fail (or at least not
work as well as possible).

It is intuitive that the number of measurements and input
features also limits the performance of a profiling attack.
Deep neural networks provide top-level performances in many
domains when training data is sufficiently large. However,
they could also perform excellently when the training data is
reduced. In an effort to improve attack performance, already
Choudary et al. investigated how adding noise to the input
improves the performance of template attacks on different
devices [5]. The same idea is applied to deep learning-
based attacks, introduced by Kim et al. [17]. In the context
of profiling side-channel attacks, Cagli et al. investigated how
to create measurements that improve the attack performance
synthetically [4]. Unlike the previous work where the authors
developed a specialized data augmentation technique, Picek et
al. showed that generic data augmentation techniques help in
profiling SCA also [28]. Another work investigated whether
limiting the number of traces can be beneficial both from the
experimental setup and performance sides [29].

From the input features perspective, Bursztein introduced
the usage of raw traces for profiling in an invited talk at CHES
2018 [2]. Lu et al. also worked in this direction, showing that
better attack performance is achieved but with significantly

Authorized licensed use limited to: TU Delft Library. Downloaded on July 04,2023 at 08:23:48 UTC from IEEE Xplore. Restrictions apply.

WU et al.: LABEL CORRELATION IN DEEP LEARNING-BASED SIDE-CHANNEL ANALYSIS 3853

more complex neural networks (e.g., having around 50 lay-
ers) [21]. Perin et al. showed how simple re-sampling of raw
traces could result in extremely powerful attacks (requiring
only a single attack trace) while using simple neural networks
with only a few hidden layers [31]. Finally, similarity learning
was applied to pre-process the leakage traces and extract high-
level features, leading to state-of-the-art attack performance
with significantly reduced computation effort [39].

As already discussed, commonly, in machine learning, one
estimates the behavior of a profiling model based on statis-
tics of individual observations like accuracy, loss, or recall.
Unfortunately, such metrics can be misleading in SCA, as one
considers cumulative predictions. Picek et al. showed that
standard machine learning metrics could suggest radically
different performance than the SCA metrics [28]. Masure et
al. connected the perceived information and negative log-
likelihood, showing there can be common ground when using
machine learning metrics in SCA [22]. Perin et al. discussed
how mutual information could be a good metric to indicate
when to stop the machine learning training process [25].
Finally, Rădulescu et al. compared efficient metrics (Massey’s
guessing entropy and empirical guessing entropy) in full-key
recovery, which may help decide when to stop profiling [32].

IV. LABEL DISTRIBUTION

By asking ‘how much does each label describe the
instance?’, Geng et al. first proposed Label Distribution Learn-
ing (LDL) by assigning a description degree (probability) of
each possible label, leading to enhanced performance com-
pared with hard (one-hot encoded) labels [10]. This method
has been used in tasks such as age estimation [12] or per-
sonality recognition [41]. However, the application of LDL is
restricted since one should have a reasonable estimation of
the relation between labels, and such an estimation could be
challenging in many tasks, e.g., image classification. Fortu-
nately, SCA uses the leakage model to construct labels, which
inherently leads to a clear relationship between labels. Indeed,
two leakage traces with closer label (intermediate value)
distance could be more similar. As a result, a combination
of LDL and SCA could enhance attack performance.

Definition 4 (Description Degree): The description degree
d yi

x represents the degree of a label yi to describe an input x .
From the machine learning perspective, d yi

x can be considered
as the probability of the label yi being selected. If a complete
set of labels Y can fully describe the given input, then:∑

i

d yi
x = 1, yi ∈ Y. (3)

The conventional DL-based SCA represents a multi-class
classification task that describes a measurement with a unique
cluster/label. Using binary variables, the label is one-hot
encoded to train a deep learning model (see Figure 3b). In an
ideal case, the label yi perfectly represents the leaking features
within a measurement (i.e., the correlation between labels
and leaking features equals one). However, the presence of
noise/countermeasure increases the description degree of other
labels to the corresponding leakage traces. For illustration,
Figure 3a shows the Probability Density Function (PDF), and

Fig. 3. PDFs and a demonstration of distributed labels.

point-of-interests distributions (POI1 and POI2) from 1 000
measurements.3 The color of each point is attributed based
on its cluster label. Using the HW leakage model, nine PDFs
representing nine HW clusters are built during the profiling
phase. Each PDF is represented by two ellipses representing
0.5 (low) and 0.9 (high) of the maximum probabilities. Note
that PDF is the basis of template attack, used to present the
leakages’ distributions and making label predictions [5], [6].

From Figure 3a, each PDF can be separated. However, the
overlap between each PDF cannot be ignored. Although the
traces in the middle between two PDFs have deterministic
(single) labels representing the targeted intermediate data, they
are also geometrically close(r) to their neighboring clusters
leakage-wise. Here, we denote the squared Euclidean distance
between two label values as label distance. Indeed, one can
observe a natural measure of description degree that asso-
ciates the labels with the traces. An accurate description
of these traces should involve the ‘incorrect’ labels. Since
their similarity to each cluster is inversely correlated with
their label distance, as demonstrated in Figure 3b, the one-hot
label and the highest distributed label should be on the same
abscissa; the distribution degree of other labels is assigned
with reduced probability based on label distance. We denote
this label representation as distributed labels. The description
degree of each label is sorted based on their actual values.
Distributed labels more precisely describe the leakage features,
thus helping relax the conditions on the required number of
training traces to achieve a robust performance than training
with one-hot encoded labels.

