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a b s t r a c t

Inspired by the vision of fully autonomous airside operations at Schiphol airport, this study aims
to contribute to the short-term goal of automated aircraft ground handling. In this research, we
design and evaluate a multi-agent system for planning of automated ground handling. There are
two main components in the system: task allocation optimization and multi-agent path planning.
To allocate tasks to ground support equipment (GSE) vehicles, an auction mechanism inspired by
temporal sequential single item (TeSSI) auction is proposed. Ground handling tasks scheduling for GSE
vehicles is modeled as several single-vehicle pickup and delivery optimization problems (SPDP), and
the values of the objective functions are used to generate bids for GSE vehicle agents in the auction.
Prioritized safe interval path planning for large agents (LA-SIPP) is used to plan collision-free paths for
GSE vehicle agents in the model to execute tasks. The aim is to increase the success rates of allocating
tasks and finding collision free paths without causing flight delays, given the limited resources such
as a small number of available GSE vehicles, time windows constraints and conflicting interests of
different agents. Due to the results, even for the instances with frequent flights and the most limited
resources, the success rates of allocation and path planning were higher than 81% and 98%, respectively.
Furthermore, periodic task allocation and path planning of the ground handling tasks for flights in three
aircraft stands during a planning time window of the day, as well as replanning in case of disruptions
were performed in a short CPU time. There is a lack of research dealing with the complete process
of ground handling, since existing studies concerning the automation of ground handling operations
involve fleet assignment or task scheduling models without an integration of detailed path planning.
Our main contribution is to present a framework that combines task allocation and path planning for
automation of ground handling operations and provides solutions using a multi-agent perspective.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Similarly to many other airports, at Amsterdam Schiphol Air-
ort, Royal Schiphol Group aims at achieving fully-autonomous
irside operations by 2050 [1]. All vehicles will be replaced
y interconnected, autonomous, and emission-free vehicles [2].
ne of the anticipated implementations is the automation of
round handling processes. While the long-term goal is the fully-
utonomous airside operations by 2050 at Schiphol, the short-
erm goal is automated docking of GSE vehicles. The automation
ill help using the resources more effectively, shortening the
raveling distances and time, and reducing the emission produced
y the aviation sector [3].
We deal with the problem where a limited number of auto-

ated ground handling vehicles are shared and reused to com-
lete the common ground handling services at different aircraft

∗ Corresponding author.
E-mail address: g.ermis@tudelft.nl (G. Ermiş).
https://doi.org/10.1016/j.robot.2023.104480
0921-8890/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a
stands and they travel between different aircraft stands. The
vehicles travel on the service road connected to the terminal.
The ground handling equipment should arrive at the ground
handling service locations and complete the service within spe-
cific time windows matching the flight schedules. Each type of
ground handling vehicle can serve only a specific type of ground
handling task, so it is not possible to use or share any vehicle
for all types of tasks. So far, only a few types of automated
ground handling vehicles have been tested at some airports. An
example is the baggage handling vehicle that is used to load and
unload the baggage at terminal and aircraft stands. In our model,
we consider the problem where the ground handling services,
catering, refueling, baggage handling, water and lavatory service are
automated, which is also one of the strategic goals for the ports.
Ground handling service tasks are allocated to autonomous GSE
vehicles which should travel on conflict-free paths to complete
the assigned services over a period of time. We propose a new
framework to solve the task allocation and path planning problem
for the GSE vehicle agents with conflicting interests. The problem
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Acronyms

GPU Ground Power Unit
GSE Ground Support Equipment
LA − SIPP Large Agents Safe Interval Path Planning
MAMP Multi-Agent Motion Planning
MAPF Multi Agent Path Finding
PCA Preconditioned Air Unit
SIPP Safe Interval Path Planning
SIPPwRT Safe Interval Path Planning with Reser-

vation Table
SPDP Single Vehicle Pick-up and Delivery

Problem
SSI Sequential Single Item
TeSSI Temporal Sequential Single Item
TSP Traveling Salesperson Problem
VRP Vehicle Routing Problem

of task allocation and path planning is NP-complete. The best
allocation decision might not lead to the best collision-free paths
or collision-free paths might increase the makespan of allocated
tasks.

