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Abstract — Time-domain (TD) methods for the solution of
Maxwell’s equations are particularly appealing for their ability
to provide the overall characteristics of an electrical system in
a single simulation run. In many situations, such TD methods
require computing the system’s impulse response and using it in a
convolution-based solver. In this work, we propose the evaluation
of the scattering-parameters-type impulse response of partial
element equivalent circuit (PEEC) models by firstly computing
the scattering parameters pertaining to a unit-step excitation via
the Numerical Inversion of Laplace Transform (NILT) technique,
followed by recovering the corresponding impulse response. The
accuracy and effectiveness of the advocated approach is validated
by means of numerical experiments comparing its performance
with that of more standard methods.

Keywords — Numerical Inversion of Laplace Transform,
Partial Element Equivalent Circuit method, scattering
parameters

I. INTRODUCTION

Nowadays numerical electromagnetic/circuit simulations
are increasingly used in virtual prototyping of
electrical/electronic systems and devices and, thus, are
widely used in the design process. Over the years, many
different techniques have been developed in both the frequency
and the TD. The most popular methods in the frequency
domain are the Method of Moments (MoM) [1] and the
Finite Element Method (FEM) [2]. They require the repeated
computation of the solution at each frequency of interest.
Time domain techniques include the Finite Difference Time
Domain (FDTD) method ([3]), the TD Finite Element Method
(TDFEM) [2] and the TD integral equation (TDIE) based
methods [4]. They require the solution of a linear system
over a properly sampled time window. In particular, all
the TDIE methods based on a marching-on-in time (MOT)
approach may exhibit stability issues which can be mitigated
by adopting pertinent techniques [5].

Among the IE-based methods, the Partial Element
Equivalent Circuit (PEEC) method [6] has proven to be
well suited for the solution of EM problems especially
for its capability to provide a circuit interpretation of the
electric-field integral equation (EFIE) and the continuity

equation. TD methods can, in principle, be used to achieve
the impulse response of an electrical system that may further
be employed in a higher-level computational framework
performing time-convolution integrations. This approach has
two main limitations: a) the input pulse cannot be ideal, it has
to be approximated as a short finite pulse; b) the time domain
technique may exhibit instabilities preventing to obtain any
useful result.

In this work, we propose to compute the impulse response
of PEEC models through the numerical inversion of Laplace
transform (NILT) method, which has proven being able to
guarantee the late-time stability [7]. Firstly, the scattering
parameters step response of PEEC models is computed by
applying the NILT method and then the scattering parameters
impulse response is recovered by time differentiation. The
numerical results confirm the accuracy of the proposed
approach compared to more standard methods.

II. THE PEEC METHOD

The Partial Elements Equivalent Circuit Method (PEEC)
is an IE based method that permits a circuit representation of
the electromagnetic (EM) phenomena that affect the electronic
structures under examination. The foundations of the method
are the EFIE and the continuity law for the electric current [6].

The method allows studying the behavior of complex
structures in terms of standard circuit unknowns, namely node
potentials and side electric currents.

First, the structure under investigation is discretized into a
tessellation (mesh) consisting of a large number of elementary
volumes and surfaces. The electric currents in the structure
are assumed to flow through the elementary volumes, while
the electric charges are assumed to exist over the elementary
surfaces of the mesh.

Subsequently, the basic interactions among the currents
flowing in volumes and among the charges on the surfaces have
to be defined. The magnetic interaction among the currents
are described by the the partial inductances Lp [8], while the
electric interactions among the charges are described by the
coefficients of potential P [9].
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The partial elements matrices can be easily incorporated, in
the Laplace-transform domain, in the Modified Nodal Analysis
(MNA) circuit representation [10][

sP−1 + Y le(s) A

−AT Z(s) + sLp

]
·
[
Φ(s)
I(s)

]
=

[
Is(s)
V s(s)

]
(1)

where A is the incidence matrix, Z(s) is the impedance matrix
accounting for the impedance of conductors or dielectrics
elementary volumes, Y le is the lumped admittance matrix that
contains all the lumped admittances connected to the nodes of
the equivalent circuit.

Once the MNA equations are available, the unknown
vectors of the node potentials and branch electric currents,
Φ(s), I(s) respectively, can be determined provided the
voltage and current sources, V s(s), Is(s) respectively, are
known.

The impulse response of the system described by (1)
is typically obtained by solving it in the frequency domain
(s = jω). To this aim, first the sources are set as Dirac
pulses exciting one port at a time. Then (1) is solved over the
frequency range of interest. Finally, the impulse response is
recovered through the Inverse Fourier Transform (IFT). The
main drawback of this approach is that, in order to build
aberrations-free TD responses, the MNA system has to be
evaluated over a large number of frequency samples, and this
easily leads to excessively high computational costs, especially
if the number of unknowns is high.