It is worth noting the links between template attacks and
distributed labels. The multivariate normal distribution, param-
eterized by the mean vector µ and covariance matrix 6, can
be represented using the following equation

f (x; µ, 6) =
1

(2π)
k
2 · |6|

1
2

· exp−
1
2 (x−µ)T

·6−1
·(x−µ), (4)

where x represents the random vector from the multivariate
normal distribution with k dimensions. Indeed, both methods
calculate the mean and variation of the variable to precisely
describe the leakage features. The main difference is that the

3ChipWhisperer dataset [24] is used as it represents measurements obtained
from a physical device, where two point-of-interests are selected based on
the signal-to-noise ratio to represent the traces. Note that this dataset is
not noiseless, but obtaining less noisy measurements without resorting to
simulations is challenging.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 04,2023 at 08:23:48 UTC from IEEE Xplore. Restrictions apply.

3854 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

template attack directly characterizes the leakage features with
µ and 6, while our method focuses on enhancing leakage
features’ label representation.

Notice, our learning method fundamentally differs from
linear regression attack (LRA) [8]. Although LRA would also
lead to smooth labels by estimating weight parameters to
each binary decomposition of the target value, these labels are
constructed during the regression process. On the other hand,
our method considers SCA as a classification task. The goal of
using distributed labels is to reach more efficient classification.

One should notice the relation between label smoothing [36]
and label distribution. As a regularization technique, label
smoothing improves accuracy by computing cross-entropy not
with the ‘hard’ (i.e., one-hot encoded) labels from the dataset
but with a weighted mixture of all possible labels with the
noise (i.e., uniform) distribution. Label distribution further
preserves relations between different labels to describe leakage
features. From the model training perspective, the model is
less penalized by the loss value caused by the inconsistency
between predictions and real labels (e.g., one-hot labels), thus
speeding up the learning process. The performance benchmark
between these two techniques can be found in Section VI-A.
A natural choice to form distributed labels is a normal distribu-
tion. Indeed, the construction of distributed labels should align
with the actual distribution of leakages. This paper assumes the
leakage follows a Gaussian distribution commonly observed in
practice. Moreover, Gaussian distribution inherently fits the
distribution of the environmental noise, a main factor that
increases the description degree of labels.

Definition 5 (Label Distribution Learning): Given a train-
ing set with trace-label pairs (x , y) sampled from T, where
x ∈ X and y ∈ Y , the goal is to learn a function fθM ,
so that the predicted output ŷ, representing the probability of
all possible labels given an input x , has a similar distribution
to the distributed label D(y):

D(y) =
1

σ
√

2π
exp

(
−

1
2

(
y − y′

σ

)2
)

, y′
∈ Y, (5)

where D(y) denotes the distributed label for the input label
y; the variance of is denoted by σ .4

An essential assumption of label distribution learning is that
the label y should be pre-determined by an attacker. Then, the
attacker can calculate the distributed label D(y) with Eq. (5).
Indeed, the only adjustable parameter σ depends on the data
property (specifically, the dataset’s noise). In Section VI,
we systematically analyze the influence of σ with different
datasets (including their noisy versions) and leakage models
and then give suggestions on the value selection.

Next, to optimize the learning parameter θ , instead of using
conventional loss functions such as categorical cross-entropy
or mean squared error, following [10], Kullback-Leibler (KL)
divergence is used as the loss function to measure the simi-

4We assume the leakage follows a Gaussian distribution. If this assumption
does not hold for the given leakage traces, the calculation of the distributed
label should be adjusted accordingly.

larity between the predicted and ground truth distribution:

L =

∑
i

D(yi) ln(
D(yi)

ŷi
), yi ∈ Y, (6)

where ŷi and yi denote the predicted probability for label i
and the true label, respectively.

Stochastic gradient descent is used to minimize the loss
function L . Once a network is trained, given a random input
x with an unknown label from the attack dataset, the model f
outputs a predicted label distribution ŷ. The predicted label is
the one in ŷ with the highest probability.

i∗ = argmax
i

ŷi . (7)

V. LABEL CORRELATION METRIC

A. Key Distribution

Following Eq. (5), the probability of a label y being selected
as the correct label depends on its label distance to the true
label y∗. Since these labels are key-related, we can also
calculate the differences between key candidates, denoted as
key distribution (KD), based on the label distance.

K D(kre f , k) =

∥∥∥f(d, kre f) − f(d, k)

∥∥∥2
, k ∈ K. (8)

where f is the leakage model function (described in
Section II-E) that returns the leakage value (labels) according
to a key candidate k and data value d. Similar to Eq. (5), KD is
based on the squared Euclidean distance between the leakage
distribution of all key hypotheses k ∈ K and the reference key
candidate kre f . We form a KD vector sorted by the KD value
for each k (so kre f always ranks the first).5 Note that when
it is clear from the context, we use the notations K D(kre f , k)

and KD interchangeably.
KD gives a unique distribution of all key candidates k based

on their difference to the reference key kre f . Therefore, kre f

determines the KD value for each key candidate. Typically,
kre f has a distribution difference equal to zero with itself, and
the lower the distribution difference, the more similar the key
candidate is to the reference key. The reference key can be
set to the k∗ (correct key). When k∗ is unknown (black-box),
kre f should be the most likely key.

