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Summary 
 
The uncertainty of model parameters obtained by full-waveform inversion can be determined from the 

hessian of the least-squares error functional. Because the hessian is generally too costly to compute and 

too large to be stored, a segmented representation of perturbations of the reconstructed subsurface model 

in the form of geological units is proposed. This enables the computation of the hessian and the related 

covariance matrix on a larger length scale. A synthetic 2-D isotropic elastic example illustrates how 

conditional and marginal uncertainties can be estimated for the properties per geological unit by 

themselves and in relation to other units. A discussion on how the chosen length scale affects the result 

is included. 
 



Estimating large-scale uncertainty in the context of full-waveform inversion

Introduction

When using a L-BFGS method for gradient minimization of the least-squares data misfit for full-
waveform inversion (FWI), it seems natural to use the estimated hessian for uncertainty quantification.
However, this only provides the least uncertain components of the model, as already shown and ex-
plained by Deal and Nolet (1996) on a linear problem. The computation of the full hessian is feasible
for small problems (Pratt et al., 1998, e.g.) but too costly in general. Instead of determining the full
hessian for perturbations of each model parameter in each point of a finite-difference grid, a segmented
representation is proposed with perturbations of each model parameter per geological unit. The question
how the length scale of a unit affects the uncertainty estimates is also addressed.

Method

Full-waveform inversion attempts to minimize the least-squares error functional J = 1
2‖F(m)−dobs‖2,

describing the difference between modelled data F(m) for a model m and observed seismic data dobs.
The model parameters m can be defined relative to a local minimum m0, perhaps coinciding with the
global minimum, as m j,k = (m j,k −m0, j,k)/m0, j,k, with k enumerating all the model components and j

all grid points or element nodes, assuming numerical modelling by a finite-difference method or finite-
element method. Then, J = J0 + gTm+ 1

2 mTHm+ . . . with gradient g = ∇mJ ≃ 0 near the minimum.
The remainder J1 = J − 1

2 mTHm = J0 + gTm+ . . . contains the noise energy in the data, the noise in
the numerical modelling, the inability to reach the global minimum (g 6= 0), deviations from quadratic
behaviour near the minimum in the form of higher-order terms, inadequacies of the chosen model,
ignored and unknown physics, and so on. The gaussian distribution related to the maximum likelihood,
ignoring physical bounds and assuming a ‘temperature’ T , for a hessian of size nh is (Tarantola, 2005)

p(m) =

√

det(H)

T (2π)nh
e−mTHm/(2T ).

Integrating over all model parameters except mℓ and letting T = 1 results in the marginal distribution
p(mℓ) = (σℓ

√
2π)−1 exp[−(mℓ−m0,ℓ)

2/(2σ2
ℓ )], with σℓ =

√

Cℓ,ℓ and covariance matrix C = H†, the
pseudo-inverse of the hessian. The standard deviation σℓ represents the worst-case uncertainty given the
chosen model, but neglects the unknown unknowns. The marginal distribution for a subset of the model
parameters is obtained by ignoring their complement in the covariance matrix, leaving a covariance
matrix of smaller size.

The hessian can be found from the data F̃ j,k that correspond to a perturbed model m̃ j′,k′ = m0, j,k(1+
ε δ j= j′δk=k′) with Kronecker delta δ j= j′ , equalling m0 everywhere except for model component k at
point j. The perturbation data are F j,k = limε→0 (F̃ j,k −F0, j,k)/ε and the hessian H = FTF, summed
over all receivers and sources. In practice, the perturbation parameter ε should be sufficiently small to
make higher-order terms negligible, but large enough to avoid numerical round-off errors. The Born
approximation of the elastic wave equation is an alternative, but typically involves the simultaneous
solution of two sets of equations, one set of elastic equations for the background model and one for
the scattered field. This is more costly than computing the data for the background model only once,
but provides cleaner scattering data. In the current setting, the perturbation data contain free-surface
and interbed multiples. The model perturbations can be expressed as δ logm j,k = δm j,k/m0, j,k. In this
form, the data F j,k and hessian can be easily transformed to other model representations, for instance,
perturbations in P- and S-impedances Ip and Is and density ρ , or ρ , P-velocity vp and S-velocity vs.