We define and solve a complex task allocation and path plan-
ing problem that is specific to airside operations. We focus on
he ground handling operations at one pier at the airport. A
ier includes several aircraft stands where ground handling tasks
hould take place. The GSE vehicles should move between these
tands and terminal over a period of time without colliding. We
efine grid-based environments with obstacles, that are specific
o a pier with aircraft stands, service road, and exits to termi-
al. The static obstacles for operation of ground handling in the
roposed environments are the occupied areas by the aircraft
r passenger. The proposed environment allows to simulate a
ealistic model for automated of ground handling.

To automate the ground handling process, we propose a
ramework that includes multi-agent path planning and multi-
gent optimization based task allocation. For agent-based task
llocation, we convert the single agent task scheduling problem
f each GSE vehicle into single vehicle pick-up and delivery
roblem with time windows as a subproblem of the framework,
fter which we run iteratively the mathematical model of the
ehicle routing model for the GSE vehicles within an auction
rocess to improve decentralized decisions. The system allocates
round handling tasks to GSE vehicles, complying with temporal
nd operational constraints. After the tasks of GSE vehicles are
llocated, trajectories of GSE vehicles are planned by obtaining
ollision-free paths considering time windows constraints. The
ask allocation and path planning for ground handling tasks can
e performed in real-time within the predefined turnaround
imes of flights in offpeak, normal, peak time periods of the day.

An overview of the components of the framework is given
n Fig. 1: The inputs in [1] are the ground handling tasks, de-
ot and service locations, task processing times, time windows
onstraints derived from flight schedules, available GSE vehicle
gents, grid-maps of the environment. At the first stage, we use
n adapted version of TeSSI [4] auction model to allocate ground
andling tasks among GSE vehicles, which is described in [1, 3,
, 5] in Fig. 1. The bid of each agent for a candidate ground
andling task in the auction is the optimized cost of performing
he tasks by that agent. Alternatively, we apply a procedure
alled task bundling in [2] before allocating tasks, with the aim
f accelerating task allocation. We repeat the experiments with
undling [1, 2, 3], and without bundling [1, 3]. We optimize the
2

Fig. 1. An overview of the proposed task allocation and path planning approach.

schedule of each GSE vehicle by solving the single-vehicle pickup
and delivery optimization problem to generate bids [4, 5]. We
repeat the rescheduling iteratively and at each iteration one task
is allocated to the winning agent (GSE vehicle) based on the bids
of the agents. The procedure is repeated until each task is either
allocated to a GSE vehicle or proven to be infeasible [3, 4, 5].
To find collision-free paths for the GSE vehicles to execute the
allocated tasks, we use adapted versions of MAPF algorithms [6]
and we use replanning in case of disruptions [7].

To solve the MAPF for GSE vehicles, we use priority based
approaches [5–8], since precedence relations exist for different
types of GSE vehicles or due to different time window restrictions
for completing the tasks. We also deal with unit-size and square
shaped large agents. We use prioritized SIPP to solve path plan-
ning problem for unit-size agents. SIPP [8] is a single agent path
finding algorithm that considers the other agents as dynamic ob-
stacles. For solving the problem with large square-shaped agents,
we use an adapted version of LA-SIPP, SIPP for large agents, to
consider the shapes and sizes of ground handling vehicles.

Experimental analyses were conducted to evaluate the per-
formance of the model. We performed the tests using GUROBI
and Python. We limited the solution time for the GUROBI op-
timization solver by 5 s for each agent, thus finding a feasible
solution, might not always be possible. If none of the GSE vehicles
finds a feasible position for a task in their schedules, the task
remains unallocated. Thus, one of the performance indicators is
the allocation rate. We analyzed the makespan, task allocation
rate, and CPU time for task allocation in different scenarios, and
path length, path duration, CPU time, success rate, average delays
er task and per agent and ontime rates per task and per agent
or path planning algorithm. Furthermore, sensitivity analyses
ere performed by changing the number of ground handling
ehicles. Task allocation experiments were also repeated with
undling and replanning. Path planning solutions were compared
o shortest paths with collisions.