From an attack perspective, for a model built in a successful
profiling attack (the correct key k∗ is the best guess), suppose
KD is large between a specific key k ∈ K and k∗. Then, k
will likely be ranked low (i.e., with guessing entropy close
to 2b

− 1) as it has a negligible probability of being selected.
Consequently, KD can be considered an ideal key rank6 metric
indicating the best possible scenario where the correct key is
maximally separated from all the other keys.

The KD definition can be extended to any leakage model,
i.e., the Hamming distance or the Least Significant Bit.

5We also investigated the Manhattan distance and found the results to be
in line but with smaller discriminate power. Besides, since KD is a list
of labels associated with the given key that does not follow any known
distribution, f-divergence functions (i.e., KL-divergence, Hellinger distance)
are not considered.

6Here, ‘ideal’ means the perfect fit between an attack model and the
leakage. Under this circumstance, the resulting key rank is equivalent to KD
as discussed in Section V-B.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 04,2023 at 08:23:48 UTC from IEEE Xplore. Restrictions apply.

WU et al.: LABEL CORRELATION IN DEEP LEARNING-BASED SIDE-CHANNEL ANALYSIS 3855

Fig. 4. Illustration for the Key Distribution for the HW/ID leakage models
and correct keys 34 and 224.

Figure 4 illustrates the summed KD (for all key candidates)
with the HW and ID leakage models for the key candidates
kre f

= 34 (correct third subkey for the ASCAD_r) and
kre f

= 224 (correct third subkey for the ASCAD_f). Although
all KD values except for kre f

= k∗ act as ‘noisy’ values,
the similarity difference between kre f and other keys can be
observed. One should note that a precise estimation of KD
relies on the chosen leakage model. An incorrect leakage
model would not only degrade the attack performance, but
KD’s effectiveness will also drop. Since the publicly available
datasets leak mostly in the HW leakage model, we calculate
KD with the HW leakage model throughout the paper.

B. Label Correlation - LC

Key distribution defines the distance between kre f and other
key candidates. Following this, we define a profiling model
fitting metric by correlating KD with the predicted probability
for all k ∈ K, denoted as Label Correlation (LC), as a function
of KD and the key guessing vector g (defined in Definition 3):

LC = corr(K D, g). (9)

Eq. (9) defines how well a profiling model fits the data
concerning a key candidate kre f for a chosen leakage model.
The notation corr represents the Spearman correlation [14]
that evaluates the monotonic relationship with two inputs. We
also considered the Pearson correlation, but the results are less
optimal due to the significant differences in key distribution
between the correct key and other keys (Figure 4).

Following Eq. (9), if the profiling model outputs the correct
key as the most likely key, one could expect a stronger
correlation between KD and g. Conversely, if the profiling
model fails to fit the data, the outputted random (but still)
most likely key would lead to a low correlation between KD
and g. As a demonstration, Figure 5 depicts the ‘almost’
perfectly fitted profiling model for the HW and ID leakage
models. We use simulated measurements with strong HW and
ID leakages and a controlled Gaussian noise level, normal-
distributed with a variance of 0.01 around a mean of zero.
The simulated traces have two features that hold the leakage,
which is proportional to H W (Sbox (d ⊕ k)) and Sbox (d ⊕ k),
to simulate the ideal HW and ID leakages, respectively. The
profiling set has plaintexts d and keys k chosen from a
uniformly random distribution. The attack set’s plaintexts are
selected uniformly at random, while the attack key is the same
for the whole dataset. We use the template attack and consider

Fig. 5. ‘Perfectly’ fitted profiling model with template attack, considering the
HW and ID leakage models and simulated traces with an increasing number
of profiling traces N . KD ranks (Y-axis) stands for a sorted KD.

the increasing number of profiling traces N . In both figures,
LC increases w.r.t. the number of profiling traces, reaching
0.999 and 0.998 for the HW and ID leakage models. The
results confirm that the correlation between KD and g tends
to increase with better (fitter) models (since we use template
attack, better models are those that are trained with more
traces).

Definition 6 (Perfectly Fitted Profiling Model): A perfectly
fitted profiling model reaches LC = 1 in the attack phase for
any set of Q attack traces.7

It is worth mentioning that KD can also be used to calcu-
late the confusion covariance metric (E(K D)) [9], a metric
designed initially to measure the DPA resistance of S-boxes.
A low expectation of KD indicates less distinctive intermediate
data, which could lead to reduced data leakage. On top of that,
the LC metric suggests that the variance of KD should also be
low to secure the target. Indeed, a low KD variance indicates
high similarity between different keys, which will lead to a less
deterministic order of g. Since the LC value is more likely to
be low in this case, one can expect more effort in obtaining the
security assets via SCA. Another way of perturbing g is by
introducing additional noise or countermeasures, a common
implementation in modern products.

VI. EXPERIMENTAL RESULTS

A. Profiling With Distributed Labels

In Section IV, we argue that the distributed label enlarges
the description degrees of labels to the leakage traces and
can lead to more efficient learning even with fewer profiling
examples. We validate this assumption with machine learn-
ing models by training the state-of-the-art CNNs [33] and
MLPs [38] with a different number of profiling traces. The
models’ hyperparameters are listed in Appendix . We use a
diverse selection of DL architectures to ensure the general-
ization of the results. Note that we select MLP and CNNs
due to their wide applications in SCA. Still, we expect
other supervised learning methods to benefit from distributed
labels thanks to their higher description degree of the leakage
features. Besides, we tune the σ value of the distributed
label to find the optimal value for different training settings.
The distributed labels are pre-computed before the training
starts. To obtain the most representative performance, the

7We assume there are many possible ways to select Q traces from the
available traces.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 04,2023 at 08:23:48 UTC from IEEE Xplore. Restrictions apply.