In this work, we propose to compute the impulse response
of PEEC models described by (1) through the NILT [11]. The
main advantage of this method is that, in contrast to the IFT
based technique, the evaluation of each TD sample does not
depend on the others. Consequently, an arbitrary number of
TD samples can be evaluated without introducing aberrations
[12].

III. THE NUMERICAL INVERSION OF THE LAPLACE
TRANSFORM (NILT) METHOD

The NILT is a powerful approach that permits to
evaluate the approximate Laplace inverse transform of a
complex-frequency domain function.

With the aim to briefly describe the method, it is convenient
to express (1) in the form

M(s)X(s) = U(s) (2)

An approximation to x(t), representing the TD original of the
unknown vector X(s), can be expressed as

x̃(t) = −1

t

M/2∑
i=1

2Re{kiX
(zi
t

)
} (3)

where zi and ki denote the Padé poles and residues, which are
known, while M is the expansion order [12].

In contrast to the standard IFT-based approach it is
apparent that the inverse represented through Eq. (3) requires,
for a fixed instant t, to solve the system (2) just at a
set of pre-specified M/2 points in the complex s-plane.
Consequently, the computation pertaining to time t does not

depend on the previous evaluations, thereby avoiding potential
error-accumulation-based late-time instabilities.

On the other hand, the drawback of the NILT method is
the so-called late time inaccuracy of the solution. Indeed, the
error introduced increases with t as [13]

x(t)−x̃(t) = ΨN,M
dN+M+1

dtN+M+1
x(t)

∣∣∣∣
t=0

tN+M+1+O(tN+M+2)

(4)
where,

ΨN,M =
(−1)MM !N !

(M +N)! · (M +N + 1)!
(5)

where usually: N = M − 2 to guarantee the stability of the
method [13].

The resetting procedure
Especially in applications where long and detailed

transients have to be captured, the standard version of the
NILT method can lead to unsatisfactory results in the most
of the time window. In order to prevent the loss of accuracy
expressed by (4), a time resetting procedure that supports the
main body of the NILT scheme was introduced in [14] and
explained in detail in [15]. Equations (1) can be reorganized,
including the presence of the initial conditions, in a state form
as

(G+ sC)X(s) = B(s) +Cx(0) (6)

where C and G are matrices that, respectively, represent
the memory and the memoryless elements of the equivalent
circuit, B(s) is a vector containing the independent sources
and x(0) is the TD state vector at the initial time step. The
standard NILT solution (3) can be viewed as an approximate
TD solution of (6) considering the initial conditions x(0). With
the aim to keep the error (4) constant, the key idea is to use
the results x̃((q − 1)h) obtained at the time t = (q − 1)h to
move a step forward to t = qh, where h is an appropriate time
step and q is an integer. In this way, for each time, we shift
the time origin to (q−1)h and, hence, (3) can be rewritten as:

x̃(qh) = − 1

h

M/2∑
i=1

2Re{kiX
(zi
h

)
} (7)

where X
(
zi
h

)
is obtained by solving the system:

(G+ sC)X(s) = B(s) +Cx((q − 1)h) (8)

with s = zi/h, for i = 1, ... ,M/2. Since the error now
scales with h and not with t = qh, this procedure enables to
evaluate long TD responses using the NILT without any loss
of accuracy.

IV. TD SCATTERING PARAMETERS COMPUTATION

Let us consider a multi-port electrical system, described in
terms of incident waves and reflected waves. The port waves
can be then defined as

ai(s) = Vi(s) +R0iIi(s) (9a)
bi(s) = Vi(s)−R0iIi(s) (9b)
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where R0i is the reference impedance at the i-th port. All the
reflected waves can be related to the incident waves through
the scattering parameters as:

b = Sa (10)

where b is a vector that contains all the port reflected waves,
a is a vector that contains the incident waves and S is the
scattering matrix. The condition ak(s) = 0 is easily obtained
terminating the port k with its reference impedance, setting
R0k = Rk. Hence, assuming a test configuration with R0i = R
for all the ports, we can write:

Sij(s) =
Vi(s)−RIi(s)

Vsj(s)

∣∣∣∣
ak=0,k ̸=j

(11)

where Vsj(s) is the port j voltage generator, and R is the
termination resistance for the overall ports. Transforming (11)
back to the TD, it is possible to write:

vi(t)−Rii(t) =

∫ t

0

vsj(t− τ)sij(τ)dτ (12)

If the voltage source vsj(t) is the Heaviside unit-step function
H(t), the previous equation becomes:

vi(t)−Rii(t) =

∫ t

0

sij(τ)dτ (13)

and finally:

sij(t) =
d

dt
[vi(t)−Rii(t)] (14)

where vi(t) and ii(t) are the port i voltage and current when
the step waveform is applied to the port j and R0k = R ∀k.