Our main contributions are:

• We developed an agent-based combined task allocation
and path planning approach specifically designed to solve
the automated ground handling problem. Due to the addi-
tional constraints required for ground handling, our prob-
lem is more complex than the classical task allocation and
path planning problem which is already known to be NP-
complete.

• Our framework was able to generate solutions with high
success rate in reasonable time which allows dynamic plan-
ning of operations in real time.

• We developed a realistic model taking into account flight
schedules at peak hours at the hub airport and airport
environment with static and dynamic obstacles.
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• The collision free paths that we generate for GSE vehicles
on aircraft stands and service road also contribute to the
safety of autonomous GSE vehicles while traveling on and
between the aircraft stands and service road, which has not
been explored before.

• Although the original problem is not a vehicle routing prob-
lem with pick-up and deliveries, we converted the original
problem into several single machine pick-up and delivery
problems with time windows constraints by splitting the
main ground handling tasks into pick-up and delivery sub-
tasks. This allows us to solve the problem to optimality using
the classical integer programming models of single vehicle
pick-up and delivery problem and exploit the advantage
of using time windows constraints in which case sub-tour
elimination constraints can be eliminated and the vehicle
routing problem can be solved more efficiently.

The paper is structured as follows. The literature is given
in Section 2. The assumptions regarding ground handling op-
erations and model specifications are introduced in Section 3
and Section 4. The task allocation mechanism using auctions
and single vehicle pick-up and delivery optimization model is
discussed in Section 5. In Section 6, the path planning algorithm
is discussed. Experimental results are presented in Section 7. Sta-
tistical analysis, discussions and conclusion are given in Section 8,
Section 9 and Section 10, respectively. Appendices are presented
in Appendix A, Appendix B, Appendix C, Appendix D.

2. Related studies

The automation of aircraft ground handling operations is a
novel research direction. In terms of hardware, robotics and au-
tonomous vehicles technologies have been developed. However,
the required software system supporting the automated opera-
tions and the transformation from current to automated systems
are still under development [9].

The advancements in technology and standardization of the
procedures create opportunities for automated aircraft ground
handling. The ground handling procedures on aircraft stands are
similar among commercial aircraft. The configuration of most
modern civil aircraft is similar [10]. The aircraft service interfaces
follow standards, and aircraft service points are usually placed at
common areas. The connectors of electricity are usually at the
front and the refueling interfaces are under the wings. [11] an-
alyzed the service interfaces used in ground handling of different
types of aircraft and cluster the interfaces based on normalized
aircraft length and half-wingspan. The interfaces include passen-
ger and cargo door position, service panels of portable and waste
water, preconditioned air unit (PCA) interfaces, ground power
unit (GPU) interfaces, and fuel connectors. The cluster analysis
reveals a trend of shifting of the interfaces towards common
locations. According to [10], the aircraft doors and their usages
for passenger boarding, catering, cleaning, cargo are standard-
ized. Considering the similarities among the procedures, aircraft
configurations, and clustered interfaces, automation of ground
handling operations is an achievable goal and a promising re-
search field. The ramp layout for Boeing 737-800 and standard
locations for ground handling operations are given in Fig. 2.