3856 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Fig. 6. Label distribution learning on the ASCAD_f dataset.

attack results of each training setting (σ and profiling traces
number) are the median value from 20 independent training
(and attacks) with random weight initialization following
recommendations from [40].

Figures 6, 7, and 8 show the results for the ASCAD_f,
ASCAD_r, and CHES_CTF datasets, respectively. The con-
ventional training method (one-hot encoded label) is repre-
sented with σ = 0.0 (black bar). We used the categorical
cross-entropy (CCE) loss when training with the conventional
method. CCE is a standard loss function for classification
tasks widely used in DL-SCA. When learning from the label
distribution, the KL divergence loss measures the distribution
difference between the true and predicted label distributions.

For the ASCAD_f dataset, as shown in Figure 6, by dis-
tributing HW-based labels, GE equal to zero can be reached
with less than 3 000 profiling traces for both MLP and CNN
within the given number of attack traces, which is more
than ten times less than the number of the profiling traces
commonly used in literature (50 000). At the same time, more
than 10 000 profiling traces are insufficient when considering
the conventional training method (σ = 0.0). Using the ID
leakage model, although one-hot encoded labels lead to better
performance in some cases (discussed in later paragraphs),
one can confirm the advantages of using the distributed label
in low profiling settings.

When looking at the influence of the label distribution
variation σ (Figure 6), although different numbers of profiling
traces, leakage models, and attack models are considered, the
optimal settings show consistency: for the HW leakage model,
σ ranges from 1 to 2 can lead to the best attack performance.
This value increases to 20-80 for the ID leakage model. We
have also tested the traces with Gaussian noise levels 2 and 4.
While the optimal value of σ defined in the paper still holds
for most settings, we expect the best σ to be larger since the
leakage traces become more difficult to classify correctly.

Fig. 7. Label distribution learning on the ASCAD_r dataset.

Although ASCAD_r is considered more difficult to break
than ASCAD_f [38], as shown in Figure 7, the distributed
label boosts the attack performance significantly. For the HW
leakage model, around 6 000 profiling traces are sufficient
for MLP and CNN models to reach GE of zero, which is
around ten times less than the related works (≥50 000 profiling
traces). For the ID leakage model, aligned with the attack on
the ASCAD_f dataset, although none of the training settings
can retrieve the secret information with 5 000 attack traces,
label distribution learning halves the GE value compared
with its one-hot encoded counterpart, indicating a faster GE
convergence with our learning scheme.

Finally, similar results can be obtained when attacking the
CHES_CTF dataset. Since this dataset leaks limited ID leakage
according to literature [33], [38], we attack with the HW
leakage model only. With the MLP and CNN models, 5 000
profiling traces are needed to break the target, nine times
less than the traces used in the literature (45 000 traces). It is
important to note that the optimal σ setting shows similarity
for all three tested datasets. From the experimental results on
three datasets, good prior knowledge about the leakage model
is necessary to construct a meaningful label distribution. Still,
when attacking leakages from other devices, one could start
with low σ and monitor the attack performance until it reaches
optimal behavior.

Indeed, there are various techniques available when the
profiling traces are limited. To better illustrate the pros and
cons of label distribution learning compared to these methods,
we benchmark the attack performance of previously used state-
of-the-art (SotA) MLPs and CNNs with multiple profiling
settings. We consider several commonly-used techniques to
counter the limitation of the training data.

• 10 000 profiling traces with and without techniques such
as label distribution, label smoothing, L2 regularization,
and dropout.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 04,2023 at 08:23:48 UTC from IEEE Xplore. Restrictions apply.

WU et al.: LABEL CORRELATION IN DEEP LEARNING-BASED SIDE-CHANNEL ANALYSIS 3857

Fig. 8. Label distribution learning on the CHES_CTF dataset.

TABLE I
BENCHMARK THE ATTACK PERFORMANCE (TG E0) WITH SOTA MLP.

ATTACK RESULTS FOR THE HW AND ID LEAKAGE MODELS ARE
SEPARATED BY ‘/’

• 50 000 profiling traces, obtained directly or generated
with Gaussian noise-based data augmentation.

• 100 000 profiling traces generated from 10 000 traces with
Gaussian noise-based data augmentation.

The dropout rate and regularization factor are tuned to 5e-2
and 1e-4. For data augmentation, four augmentation levels
(0.25, 0.5, 0.75, 1.0) are selected following [17], and the
one with the best performance is presented in the benchmark.
The label smoothing factor is set to be optimal based on the
various search options.8 Each profiling setting is tested with
two label formats: one-hot encoded and distributed labels.
For label distributed learning, σ is set to 1/2 and 40/80 for
HW and ID leakage models. Recall that the number of attack
traces is set to 10 000. The attack performance is evaluated by
calculating the required number of attack traces to reach GE of
zero, denoted as TG E0. The results are the median TG E0 from
20 independently trained models. If an attack setting fails to
reach GE zero with a given number of attack traces, the results
are marked with “-”.

The benchmark results are shown in Table I and Table II.
The best results for each profiling setting are marked in bold.
With limited (10 000) profiling traces, distributed labels bring
a significant performance boost with various attack settings.

