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Abstract— According to the well-known loop shaping method
for the design of controllers, the performance of the controllers
in terms of step response, steady-state disturbance rejection and
noise attenuation and robustness can be improved by increasing
the gain at lower frequencies and decreasing it at higher fre-
quencies and increasing the phase margin as much as possible.
However, the inherent properties of linear controllers, the Bode’s
phase-gain relation, create a limitation. In theory, a complex-
order transfer function can break the Bode’s gain-phase relation;
however, such transfer function cannot be directly implemented
and should be approximated. This paper proposes a reset element
and a tuning method to approximate a Complex-Order Controller
(CLOC) and, through a simulation example, shows the benefits
of using such a controller.

I. INTRODUCTION

The increasing demands for speed and accuracy from the
high-tech industry, especially in the field of precision motion
control, has pushed the linear controllers to their inherent limi-
tations, namely - Bode’s gain-phase relationship and waterbed
effect [1]-[3]. The well-known limitations pose a trade-off
between tracking and steady-state precision on one side and
bandwidth, stability margins and transient response properties
on the other.

From the perspective of the loop-shaping technique, the
industry-standard method for controller design in the frequency
domain, one needs to break this gain-phase relationship to
break the trade-off. This was first recognized in complex order
derivatives used in the third generation CRONE technique [4],
[5]. However, such a derivative which can potentially show a
negative gain slope with a corresponding positive increasing
phase, is unfortunately not practically implementable in the
linear domain. Existing attempts in the literature for ap-
proximating such behaviour resulted in unstable poles, non-
minimum phase zeros or poor approximation of gain behaviour
among other issues [6], [7].

The impossibility of achieving implementable complex-order
behaviour in linear systems has made researchers and indus-
tries interested in nonlinear control methods that are industry-
compatible in design and implementation. One such interest-
ing concept is reset control, which was first introduced by
Clegg [8]. In [9], [10], a method to approximate Complex-
Order Controllers (CLOC) using reset control is introduced,
which consists of multiple reset states, which makes the
system become unnecessarily complicated and can potentially
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deteriorate the precision performance of the system.

Based on Describing Function (DF) analysis, it is established
that the reset integrator proposed by Clegg reduces the phase
lag of the integrator by 52°. Although this already breaks
the Bode’s gain-phase relation for linear control systems,
there are concerns while using Clegg’s Integrator (CI) in
practice, namely, the accuracy of DF approximation, limit-
cycle, etc. [11]. In order to address the drawbacks and exploit
the benefits, the idea was later extended to more sophisticated
elements such as “First-Order Reset Element” [12], [13] and
“Second-Order Reset Element” [14] or using Clegg’s integrator
in the form of PI+CI [15] or resetting the state to a fraction
of its current value, known as partial resetting [16].

One of the recent studies introduces a new reset element called
“Constant-in-Gain, Lead-in-Phase” (CgLp) [17]. DF analysis
of this element shows that it can provide broadband phase
lead while maintaining a constant gain. Such an element is
used in the literature to replace some part of the differentiation
action in PID controllers as it will help improve the precision
of the system according to the loop-shaping concept [17]-
[20]. Despite the fact that the analysis and designs are focused
on describing functions without taking higher-order harmonics
into account, significant tracking and steady-state precision
improvements are reported.

The main contribution of this paper is to propose a reset
controller to approximate a complex-order transfer function.
This reset controller is based on the CgLp structure with a
shaped reset signal. The CgLp which is used has only one
resetting state, which reduces the complications of multiple
resetting states. The shaping filter and its tuning method for
the reset signal will be introduced to tune the slope of gain
and phase as in a complex-order transfer function. This paper
also shows the benefits of using such a reset controller in
step responses and steady-state precision over a linear PID
controller in simulation.

The remainder of the paper is organized as follows: Section
IT introduces the preliminaries of the study. Section III will
introduce the reset element to approximate the complex-order
transfer function. Section IV will show an illustrative example
and, finally, paper will be closed with conclusions and future
work tips.