Because the hessian is generally too costly to compute and too large to be stored, we make the follow-
ing simplification. Instead of a dense grid of perturbations, larger regions are considered that we call
geological units. Inside a unit, the unperturbed or background model may vary with position x, but the
perturbations are considered as piecewise constant, with the same relative change over the whole unit.
The geological units can be obtained by segmenting a full-waveform inversion result. This leads to the
question how sensitive the result is to the chosen length scale of the geological units. Before addressing
that subject, an example is presented.
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Figure 1 Isotropic elastic model with (a) density, (b) P- and (c) S-wave velocity.
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Figure 2 The index map (a) defines the piecewise constant values per layer for the model parameters in

Figure 1. The negative indices correspond to 4 reservoirs. A coarser version (b) is obtained by pairwise

combinations of layers, excluding sea water, top layer, and reservoirs. Ellipses (c) for the conditional

distribution of 2 parameters in two adjacent layers.
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Figure 3 Standard deviations on a logarithmic scale for the marginal distributions for components (a)

δ log Ip, (b) δ logvp, and (c) δ log(vs/vp). Some values are clipped at the extrema of the colour scale.
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Figure 4 Standard deviations on a logarithmic scale for the conditional distributions for components (a)

δ log Ip, (b) δ logvp, and (c) δ log(vs/vp). Some values are clipped at the extrema of the colour scale.
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Example

Figure 1 displays a 2-D piecewise constant isotropic elastic model, with density ρ in 1(a), vp in 1(b),
and vs in 1(c), all governed by the index map in 2(a). The sea water has index 0 and four reservoirs
are numbered by negative indices. For simplicity, a geological unit is taken to be identical to the region
defined by one index in the index map, in this case leading to constant material parameters per unit. This
is not necessary for the method, which allows for variations of the model parameters inside a unit. Only
the relative perturbations should be constant per unit. The model was extended laterally by piecewise
constant extrapolation, perpendicular to the boundary. A marine acquisition has 199 source position
xs between −2900 and 7000m at a 50-m interval and 10-m depth with, using a 15-Hz Ricker wavelet.
A receiver line has offsets xr − xs between 100 and 6000m with a 25-m interval at 8-m depth. The
recording time is 5s. The associated hessian has 3×93 rows and columns, for 93 geological units with
3 parameters each, and with one zero row and column for the water layer where vs = 0. The ellipsoid
given by Junc(m) = Jnoise describes the uncertainty, where Junc =

1
2 mTHm and Jnoise =

1
2‖dnoise‖2 is the

noise energy. The singular value decomposition H = USUT, S = diag(s), provides Junc =
1
2 yT

HyH with
yH = S1/2UTm and m = U(S†)1/2yH. The ellipsoid follows from yH on a high-dimensional sphere with
radius (2Jnoise)

1/2.

Figure 2(c) shows the conditional distribution for all parameters fixed except the P-impedances for units
with index 41 and 44 below it, corresponding to the central part of the model in between the two faults
and the reservoirs with index −1 and −2. The white ellipse is the uncertainty for a noise energy taken as
0.1% of the data energy. The image depicts (Junc/Jnoise)

1/2 as a function of the two model parameters,
assuming all others to be zero. Similarly, the covariance matrix C = US†UT determines ellipses defined
by constant values of mTCm = yT