8The possible label smoothing factors are 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1, 5,
and 10.

TABLE II
BENCHMARK THE ATTACK PERFORMANCE (TG E0) WITH SOTA CNN.

ATTACK RESULTS FOR THE HW AND ID LEAKAGE MODELS ARE
SEPARATED BY ‘/’

The considered regularization techniques are helpful in some
attack settings, improving significantly when combined with
distributed labels. Similarly, data augmentation helps obtain
better performance in some cases; the combination with dis-
tributed labels makes it even better. In practice, due to the
limitation of controlled devices and time budget, attackers
would likely use smaller networks, more regularization, and
more data augmentation to run their attacks in lower-data
settings. However, as shown in the table, label distribution
is the best technique considering the additional efforts to tune
hyperparameters and their performance.

Note that one-hot encoded labels often lead to comparable
or superior results when training with 50 000 profiling traces.
Indeed, one-hot encoded labels are more precise in discrimi-
nating the correct labels than distributed labels. On the other
hand, increasing the number of profiling traces amplifies the
side-effect of distributed labels, leading to high estimation
variance and reduced predictive performance. Finally, although
data augmentation could also generate more profiling traces,
the difficulty of setting a proper augmentation level makes the
generated traces less helpful in the profiling phase.

B. Use Cases of Label Correlation

In this section, we investigate the effectiveness of the LC
metric for different use cases. Specifically, we consider
network architecture search (NAS) and overfitting prevention
as they significantly influence the attack performance with
DL-based SCA. Indeed, adjusting the profiling model size
will directly influence its learning capacity. On the other
hand, a correctly set training epoch number could improve
the model’s fitness to the dataset. Since these two aspects rely
on well-performing evaluation metrics [26], [33], we show the
performance of LC in various settings and benchmark it with
other standard metrics.

1) Early Stopping: As an evaluation metric, LC can be used
as early stopping regularization or as an indicator of when
to save the best model. For illustration, we evaluate state-
of-the-art models by training with different training epochs

Authorized licensed use limited to: TU Delft Library. Downloaded on July 04,2023 at 08:23:48 UTC from IEEE Xplore. Restrictions apply.

3858 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Fig. 9. Metrics performance on the ASCAD_f dataset.

ranging from 1 to 150 in steps of 10, representing the number
of iterations to train a profiling model. Aligned with previous
sections, the attack performance is assessed by TG E0. Besides,
four metrics, accuracy, loss, mutual information (MI) [25], and
LC, are calculated per epoch with 5 000 validation traces.9 One
may argue that TG E0 can be used as an evaluation metric.
However, TG E0 can only be calculated when GE equals zero.
For a model that cannot break the target with a given number
of attack traces, TG E0 is not indicative. Similarly, the key rank
metric is only meaningful when GE is larger than zero: when
the key rank stays zero, one cannot know if the model is
still learning or starting overfitting. Since all selected models
reached the key rank of zero quickly and never changed,
we omit the key rank metric as it is less indicative in the
training process.

The results for three datasets and two leakage models
are shown in Figures 9, 10, and 11. Since the metrics and
TG E0 have different scales, multiple Y-axes are used to scale
the results data. The optimal training epoch proposed in the
literature is marked by green vertical lines (10 for MLPs
and 50 for CNNs). Aligned with the previous section, all the
presented results are the median from 20 independent pieces
of training.

Regarding ASCAD_f, LC perfectly reflects the generaliza-
tion variation of the profiling model with different training
epochs when using TG E0 as a reference. From both figures,
LC indicates the overfitting effect accurately, or even before
the attack performance degrades. Indeed, LC evaluates the
order of the key candidates, and the order closer to KD is
more likely to be perturbed when overfitting starts. When the
overfitting effect accumulates to a certain level, the “disorder”
of the key candidate propagates to the correct key, finally
captured by GE-related metrics. Due to LC’s sensitivity, one

9If GE is greater than zero, TG E0=5 000.

Fig. 10. Metrics performance on the ASCAD_r dataset.

can decide on optimal epochs with more patience (i.e., the
number of epochs to wait before an early stop if there is
no progress on the validation set) without suffering from
overfitting.

Regarding other metrics, the MI metric is somewhat mis-
leading as it keeps increasing (e.g., Figures 9a, 9d, and 10d)
or does not change much (Figures 10b and 11b) even when
TG E0 suggests performance degradation. The loss value is
only useful in limited cases (e.g., Figure 9a), which confirms
the conclusion from Picek et al. [28] that it is commonly not
considered a good evaluation metric for SCA, and accuracy
remains mostly stable with different training epochs, indicating
mediocre performance. Lastly, the literature’s optimal training
epochs are not optimal for Figures 9a and 9d. On the other
hand, LC consistently indicates the epoch that achieves the
best attack performance.

Attacks on ASCAD_r and CHES_CTF show consistent
results with ASCAD_f. LC performs the best among all
evaluated metrics, alarming the overfitting effect precisely.
As an evaluation metric, LC combines the advantages of
key rank and TG E0 with limited computation overhead, thus
becoming a reliable metric for the applications such as early
stopping.