II. PRELIMINARIES

This section will discuss the preliminaries of this study.
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A. General Reset Controller

The general form of a SISO reset controllers used in this
study is as following:
Ay, (t),

ir(t) =
2 n
CT$T< )+Dr6<t)

o (th) =
u(t) =
where A,., B,.,C,, D,. denote the state space matrices of the
Base Linear System (BLS) and reset matrix is denoted by A, =
diag(v1, ..., 7n) which contains the reset coefficients for each
state. e(t) and wu(t) represent the input and output for the reset
controller, respectively.

A,z (t) + Bre(t), ife(t)#0

ife(t)=0

(1)

B. Describing Functions

Describing function analysis is a well-known approach in

literature for approximation of frequency response of nonlinear
systems like reset controllers [21]. However, the DF method
only takes the first harmonic of Fourier series decomposition of
the output into account and neglects the effects of the higher-
order harmonics. This simplification can be significantly in-
accurate under certain circumstances [19]. The “Higher-Order
Sinusoidal Input Describing Function” (HOSIDF) method has
been introduced in [22] to provide more accurate informa-
tion about the frequency response of nonlinear systems by
investigation of higher-order harmonics of the Fourier series
decomposition. In other words, in this method, the nonlinear
element will be replaced by a virtual harmonic generator.
Per definition, describing functions are calculated for sinu-
soidal inputs. Thus, assuming e(t) = sin(wt), HOSIDF method
was developed in [23], [24] for reset elements defined by (1)
as follows:

Cr(jwl — A) NI 4 jO(W)B, + D,, n=1
Hy(w) = < C(jwnl — Ar)fle(w)Br odd n > 2
O, even n > 2
Ow) = —fA( )[P(w) = A7 (w)]
Aw) = 2] + A 2
Alw)=T+ew4 )
Ap(w) =T+ Ajestr
D(w) = A, (W) ApA(w)A™ (w)

where H,(w) is the n"™ harmonic describing function for
sinusoidal input with the frequency of w. It has to noted that
according to [21], the convergence and asymptotic stability of
reset elements in open-loop is guaranteed when [A(A4,)] < 1,
where A\(A,) stands for eigenvalues of the matrix A,.

C. Describing Functions with Shaped Reset Signal

In a conventional reset element, the reset condition is based
on the input to the reset element, i.e., e(t). However, one can
use a signal other than the input for reset condition. Denoting
the reset signal as x,(t), the reset condition will change to
2,1 (t) = 0. This paper creates a reset signal by filtering e(t)
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(a) A conventional reset element. Arrow indicates the resetting action. The
resetting action is determined by x,;(t) which is equal to e(t), i.e., the
resetting condition is a:,l(t) =e(t) = 0.

’

e(t)

Shaping
Filter

(b) A reset element with shaped reset signal. Arrow indicates the resetting
action. The resetting action is determined by x,.;(¢) which is not equal to
e(t), i.e., the resetting condition is z,;(t) = 0.

Fig. 1: A conventional reset element vs. a reset element with shaped reset
signal.

and thus named shaped reset signal. Assuming e(t) = sin(wt)
for HOSIDF analysis purposes, the reset instants will be ¢t =
AT However, if one creates 2,(t) such that it has ¢ phase
shift compared to e(t), or in other terms

% (t) = Apx,(t) + Bre(t), if sin(wt+ ) #0
ZR =z, (tT) = Az, (t), if sin(wt +¢) =0
/ u(t) = Cpap(t) + Dye(t),
(3)
it means that the reset instants will become 5, = k”‘“" , While

maintaining the input, e(¢). In this case, the HOSIDF will
change to [24]:

Cr(Ay — jwl) 'O, (w)
Gon(w) = + C,.'(jwl le,.)‘lBT. + D,, n=1
Cr(A, — jwnl) " O4(w), odd n > 2
0 even n > 2
O, (w) = yQ(w) (wI cos(p) — A, sin(p)) A~ (w)B
Qw) = A(w) — A(w)A;l(w)ApA(w).

