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Summary 
 
Reflection waveform inversion (RWI) is a method that relies on primary pure reflection data to recover 

the subsurface background velocity based on the associated evolving seismic images. Background 
velocity updates estimated by conventional RWI are nonoptimal, which is partly attributed to low-

resolution tomographic wavepaths and migration isochrones. Preconditioning RWI sensitivity kernels 

using Hessian information solves this problem but is not practical for a large number of model 
parameters. One-way reflection waveform inversion (ORWI) is a reflection waveform tomography 

technique in which the forward modeling scheme operates in one direction (downward and then upward) 

via virtual parallel data levels in the medium. The ORWI framework allows us to break down the 
Hessian matrix into smaller operators, which makes the preconditioning operation more efficient and 

less computationally expensive. This extended abstract turns conventional ORWI into a high-resolution 

but computationally feasible ORWI (Gauss-Newton ORWI) to improve the nonoptimal background 

velocity updates. 
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Introduction 
 

While conventional full waveform inversion (FWI) (Tarantola, 1984) has been widely used to estimate 

subsurface properties for shallow targets, relying on refractions and diving waves, and has been shown 

to be a powerful tool for this purpose, it may not be able to accurately estimate deep targets using only 

refractions and diving waves that are observed on the relatively limited-offset acquisition lines. This 

can make achieving optimal results challenging for deep targets using FWI (e.g., Brittan and Jones, 

2019). Reflection Waveform Inversion (RWI) was born (e.g., Xu et al., 2012) to sample deep targets 

using pure reflection data. Conventional RWI is a reflection waveform tomography technique that maps 

an evolving stacked image in every cycle (Figure 1) to reconstruct the subsurface background velocity 

model based on that. Conventional RWI alternatingly solves a two-parameter—background velocity 

and reflectivity—minimization problem. 

 

 

 

 

 
 

 
 

 

 

 

Berkhout (2012) introduced joint migration inversion (JMI), an RWI technique based on a one-way 

wavefield decomposition scheme. JMI uses a forward modeling scheme called full-wavefield modeling 

(FWMod) to model full (both primaries and multiples) downgoing and upgoing reflection wavefields. 

This means that the full wavefield is modeled in only one direction (downward and then upward).  

 

With the same idea as JMI for reflection waveform inversion, but after limiting FWMod to primary 

wavefield modeling (PWMod), no multiples and transmission effects, we introduce one-way reflection 

waveform inversion (ORWI). Figure 2 shows the ORWI cycle. Due to proper parameterization in 

PWMod, the sensitivity kernels for migration (isochrones) and tomography (rabbit-ears) are isolated in 

ORWI. As a result, the migration and tomography sensitivity kernels can be calculated independently, 

freeing tomograms from high local model wavenumbers. ORWI is also computationally cheaper than 

its alternatives that use the finite-difference method for forward and adjoint wavefield modeling.  

Nonoptimal background velocity updates in RWI are partly linked to low-resolution seismic images 

with unpreserved amplitudes (Gomes and Yang, 2018). The same reasoning can also be used to attribute 

the poor background velocity updates of RWI to low-resolution tomographic wavepaths. Pratt et al. 

(1998) showed that the Gauss-Newton optimization method in waveform inversion reconstructs 

accurate velocity updates with higher resolution in every iteration than the gradient-based methods since 

it uses the second-order derivatives of the objective function (Hessian information) to precondition the 

gradient. However, due to the computation of the Hessian matrix, the Gauss-Newton method for large-

scale seismic problems requires more memory and time, making it prohibitively costly. There have been 

multiple attempts so far to approximate a proper but cheaper preconditioner (e.g., Jun et al., 2015; Lu 

et al., 2018). Recently, Abolhassani and Verschuur (2022a) proposed a cheap, depth-based, data-domain 

preconditioner in the context of iterative least-squares one-way wave-equation migration (LS-WEM) 

for image reconstruction. This expanded abstract will build on their proposal for a cheap, depth-based 

preconditioner for high-resolution background velocity reconstruction with ORWI. 

Figure 1 Conventional RWI cycle in 

which background velocity and 

image reconstructions alternate. 