2) Network Architecture Search: Network architecture
search (NAS) is essential in DL-SCA. A smartly designed
neural network can break the target and reduce the training
complexity as well [33], [42]. To better illustrate the advantage
of the LC metric, we use CNN listed in Table III with a
tunable α parameter to control the size of the deep learning
model. Specifically, α determines the number of filters in
convolutional layers and neurons in the fully connected layers.
We use α (range from 1 to 64) to estimate the complexity of
a profiling model. Note, for the CNN_best from [1], α equals
64. The training epoch is set to be optimal (75) based on [1],
represented by the green vertical line in the plot. This section

Authorized licensed use limited to: TU Delft Library. Downloaded on July 04,2023 at 08:23:48 UTC from IEEE Xplore. Restrictions apply.

WU et al.: LABEL CORRELATION IN DEEP LEARNING-BASED SIDE-CHANNEL ANALYSIS 3859

Fig. 11. Metrics performance on the CHES_CTF dataset.

TABLE III
CNN ARCHITECTURE USED FOR THE ATTACK

presents the results for the ASCAD_f and ASCAD_r datasets
only. Since CHES_CTF produce similar results, we omit them
from this section.

The results are shown in Figure 12. Aligned with the
previous section, accuracy, loss, MI, and LC are used as
evaluation metrics. As a reference, TG E0 represents the attack
performance. Among the three considered metrics, LC best
represents the attack performance. For instance, in Figure 12a,
TG E0 reaches minimum when α equals around 50. Further
increase of the profiling model size degrades the attack per-
formance, meaning the fitness reduction for a dataset. The
LC metric perfectly represents this tendency, as it reaches
the maximum when α is around the same model size, then
decreases gradually. Regarding other metrics, the validation
accuracy has limited changes regardless of the variation of
α. Validation loss, in contrast, is more indicative than its
counterpart. However, it is challenging to judge when to stop
the training. For instance, the loss value in Figure 12c sug-
gests that the profiling should end after training with around
35 epochs, but the best performance is reached 15 epochs later.
MI keeps on increasing with the HW leakage model. However,
it does not correctly reflect the attack performance. Finally, the
training epoch suggested in the literature is still sub-optimal
when looking at the results (i.e., Figure 12b). Using LC as an
evaluation metric can help monitor the attack performance in
various settings.

In addition, we have also tested the influence of the noise
on the considered metrics by adding Gaussian noise to the
traces with incremental variations ranging from 0 to 10 in a
step of 0.5. The results show that the LC metric can correctly
and precisely reflect the negative influence introduced by the
noise. Since the results align with the conclusions from the
previous sections, the results are omitted.

Fig. 12. Metrics performance with different model sizes.

In conclusion, the LC metric reliably reflects the gener-
ality of the profiling model in various training conditions.
Compared to other metrics, the evaluation of the keys’ order
helps in increasing the sensitivity of the LC metric in mea-
suring the model’s performance. Indeed, in almost all of the
experimental results, LC is the first metric that indicates the
overfitting effect. Additionally, due to its computation simplic-
ity, we believe LC is an ideal candidate as an evaluation metric.

VII. CONCLUSION AND FUTURE WORK

In the profiling side-channel analysis, one commonly uses
intermediate data to form a one-hot encoded label for the
profiling. Additionally, it is common to use guessing entropy
to estimate the attack performance. This paper introduces dis-
tributed labels as a new learning approach that can effectively
reduce the required number of profiling traces. Then, based
on the relationship between each key candidate, we define
the Key distribution (KD) metric and use it to form a novel
LC metric. Our results show that the LC metric can be a
reliable candidate for evaluating the generality of a model,
which has been validated with two use cases: early stopping
and network architecture search. Our findings are confirmed
for several experiments considering various usage cases, attack
methods, leakage models, and datasets.

In future work, we plan to extend the application of label
distribution for high-order masked implementations. In terms
of the LC metric, since the key distribution relies on the hypo-
thetical distance between key candidates, the distance depends
on the algorithm and hardware implementation. Following this,
we plan to investigate if the method can be easily adapted
to a new implementation or a new algorithm. Moreover, prior
knowledge about the leakage model plays a significant role in
the proposed label distribution, so we plan to explore LC in
the context of leakage assessment for the black-box devices
without this knowledge. Finally, applying our results to the
non-profiling SCA would be an exciting research direction.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 04,2023 at 08:23:48 UTC from IEEE Xplore. Restrictions apply.

3860 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

TABLE IV
CNN ARCHITECTURE USED FOR THE ATTACK [33]

TABLE V
MLP ARCHITECTURE USED FOR THE ATTACK [38]

APPENDIX

The used state-of-the-art models are listed in
Tables IV and V. All of the non-listed hyperparameter
settings are aligned with the original papers [33], [38]. The
convolution layer is denoted by C; averaging pooling layer is
denoted by P. FLAT and FC denote the flatten layer and fully
connected layer, respectively. Finally, SM denotes the output
layer with the so f tmax activation function.

REFERENCES

[1] R. Benadjila, E. Prouff, R. Strullu, E. Cagli, and C. Dumas, “Deep
learning for side-channel analysis and introduction to ASCAD database,”
J. Cryptograph. Eng., vol. 10, no. 2, pp. 163–188, Jun. 2020.

[2] E. Bursztein, “Leveraging deep-learning to perform SCA attacks against
AES implementations,” in Proc. Cryptograph. Hardw. Embedded Syst.
(CHES), 2018.