“4)

The above indicates that first and higher-order describing
functions can be changed by shaping the reset signal. Fig. 1
shows a conventional reset element vs. a reset element with
shaped reset signal. It has to be noted that for z,;(t), only
zero-crossings matter and thus, ideally, its gain does not have
any effect on the system.

D. Hpg condition

Hp condition [16], despite its conservativeness, has gained
attention among different criteria for stability of reset control
systems [11], [25], [26], because of simplicity and frequency
domain applicability. In [27], the Hg condition has been
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reformulated such that the frequency response functions of the
controllers and the plant can be used directly. This method
especially includes the case where the reset element is not the
first element in the loop.

E. Frequency Response of s*+78

A derivative of complex order can be defined in a variety of
ways [28]-[30], but it is commonly indicated by the operator
Do+38 1t makes no difference which one is utilized for the
purpose of this paper, as long as the Laplace transform of a
derivative of order o+ j3 € C generates a complex power of
the Laplace variable s:

L [DOHPf(t)] = s TP L[ f(1)] (5)

The initial conditions for Laplace are also irrelevant for this
paper, since the frequency response of the the simplest cor-
responding complex-order transfer function is under consider-
ation, i.e., G(s) = s**78. The frequency response is given
by [9]:

G(jw) = j w7 w’?
(5

x e~ 2 (cos(flogw)

+ jsin(logw))
201logy( |G(jw)| = 201og;, (wo‘e_%w)

Oéﬂ') e

T L.
cos—+jsm?

(6)

ks
2

. O
= 20aloggw +20log g e” 2

arg G(jw) = £ { (cos or + jsin Oﬂ)
x[cos(Blogw) + jsin(Blogw)]}

2 2
®)
= % + [log(10) log;,w

When o < 0 and 8 > 0, the frequency response will show
a negative gain slope and a positive phase slope, for which
there is no practical implementation method in linear domain.
However, such frequency response is highly desirable espe-
cially in precision motion control since one can for example
increase the bandwidth of the system without sacrificing the
phase margin [10].

III. APPROXIMATING THE COMPLEX-ORDER BEHAVIOUR

USING CGLP
G(s) = s*t98 is a complex-order transfer function that
may be written as G(s) = s*s77. A large literature exists

on approximation s for any non-integer o € R, with CRONE
approximation being one of the more well-known methods.
The novelty, on the other hand, resides in the approximation of
EN According to (6) to (8), for 8 > 0, such transfer function
should show a constant gain behaviour while having a positive
phase slope of log(10).

Cglp is a reset element that shows a DF behaviour similar
to required. This element creates a unity gain with phase lead
in a desired range of frequencies. Cglp can be created using
a reset first-order lag filter > p» a.k.a. FORE, in series with
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Fig. 2: The concept of using combination of a reset lag and a linear lead
element to form a CgLp element. The figure is from [17].

a corresponding linear first-order lead filter D(s) having the
same cut-off frequency as given below.
S/we +1

~y
1
ZR - sta, + 17 D(s) sfwy +1

where w,, = Kkw,, k 1 a tuning parameter accounting for a
shift in corner frequency of the filter due to resetting action,
and |w,,wy] is the frequency range where the CgLp will
provide the required phase lead [17]. The arrow indicates the
resetting action as described in (1), i.e., the element’s state is
multiplied by v when the reset condition is met.

While the gain of the reset lag element and the linear lead
cancel each other to create a unity gain, a phase lead is created
due to reduced phase lag in the reset lag filter compared to its
linear counterpart. The concept is presented in Fig. 2.

Fig. 2 shows that within a range of frequency, CgLp shows a
unity gain and a positive phase slope resembling the frequency
response of s7%. Although one can tune the phase slope by
tuning ~y (since decreasing <y increases the created phase lead),
the range of achievable slopes and the range of frequencies for
which the slope is constant are limited.