Figure 2 ORWI cycle uses one-way primary 

wavefield modeling (PWMod) and alternates 

between background velocity and image 

reconstructions via the same objective function. 
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ORWI is a technique used to reconstruct the subsurface velocity structure of a medium based on a 

primary wavefield modeling scheme, known as PWMod, working based on the Kirchhoff-integral for 

a loss-free homogenous medium for parallel data surfaces (Berkhout, 1982). For virtual parallel data 

levels, PWMod in the space-frequency domain reads the following equation to model the two-way 

surface seismic reflection data recursively in-depth, 

𝐩mod 
− (𝑧0) = ∑  

1

𝑚=N

𝐖𝑧0:𝑧𝑚
− (𝐫∪(𝑧𝑚) ∘ 𝐖𝑧𝑚;𝑧0

+ 𝐬+(𝑧0)
⏞        

𝐏mod 
+ (𝑧𝑚)

), (1) 

where 𝐩mod 
– (𝑧0) and 𝐩mod 

+ (𝑧𝑚) are the monochromatic upgoing wavefield received at the depth level 

𝑧0 and the downgoing wavefield received at the depth level 𝑧𝑚, respectively, 𝐖𝑧𝑤:𝑧0
+ is the 

monochromatic total downward propagation operator and contains the matrix multiplication of all the 

downward propagation operators required to reach from 𝑧0 to 𝑧𝑚,𝐖𝑧0:𝑧𝑚
− is the monochromatic total 

upward propagation operator and contains the matrix multiplication of all the upward propagation 

operators required to reach from 𝑧𝑚 to 𝑧0, 𝐫
∪(𝑧𝑚) represents the angle-independent upward reflectivity 

operator at 𝑧𝑚, 𝐬
+(𝑧0) indicates the downgoing monochromatic physical source at the Earth’s surface 

(𝑧0), 𝑁 denotes the number of parallel data depth levels, and the symbol ∘ shows the point-wise product 

between the vectors. 

Expanding 𝑝mod 
+ (𝑥𝐴, 𝑧𝑚+1, 𝜔𝜅) reads (Berkhout, 1982):  

𝑝+(𝑥𝐴, 𝑧𝑚+1, 𝜔𝜅) =
1

2𝜋
∫  
+∞

−∞

𝑝+(𝑥, 𝑧𝑚, 𝜔𝜅)(∫  
+∞

−∞

𝑒
+𝑖√(

𝜔𝜅
𝑐𝐴
)
2
−𝑘𝑥

2|𝑧𝑚+1−𝑧𝑚|𝑒−𝑖𝑘𝑥(𝑥𝐴−𝑥)𝑑𝑘𝑥)

⏞                            

downward propagation kernel: 𝑤𝑧𝑚+1;𝑧𝑚
+

𝑑𝑥, 
(2) 

in which the downward propagation kernel is marked, 𝐴 denotes the lateral location on 𝑧𝑚+1, 𝜔𝜅 shows 

an angular frequency component, 𝑐 is the acoustic phase velocity, and |𝑧𝑚+1 − 𝑧𝑚| is the extrapolation 

step. PWMod assumes that the medium is vertically homogeneous within an extrapolation step, so the 

extrapolation steps must be small enough. The propagation operator for lateral heterogeneous fluids 

must be modified to a space-variant convolutional operator (see Berkhout (1982) for details). 

ORWI minimizes a two-parameter—background velocity and angle-independent upward reflectivity—

objective function alternatingly for each class of parameters. For one shot and one angular frequency 

component, the objective function is simply defined as, 

𝑆(𝐦) =
1

2
∥∥𝐩obs

− (𝑧0) − 𝐩mod
− (𝐦, 𝑧0)∥∥2

2
, (3) 

where 𝐦 denotes the model parameter vector and equals (𝐫
∪

𝐜
), 𝐩obs

− (𝑧0) and 𝐩mod
− (𝐦, 𝑧0) are the 

observed and modeled primary reflection data at 𝑧0, respectively. 

High-Resolution Updates for ORWI 
 

The Gauss-Newton model update equation for every cycle of ORWI takes the form of,  

Δ𝐦𝒄𝒚𝒄𝒍𝒆 = [Δ𝐫
∪

∆𝐜
]
𝑐𝑦𝑐𝑙𝑒

= −[
𝐇𝐫∪
−1 𝟎

𝟎 𝐇𝐜
−1
]

𝑐𝑦𝑐𝑙𝑒

[
𝐠𝐫∪

𝐠𝐜
]
𝑐𝑦𝑐𝑙𝑒

, 

 

(4) 

in which 𝐠𝐫∪ is the imaging gradient, 𝐠𝐜 is the tomographic gradient, 𝐇 is the Gauss-Newton Hessian 

approximation, and reads 𝐇= Re[𝐉T𝐉∗], 𝐉 is the partial derivative wavefield matrix (Jacobian) of the 

dimension: number of data points × number of model parameters, and 𝐇−1 acts as a pre-conditioner on 

the gradient direction to correctly update the model parameter update vector ∆𝐦 in every cycle. Sun 

et al., (2019) provide more information on the gradient vector calculations. They show how PWMod 

helps the depth-by-depth calculation of the gradient vectors.  
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In the context of LS-WEM, Abolhassani and Verschuur (2022a) derived the Jacobian matrix for 𝐫∪, the 

key term of Equation (4) for a solution. By similarity, we below derive the other key element of Equation 