[3] IC Card. (Nov. 2021). EMV Integrated Circuit Card Specifications for
Payment Systems, Book 3 Application Specification. [Online]. Available:
https://www.emvco.com/wp-content/uploads/2017/04/EMVv4.
3Book3ApplicationSpecification20120607062110791.pdf

[4] E. Cagli, C. Dumas, and E. Prouff, “Convolutional neural networks with
data augmentation against jitter-based countermeasures,” in Proc. Int.
Conf. Cryptograph. Hardw. Embedded Syst. W. Fischer and N. Homma,
Eds. Cham, Switzerland: Springer, 2017, pp. 45–68.

[5] O. Choudary and M. G. Kuhn, “Template attacks on different devices,”
in Proc. Int. Workshop Constructive Side-Channel Anal. Secure Design.
Paris, France: Springer, Apr. 2014, pp. 179–198.

[6] M. O. Choudary and M. G. Kuhn, “Efficient, portable template attacks,”
IEEE Trans. Inf. Forensics Security, vol. 13, no. 2, pp. 490–501,
Feb. 2018.

[7] S. Chari, J. R. Rao, and P. Rohatgi, “Template attacks,” in Cryptographic
Hardware and Embedded Systems (Lecture Notes in Computer Science),
vol. 2523. Cham, Switzerland: Springer, Aug. 2002, pp. 13–28.

[8] J. Doget, E. Prouff, M. Rivain, and F.-X. Standaert, “Univariate side
channel attacks and leakage modeling,” J. Cryptograph. Eng., vol. 1,
no. 2, pp. 123–144, Aug. 2011.

[9] Y. Fei, Q. Luo, and A. A. Ding, “A statistical model for DPA with
novel algorithmic confusion analysis,” in Proc. Int. Workshop Cryp-
tograph. Hardw. Embedded Syst. Cham, Switzerland: Springer, 2012,
pp. 233–250.

[10] X. Geng, “Label distribution learning,” IEEE Trans. Knowl. Data Eng.,
vol. 28, no. 7, pp. 1734–1748, Jul. 2016.

[11] R. Gilmore, N. Hanley, and M. O’Neill, “Neural network based attack
on a masked implementation of AES,” in Proc. IEEE Int. Symp. Hardw.
Oriented Secur. Trust (HOST), May 2015, pp. 106–111.

[12] X. Geng, Q. Wang, and Y. Xia, “Facial age estimation by adaptive
label distribution learning,” in Proc. 22nd Int. Conf. Pattern Recognit.,
Aug. 2014, pp. 4465–4470.

[13] G. Hospodar, B. Gierlichs, E. D. Mulder, I. Verbauwhede, and
J. Vandewalle, “Machine learning in side-channel analysis: A
first study,” J. Cryptograph. Eng., vol. 1, no. 4, pp. 293–302,
Dec. 2011.

[14] J. Hauke and T. Kossowski, “Comparison of values of Pearson’s and
spearman’s correlation coefficients on the same sets of data,” Quaes-
tiones Geographicae, vol. 30, no. 2, p. 87, 2011.

[15] A. Heuser and M. Zohner, “Intelligent machine homicide–breaking
cryptographic devices using support vector machines,” in Proc. Int.
Workshop Constructive Side-Channel Anal. Secure Design W. Schindler
and S. A. Huss, Eds., vol. 7275. Cham, Switzerland: Springer, 2012,
pp. 249–264.

[16] P. C. Kocher, J. Jaffe, and B. Jun., “Differential power analysis,” in
Proc. Annu. Int. Cryptol. Conf., in Lecture Notes in Computer Science,
vol. 1666, M. J. Wiener, Ed. Santa Barbara, CA, USA: Springer, 1999,
pp. 388–397.

[17] J. Kim, S. Picek, A. Heuser, S. Bhasin, and A. Hanjalic, “Make some
noise. unleashing the power of convolutional neural networks for profiled
side-channel analysis,” IACR Trans. Cryptograph. Hardw. Embedded
Syst., vol. 2019, no. 3, pp. 148–179, 2019.

[18] Y. K. Kumar and R. M. Shafi, “An efficient and secure data
storage in cloud computing using modified RSA public key cryptosys-
tem,” Int. J. Electr. Comput. Eng. (IJECE), vol. 10, no. 1, p. 530,
Feb. 2020.

[19] L. Lerman, S. F. Medeiros, G. Bontempi, and O. Markowitch,
“A machine learning approach against a masked AES,” in Proc. CARDIS,
in Lecture Notes in Computer Science. Berlin, Germany: Springer,
Nov. 2013, pp. 123–139.

[20] L. Lerman, R. Poussier, G. Bontempi, O. Markowitch, and
F.-X. Standaert, “Template attacks vs. machine learning revisited (and
the curse of dimensionality in side-channel analysis),” in Proc. Int.
Workshop Constructive Side-Channel Anal. Secure Design. Cham,
Switzerland: Springer, 2015, pp. 20–33.

[21] X. Lu, C. Zhang, P. Cao, D. Gu, and H. Lu, “Pay attention to raw traces:
A deep learning architecture for end-to-end profiling attacks,” IACR
Trans. Cryptograph. Hardw. Embedded Syst., vol. 2021, pp. 235–274,
Jul. 2021.

[22] L. Masure, C. Dumas, and E. Prouff, “A comprehensive study of deep
learning for side-channel analysis,” IACR Trans. Cryptograph. Hardw.
Embedded Syst., vol. 2020, pp. 348–375, Nov. 2019.