An approach to gain more freedom in shaping the positive
phase slope in the CgLp element is to shape the phase of
the reset element without affecting the gain. In [31] a method
called “Phase Shaping” is presented to shape the phase of a
reset controller. The method is based on the fact that according
to (4), one can shape the first and higher-order describing
function of a reset element by changing . In [31], the objective
of changing ¢ is achieved through putting a shaping filter on
the input signal of the reset element while maintaining the reset
signal the same.

However, in this paper, the objective is achieved by using the
shaping filter on the reset signal itself, as depicted in Fig. 1b.
In this configuration, one can see that

©))

o = LSF(jw). (10)
If " is a FORE as presented in (9), and by defining
V= —p — tan" ! (”) , (11)
Wy
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one can conclude the following points, following the same
logic and procedure as presented in [31]:
o If

¢—tmll<w (12)
then in the steady-state, the resetting action will not affect
the output since the resetting action will happen when the
output of the base linear system (BLS) is already zero.
Thus, the z(t) = xz(t*T) = 0 at the time of reset. In this
case, all the higher-order harmonics will be zero because
the system is completely acting linear in steady-state, and
obviously, the phase advantage from the resetting action
disappears. Furthermore, if one uses such an element to
form a CgLp, the element’s phase will remain at zero, as
the linear lead will cancel out both gain and phase of the
reset element.
As ¥ — —90°, the resetting action will create its benefit,
and the reset element will provide more phase advantage.
The phase advantage created by the reset element is
dependent on w,, v and %, and for frequencies larger
enough than w,, i.e., w > 10w, it only depends on + and
.
According to the points mentioned above, for each value of
v € [—1, 1], one can shape the reset element’s phase advantage
and, thus, the CgLp’s phase by shaping . In other words,
by designing the shaping filter, SF(s), one can achieve the
desired phase slope for the CgLp.

>:>1/)—0,

wr

IV. DESIGN OF THE SHAPING FILTER
Let

SF(s) = e i1

Q(s)K(s)

Thus according to (10) and (11),

and K(s) (13)

¢ =—/SF(s) — tan™! <::> = —ZQ(s). (14)

Now shaping ¢ and thus the phase advantage of CgLp has
been reduced to shaping the ZQ(s).

The requirements for SF(s) can be categorized into three
regions:

o At the lower frequency region, which is critical for
sinusoidal tracking and disturbance rejection performance,
the higher-order harmonics should be reduced as much as
possible [18], [19], [31], [32]. Meaning that ¢) and thus
ZQ)(s) should remain as close as possible to 0°.

At cross-over frequency region that will be presented as
[wi, wh], ZQ(s) should increase to 90° for CgLp to create
phase advantage. Moreover, the increase slope should be
tuned for Cglp to maintain a positive phase slope of
Blog (10).

At higher frequency region, the gain of SF(s) should
have a negative slope to attenuate the high-frequency
content of reset signal and thus avoid excessive reset
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0.4

—— Approximation

Magnitude (dB)

Phase (°)

10
Input frequency (rad/s)

(a) Frequency response of s°47 and its DF approximation using CgLp in the
range of [1,10] rad/s. N = M =4, ( = 3.72 and n = 21.37.
20 T

Magnitude (dB)

Phase (°)

90 - :
107! 10°
Input frequency (rad/s)

(b) Frequency response of s~110-2J and its DF approximation using CgLp
in the range of [0.1,10] rad/s. N = M =7, ¢ = 2.93 and n = 4.30.