(4), i.e., the ℓ𝑡ℎ column of the Jacobian matrix associated with 𝑐ℓ at the given depth level 𝑧𝑚, 

∂𝐩mod 
− (𝑧0)

∂𝑐ℓ(𝑧𝑚)
= {

∂𝐖𝑧0;𝑧𝑚
−

∂𝑐ℓ(𝑧𝑚)
𝐫∪(𝑧𝑚)  ∘  𝐩mod 

+ (𝑧𝑚) } + { 
∂𝐖𝑧𝑚;𝑧0

+

∂𝑐ℓ(𝑧𝑚)
 ∘  𝐩mod 

− (𝑧𝑚)}. (5) 

According to Equation (5), PWMod allows us to build the Jacobian matrix depth-by-depth, just as 

Abolhassani and Verschuur (2022a) derived the Jacobian matrix for 𝐫∪. This feature decomposes the 

Hessian matrix into smaller operators (𝑁 operators with the dimension of data points × data points for 

every depth level) and greatly improves the computational efficiency of the Gauss-Newton inversion 

process. Indeed, by breaking the Hessian operator down into minimal operators that only operate on the 

partial derivative wavefields associated with a single depth level, we can make the Hessian computation 

feasible for large-scale problems. 

Figure 3 compares the stacked image and one-source-receiver-pair tomogram corresponding to a flat 

reflector medium with a homogenous overburden after one cycle (1x migration and 1x tomography) of 

high-resolution ORWI (Gauss-Newton ORWI) and conventional ORWI (steepest-decent ORWI). It 

confirms the effectiveness of the Hessian inverse matrices applied to the imaging and tomographic 

gradients. As expected, the image deconvolution and tomogram deconvolution are clearly visible. 

 

 

 

 

 

 

 

 

 
 

 

Numerical Experiment 
 

To test high-resolution ORWI, We use it to invert for a faulted layered velocity model (Figure 4-a). The 

observed data is generated with a 10 Hz Ricker wavelet, a maximum offset of 4000 m, recorded for 

2.04 s, and includes only primary reflections. The initial velocity model is a 1D linearly increasing 

gradient model (Figure 4-b), and the initial reflectivity is zero. The models are discretized with 201 grid 

points in the horizontal direction (20 m interval) and 166 grid points in the vertical direction (10 m 

interval). 41 shots with 100 m spacing are used, and each shot is recorded by 201 receivers. The full 

frequency band is inverted at once.  Figure 4-c demonstrates the estimated tomogram using high-

resolution ORWI after 40 cycles (each cycle includes 1x high-resolution migration and 1x high-

resolution tomography). To address the reflectivity imprints on tomograms due to unfocused stacked 

images in early cycles, we follow Abolhassani and Verschuur (2022b). Figure 4-c confirms that the 

proposed high-resolution ORWI is effective. As seen, although we start with a 1D linearly increasing 

gradient background velocity model and invert the full frequency band (0-30 Hz) simultaneously, the 

missing layers from the background velocity model are properly recovered, and even the vertical fault 

is illuminated clearly.  

(a) 

(b) (c) 

(d) (e) 

Figure 3 Flat reflector example: 

Comparison between conventional 

ORWI (steepest descent) and high-

resolution ORWI (Gauss-Newton). 

(a) True acoustic velocity model. 

(b) Estimated stacked image by 

conventional ORWI. (c) Estimated 

stacked image by high-resolution 

ORWI. (d) Estimated tomogram for 

a pair of source and receiver by 

conventional ORWI. (e) Estimated 

tomogram for a pair of source and 

receiver by high-resolution ORWI. 

Note that an initial velocity of 2900 

m/s, an initial zero reflectivity 

model, and a maximum offset of 

2000 m is used in this example. 
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Conclusions 
 

Low-resolution images and tomographic wavepaths in RWI can result in nonoptimal tomographic 

updates. To address this issue, we introduced a Gauss-Newton one-way RWI technique (GN-ORWI) in 

which the Hessian matrix is calculated in a depth-marching regime, reducing the number of model 

parameters each time the Hessian and its inverse is calculated or stored. As a result, the Hessian 

computation in GN-ORWI becomes sensible and feasible compared to its alternatives. Through a flat 

reflector medium example, we verified the high-resolution nature of imaging and tomographic gradients 

in GN-ORWI in comparison to conventional ORWI. For a faulted layered medium, we verified how 

the cumulative high-resolution updates for ORWI leads to a superior final tomogram. 
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