[23] H. Maghrebi, T. Portigliatti, and E. Prouff, “Breaking cryptographic
implementations using deep learning techniques,” in Proc. Int. Conf.
Secur., Privacy, Appl. Cryptogr. Eng. Cham, Switzerland: Springer, 2016,
pp. 3–26.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 04,2023 at 08:23:48 UTC from IEEE Xplore. Restrictions apply.

WU et al.: LABEL CORRELATION IN DEEP LEARNING-BASED SIDE-CHANNEL ANALYSIS 3861

[24] C. ObFlynn and Z. D. Chen, “ChipWhisperer: An open-source platform
for hardware embedded security research,” in Proc. Int. Workshop
Constructive Side-Channel Anal. Secure Design. Cham, Switzerland:
Springer, 2014, pp. 243–260.

[25] G. Perin, I. Buhan, and S. Picek, “Learning when to stop: A mutual infor-
mation approach to prevent overfitting in profiled side-channel analysis,”
in Proc. Int. Workshop Constructive Side-Channel Anal. Secure Design,
vol. 12910. Cham, Switzerland: Springer, 2021, pp. 53–81.

[26] G. Perin, Ł. Chmielewski, and S. Picek, “Strength in numbers: Improv-
ing generalization with ensembles in machine learning-based profiled
side-channel analysis,” IACR Trans. Cryptograph. Hardw. Embedded
Syst., vol. 2020, pp. 337–364, Aug. 2020.

[27] S. Picek et al., “Side-channel analysis and machine learning: A practical
perspective,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN), May 2017,
pp. 4095–4102.

[28] S. Picek, A. Heuser, A. Jovic, S. Bhasin, and F. Regazzoni, “The curse
of class imbalance and conflicting metrics with machine learning for
side-channel evaluations,” IACR Trans. Cryptograph. Hardw. Embedded
Syst., vol. 2019, pp. 209–237, Nov. 2018.

[29] S. Picek, A. Heuser, G. Perin, and S. Guilley, “Profiled side-channel
analysis in the efficient attacker framework,” in Proc. Int. Conf.
Smart Card Res. Adv. Appl. Cham, Switzerland: Springer, 2022,
pp. 44–63.

[30] R. Poussier, F.-X. Standaert, and V. Grosso, “Simple key enumera-
tion (and rank estimation) using histograms: An integrated approach,”
in Proc. Int. Conf. Cryptograph. Hardw. Embedded Syst. Cham,
Switzerland: Springer, 2016, pp. 61–81.

[31] G. Perin, L. Wu, and S. Picek, “Exploring feature selection sce-
narios for deep learning-based side-channel analysis,” IACR Trans.
Cryptograph. Hardw. Embedded Syst., vol. 2022, pp. 828–861,
Aug. 2022.

[32] A. Rădulescu, P. G. Popescu, and M. O. Choudary, “GE vs GM: Efficient
side-channel security evaluations on full cryptographic keys,” IACR
Trans. Cryptograph. Hardw. Embedded Syst., vol. 2022, pp. 886–905,
Aug. 2022.

[33] J. Rijsdijk, L. Wu, G. Perin, and S. Picek, “Reinforcement learning
for hyperparameter tuning in deep learning-based side-channel anal-
ysis,” IACR Trans. Cryptograph. Hardw. Embedded Syst., vol. 2021,
pp. 677–707, Jul. 2021.

[34] W. Schindler, K. Lemke, and C. Paar, “A stochastic model for differential
side channel cryptanalysis,” in Proc. Int. Workshop Cryptograph. Hardw.
Embedded Syst. J. R. Rao and B. Sunar, Eds. Berlin, Germany: Springer,
2005, pp. 30–46.

[35] F.-X. Standaert, G. Tal Malkin, and M. Yung, “A unified framework for
the analysis of side-channel key recovery attacks,” in Proc. Annu. Int.
Conf. Theory Appl. Cryptograph. Techn., A. Joux, Ed. Berlin, Germany:
Springer, 2009, pp. 443–461.

[36] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2818–2826.

[37] L. Wouters, V. Arribas, B. Gierlichs, and B. Preneel, “Revisiting a
methodology for efficient CNN architectures in profiling attacks,” IACR
Trans. Cryptograph. Hardw. Embedded Syst., vol. 2020, pp. 147–168,
Jun. 2020.

[38] L. Wu, G. Perin, and S. Picek, “I choose you: Automated hyperpa-
rameter tuning for deep learning-based side-channel analysis,” IEEE
Trans. Emerg. Topics Comput., early access, Nov. 7, 2022, doi:
10.1109/TETC.2022.3218372.

[39] L. Wu, G. Perin, and S. Picek, “The best of two worlds: Deep learning-
assisted template attack,” IACR Trans. Cryptograph. Hardw. Embedded
Syst., vol. 2022, pp. 413–437, Jun. 2022.

[40] L. Wu, G. Perin, and S. Picek, “On the evaluation of deep learning-based
side-channel analysis,” in Proc. International Workshop Constructive
Side-Channel Anal. Secure Design, vol. 13211. Leuven, Belgium:
Springer, p. 49.

[41] D. Xue et al., “Personality recognition on social media with label
distribution learning,” IEEE Access, vol. 5, pp. 13478–13488, 2017.

[42] G. Zaid, L. Bossuet, A. Habrard, and A. Venelli, “Methodology for effi-
cient CNN architectures in profiling attacks,” IACR Trans. Cryptograph.
Hardw. Embedded Syst., vol. 2020, pp. 1–36, Nov. 2019.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 04,2023 at 08:23:48 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TETC.2022.3218372