The main result of this procedure is that the scattering
parameters can be obtained and saved as a one-time process,
feeding the system with a canonical step voltage. When the
the same system is excited by arbitrary port source waveforms
and its ports are terminated by arbitrary loads, the knowledge
of the TD scattering parameters can be exploited.
Firstly, assuming arbitrary terminations, the incident and
reflected waves are related through the following condition
that is the TD counterpart of (10).

b(t) =

∫ t

0

s(t− τ)a(τ)dτ (15)

and s(t) is the TD version of the scattering matrix. Moreover,
it is known that the port voltages and currents are related to
the waves quantities by

v(t) =
1

2
[a(t) + b(t)] (16)

i(t) =
1

2R0i
[a(t)− b(t)] (17)

Finally, the constitutive relations of the circuit connected to
the ports must be enforced:

v(t) = vs(t)− F (i(t)) (18)

where vs(t) is the vector containing the port voltage sources
and F (·) is a vector containing the models describing the
passive behavior of the ports. Equations (15)-(18) represent a

set of well posed equations for the electrical problem including
the multiport system and arbitrary port circuits. To this aim,
Eq. (15) can be approximated by efficient discrete convolution
schemes.

V. NUMERICAL RESULTS

This section presents an application of the procedure
outlined in the previous section. The structure under
examination is a two ports microwave structure that can be
analyzed through the PEEC method, in order to build an
equivalent circuit. The NILT technique, applied to the PEEC
model, is employed to compute the port step responses of the
system and, hence, the TD scattering parameters. Finally, the
effective port voltage responses, due to a trapezoidal input
waveform, are computed.

Loaded microstrip
The structure under examination is a 20 cm long stubs

loaded microstrip, illustrated in Fig. 1. The copper structure,
placed over the dielectric substrate with εr = 4.4 and thickness
1.6 mm, is composed by a microstrip which is periodically
loaded by four microstrip stubs of length 38.5 mm, that are
left open at the end of the dielectric. All the signal conductors
have a width of 3 mm and a thickness of 35 µm. The distance
between the microstrip line and the free edge of the dielectric
is 8 mm. The device has two 50 Ω ports placed between the
two ends of the main microstrip and the ground plane.
In order to obtain the TD scattering parameters, it is necessary
to compute the TD port step responses. To this aim, the
structure is excited with a step waveform H(t) at one of the
two ports and both the port step responses are then observed.
The two step responses can be obtained by employing the NILT
algorithm supported by the resetting procedure previously
introduced. If a high number of samples (thousands) is desired,
the NILT method can lead to very high computational efforts.
In this case, Hermite interpolators can support the standard
NILT procedure to obtain very dense detailed waveforms
starting from a relatively small number of NILT computed
samples (hundreds) [15]. The output port step voltage response
is depicted in Fig. 2.

Fig. 1. Loaded microstrip geometry.
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Fig. 2. Output port step response computed through the NILT method.

From the TD step responses it is possible to determine as a
one time process the TD scattering parameters, which entirely
characterize the structure. Once the scattering parameters of
the structure are known and stored as library files, they can
be employed to compute the voltage and current responses
at each port when an arbitrary source waveform is attached
to the source port. To illustrate this procedure, we consider a
trapezoidal source voltage with a rising time 3 ns and width 8
ns. Then, the port voltages are obtained by solving equations
(15)-(18) and using the pre-computed scattering parameters
impulse response. The output port voltage is shown in Fig. 3.
With the only purpose of validation, the results obtained via
NILT are compared with those obtained with a conventional
time-stepping solver [16], showing a very good agreement.

0 10 20 30 40 50 60

0

0.1

0.2

0.3

0.4

Fig. 3. Output port voltage response.

VI. CONCLUSION

In this work, a novel technique is introduced which is
able to extract the TD scattering parameters that characterizes
a given electrical structure. The procedure is based on
the NILT-based computation of the ports step responses

from which the scattering parameters impulse response is
recovered. The use of the NILT technique guarantees the
stability of the response. Once the scattering parameters are
computed, they can be used in a higher-level solver based
on time-convolution integrals, which enables to incorporate
any type of active/passive or/and linear/nonlinear circuit
terminations. A microwave structure analysis, employing the
PEEC method, is then presented, showing results that are
in a satisfactory agreement with those obtained through a
conventional time stepping technique.
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