Fig. 3: A conventional reset element vs. a reset element with shaped reset
signal.

action due to noise. It has already been taken care of
by the presence of K (s).
In order to achieve a (Q(s) with tunable phase slope, one
may refer to [33], where it introduces a variation of CRONE
approximation as follows

CIDL (14 )
AT (1+32) (15)

ji=1,2,....M—1
i=1,2,...,N—1

Wajr1 = CWsj,

Wpi41 = NWpi,

where the slope of phase within the range of approximation is
o1 1

B 510%10 ¢ 2 logyon

Although & is directly related to 3, a numerical optimization
problem should be solved to find 1 and ¢ for a desired 5. For
approximation to happen in the range of [w;, wp], one should
choose w,1 = wp1 = w; and choose N and M accordingly to
cover the whole range of frequencies.

™

rad/decade (16)
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Plant
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a ERNE] s 52
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(a) Control loop for position control of a mass system. For PID, 5 = 0 and

’ ’)/ \
{ . \
e(t) : wid + 1 1 / s/wrt1 : U(f)
: = -+ 1 : Shaping e = %+1 sfurt1]
: W : Filter : :
1 U Q(s) ! :
! s/wp+1 i

wWd
S
Wt

(b) Block diagram for approximating < 1> 578, Approximation will

be done in the range of [w;,wp].

Fig. 4: Block diagram for closed-loop control of a mass system using integer
and complex-order tamed differentiator and approximation of complex-order
tamed differentiator using reset control.

T
——CLOC, 1*" harmonic
——PID |

Magnitude (dB)

Phase (°)

o
3

-100 I I I I
107! 10° 10! 10% 10° 10*
Input frequency (Hz)

Fig. 5: The Bode diagram of PID and the DF of CLOC.

V. COMPLEX-ORDER TAMED DIFFERENTIATION

One possible application of a complex-order function is
to use a complex-order tamed differentiation element instead
of linear tamed differentiator [2] in motion control. For this
purpose, without loss of generality, consider a mass system
controlled using a control loop presented in Fig. 4. Following
the steps below, one can design a CLOC

1) Choose w..

2) Set wg = w,/1.5, wy = 1.5w, and w; = w./10.

3) Choose the range of frequencies where the positive slope
phase should be present and set w; and wy, accordingly.

4) Choose .

5) Find ¢ and 7 using (4), (8) and (16) through optimization.

6) Choose M and N s.t. according to (15), w.pr > wp, and
WpN = Wh.

7) Set w, = w; and wy = 10wy,.

8) Choose v € (—1,1) s.t. the required phase margin is

T
——CLOC, 1*! harmonic
- - =CLOC, 3" harmonic |
- - =CLOC, 5" harmonic
——PID

Magnitude (dB)

= 40

-60

-80

100 I I I
107! 10° 10! 107 10°
Input frequency (Hz)

Fig. 6: Open-loop Bode diagram of PID and HOSIDF of CLOC including
plant.

achieved. If not achievable, go to step 4 and correct 3

accordingly.
Step 2 ensures that the BLS is stable as a necessary condition
for Hg. It has to be noted that according to waterbed effect,
increasing the band of linear differentiation will reduce the
steady-state precision of the system. It can be concluded from
waterbed effect. Therefore, the band should be minimum only
to stabilize the BLS.

As an illustrative example, two controllers will be compared,
one with integer-order tamed differentiator, i.e., PID and one
with complex-order tamed differentiator, i.e., CLOC.

For cross-over frequency, w. = 100 Hz is chosen, and
following the rule of thumb presented in [2] for tuning PID,

B=0.

Following the steps for designing a CLOC, the following
parameters has been tuned for CLOC

w; = we/10, wqg=w./2.5, w;=2.5w,, (17)

w; = we/10, wqg = w./1.5, 8 =0.3. (18)

wy = 1.5we,

For the approximation of complex-order tamed differentiator,
following parameters have been tuned

Wh = 100.5“07
¢ = 3.314,

w; = 0.10'5500,
N=M=3,

Wr = Wi,
n="7.714,

wr = IOwh,

v =0. (19)

The above parameters ensure that the positive slope of
the phase happens from half a decade before the cross-over
frequency to half a decade after.