CyC, with yC = (S†)1/2UTm on a hypersphere and m = US1/2yC. The
magenta ellipse in Figure 2(c) corresponds to a 2×2 subset of C and represents the marginal distribution
of the two parameters. The line segments will be explained later on. Figure 3 shows the standard
deviations with the same noise energy as above for the marginal distributions of each model parameter,
where the other variables are integrated away, implying that no a priori conditions are imposed other than
that they have a gaussian distribution. Only quantities in the darker blue part can be reconstructed with
any confidence. On the one hand, these estimates are too pessimistic because no a priori information is
used. On the other hand, the contribution of small-scale variations and ignored parameters describing,
for instance, anisotropy and attenuation, will tend to increase the standard deviations. The piecewise
constant assumption has a regularizing effect. The uncertainty in δ log Ip appears to be larger than that
in δ logvp. This can be understood in terms of the layered structure: not only the amplitude-versus-offset
(AVO) effect of the top of a layer plays a rôle, but also the travel time to the bottom and back.
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Figure 5 Conditional covariance ma-

trix for the reservoir with index −1.

Figure 4 depicts the standard deviations for the conditional dis-
tribution of each parameter, given all others. The uncertainties
are smaller than those in Figure 3. The conditional distribution
given all parameters except those in a single unit is given by
a 3× 3 block of the hessian and is useful for multi-parameter
inversion. Figure 5 shows the heatmap of its inverse, the co-
variance matrix, for the assumed noise level. The diagonal
corresponds to squared standard deviations, the off-diagonals
describe the coupling to the other two parameters.

Fine and coarse

How does the length scale of the geological units affect the uncertainty estimates? To describe the rela-
tion between a fine and coarse representation of the model perturbations, we adopt the multigrid nomen-
clature (Hackbusch, 1985, e.g.). The prolongation operator If interpolates model parameters from the
coarse to the fine grid and the restriction operator Ic projects them from fine to coarse. The term ‘grid’ is
not entirely appropriate in our setting, but will be used anyway to describe a finer-scale representation of
geological units, each with a constant model perturbation for each parameter, or a coarser representation
obtained by combining a small number of them. The restriction and prolongation operators are related
by Ic = DcITf , with Dc a diagonal matrix that scales ITf such that the row sum of Ic is 1, and ITf is the trans-
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Figure 6 As Figure 4 but for coarser units. The uncertainty is reduced.

pose of the non-square matrix If. A symmetric transfer operator is Jc = Dc
1/2ITf , with JcJT

c = IcIf = I.
The reverse IfIc is a filter operator that takes fine-grid values to the coarse grid by averaging them and
then puts the result back on the fine grid. Its application to the fine model m f produces m̃ f = IfIcm f

and the associated hessian becomes H̃f = ITc ITf HfIfIc = ITc HcIc, where the hessian Hc corresponds to the
coarse model mc = Icm f . This shows that the fine-grid hessian can be obtained from the coarser one
if the fine grid model is filtered by removing high spatial frequencies corresponding to fine-grid details.
For a fractal Earth, this statement is clearly false, but with band-limited data, the approach is useful up
to the resolved scale. Another way of looking at restriction and prolongation is in terms of a rotation
operator. Instead of a non-square matrix Jc, a square block diagonal matrix can be constructed. Each
block j has the size of the number nf, j of fine-scale units contained inside the coarse one. Starting from
an identity matrix, the first row of each block can be replaced by a subset of row j of Jc, containing ones
divided by

√
nf, j. The remaining rows are orthonormalized relative to this row. These rows will lead to

differences of fine-scale model parameters, reminiscent of a Haar (1910) wavelet basis. Such a rotation
preserves the uncertainty, but restricted to one direction.

In the example of Figure 2(c), unit 41 and 44 below it can be taken together, leaving the direction
along the summed parameters. The white line segment then describes the range of uncertainty for the
conditional distribution. It covers a part of the magenta segment for the marginal distribution. The
scaling by 1/

√
2 puts the endpoints on the ellipse. For the restriction of the hessian, however, this

scaling should not be applied, increasing the length of the line segment. This reflects the fact that the
uncertainty decreases by

√
nf, j if larger units are considered.

Conclusions

The computation of large-scale uncertainties in the context of full-waveform inversion is feasible if the
recovered subsurface model is segmented into a limited number of geological units. Uncertainties at
smaller scales can be roughly estimated by assuming that they are inversely proportional to the square
root of the number of parameters under consideration.
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