Fig. 5 shows the Bode diagram of the PID controller without
plant and DF of CLOC. The figure clearly shows that using a
complex-order tamed differentiator in CLOC, the same phase
margin as PID is achieved with a lower positive gain slope
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Fig. 7: Step response of the CLOC and PID for bandwidth of 50 Hz, 100 Hz

and 200 Hz.

20

— Scroc
Spip

g

[le(t)
Ir(®)

-100 L I
10° 10! 10
Frequency (Hz)

10°

Fig. 8: ”fgg”z plotted for both controllers.

Time (s)

Fig. 9: Sinusoidal tracking error of CLOC and PID for r(t) = sin(2wt).

around the omega, which resulted in higher gain at frequencies
below bandwidth and lower gain at frequencies higher than
bandwidth compared to PID. Thus, a better steady-state sinu-
soidal tracking and disturbance rejection and noise attenuation
are expected according to the loop-shaping technique.
Open-loop frequency analysis of the two systems in Fig 6.
also reveals some helpful information. In addition to revealing
the higher-order harmonic contents of the output of the CLOC
system, it can be seen that at 12 Hz, where 1 crosses zero
line, higher-order harmonics show a notch-like behaviour, and
their magnitude will be zero. It also shows that the positive
gain of 1 created a positive phase slope for CgLp. It should
be noted that the discrepancy between the slope of ¢ and the
phase of CLOC at the beginning and the end of [w;,wp], is
because [wq,w;] is smaller than [w;, wp].

The step response of the CLOC and PID for bandwidth of
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50 Hz, 100 Hz and 200 Hz has been obtained using the
Simulink environment of Matlab and depicted in Fig. 7. It
should be noted that bandwidth change has been created
only through changing k,, and no other parameter has been
changed. This figure reveals that CLOC shows a lower over-
shoot in all cases than PID even when two controllers have the
same phase margin. It can be explained through the reset nature
of the CLOC. As it is expected from Fig. 6, when bandwidth
changes from 100 Hz to 200 Hz, the phase margin of PID will
be reduced and thus, its overshoot increases, while the phase
margin of CLOC increases and thus, its overshoot reduces.
When bandwidth is changed to 50 Hz, both controllers lose
phase margin and show an increase in overshoot; however,
CLOC still shows a lower overshoot than PID even when its
phase margin is lower than PID.

The sensitivity plot of the control system can be used to
validate the improvement in steady-state performance. How-
ever, because reset control systems are nonlinear, therefore,
sensitivity plots for them must be estimated; the sensitivity plot
obtained using the DF approximation may not beaccurate [23].
In order to compute the sensitivity plot more precisely, a series
of simulations for tracking sinusoidal waves with different
frequencies were performed, and the Hfg:g”gwas shown for
bothcontrollers in Fig. 8.

As it was expected, because of the higher open-loop gain at
lower frequencies (see Fig. 6), CLOC shows a lower tracking
error compared to PID and also a lower peak of sensitivity. At
last, to see the steady-state time-domain results, the sinusoidal
tracking performance of the controllers for r(¢) = sin(27t) is
depicted in Fig. 9.

VI. CONCLUSIONS

This paper introduced a reset controller based on the struc-
ture of a CgLp with a shaped reset signal, which could ap-
proximate a complex-order transfer function. For this purpose,
a shaping filter for the reset signal was designed, which could
alter the DF of the reset controller to achieve the negative
gain slope along with a positive phase slope. Furthermore,
a tuning method was introduced to tune the gain slope and,
more importantly, phase slope. In order to illustrate the possible
improvements of using such a controller, a comparison between
CLOC and PID was made in frequency and time domain. It
was shown that CLOC could achieve the same phase margin
as PID with a weaker linear tamed differentiator and showed a
lower overshoot even with the same phase margin as PID. The
weaker linear tamed differentiator also facilitated the CLOC to
show higher gain in lower frequencies, thus showing a lower
sinusoidal tracking error.

Implementation of the proposed controller in practice in the
presence of noise and disturbance for a more general plant
can be a follow-up for this study.
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