Agent-based modeling uses an approach that defines the sys-
tem from the perspective of interacting heterogeneous
autonomous entities. It can capture various goals and interests
of the involved agents, as well as the interaction and the inter-
dependence between them. In the operation of aircraft ground
handling, multiple stakeholders are involved, including the air-
line, airport operator, ground handling service companies, and
air traffic control. The stakeholders have different interests and
 m

3

Fig. 2. Ramp layout for Boeing 737-800 [12].

oals and their behaviors are dependent on other agents. Thus,
ntensive communication and cooperation are required. Some
viation-related applications include agent-based delay manage-
ent in autonomous taxiing [13] and resilient airport surface
ovement [14]. However, in the field of aircraft ground handling,

ittle research on agent-based modeling approaches exists. Multi-
le stakeholders are involved in the automation of aircraft ground
andling. To assign the ground handling tasks to GSE vehicles
uch that a global objective function is optimized, centralized
pproaches are usually inefficient. On the other hand, auction
echanisms [15–19] are considered suitable frameworks for task
llocation of automated aircraft ground handling. Throughout the
uction processes, bids of agents can capture the individual goals
nd utilities of agents under various circumstances. Auction-
ased multi-agent task allocation solvers can also efficiently
erform with different team objectives. Dynamic environments
f ground handling operations create uncertainties. To quickly
dapt to operational changes and deviations, the real time replan-
ing and computational efficiency are important. To improve the
omputational efficiency, task assignment and path planning are
onducted separately in most works [20]. Using these approaches,
lthough the solution quality is compromised, solution time be-
omes reasonable for real time applications. Solving the task
llocation and path planning simultaneously is more complex due
o the temporal and operational constraints in automated ground
andling. We present the literature related to task allocation, path
lanning and ground handling in Section 2.1, Section 2.2, and
ection 2.3, respectively.

.1. Related work on task allocation

Allocating ground handling tasks to ground service equip-

ent is one of main steps in automation of ground handling
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perations. From centralized solvers to decentralized approaches,
ome common classes of task allocation solvers are operation
esearch algorithms, evolutionary and swarm intelligence algo-
ithms, auction-based multi-agent systems, and game-theoretic
pproaches. Task allocation of aircraft ground handling operations
an be modeled as the assignment problem, which is one of
he fundamental problems in operation research. Kuhn–Munkres
ungarian algorithm was developed by [21] to solve the assign-
ent problems in O(rt2) time, in which r is the number of agents
nd t is the number of tasks. Other solution approaches are
ehicle routing solvers, dynamic programming, branch and bound
ethods. Evolutionary and swarm algorithms include genetic [22,
3], ant colony [24,25], and bee colony [26] algorithms. Genetic
lgorithm has a wide range of applications in airport opera-
ions, including optimization of airport ground operations [27],
cheduling for baggage transport vehicles [28], ground traffic
ptimization [29] and finding optimal locations of airport fire
tations [30]. Ant colony and bee colony algorithms solve difficult
ssignment problems with fast convergence to high-quality solu-
ions. [31] use ant colony algorithm to solve the gate assignment
roblem. [32] propose an improved ant colony optimization al-
orithm, and verify its performance on the traveling salesperson
nd gate assignment problems.
Centralized approaches are often inefficient for distributed

ystems due to the computational time and communication lim-
ts. Therefore, auctions were studied by researchers to solve the
ask allocation problems [16,33]. Auctions have been studied
xtensively in the field of artificial intelligence and multi-agent
ask allocation. An early work applying auctions into distributed
roblems is the contract net protocol [19]. Other examples of
sing auction in task allocation include allocating roles to robots
n RoboSoccer [15], tasks to ambulance teams, fire bridges and
olice force in RoboCup Rescue [17], and task allocation for online
ickup and delivery problems [18]. Multi-agent task allocation
roblems can be modeled as auction-based agent coordination
ystems. Auction-based multi-agent task allocation solvers in-
lude sequential single item auctions [16] where tasks are allo-
ated in multiple auction rounds, combinatorial auctions where
asks are allocated in a single round auction, sequential single
luster auction [16,34] where agents bid on some subsets of tasks,
onsensus-based auction algorithm and consensus-based bundle
lgorithm [35] which solve static allocation problems using a
onsensus routine based on local communication. Another ap-
roach is the game-theoretic approach where agents are modeled
s independent decision-makers that attempt to maximize their
wn utility. In game theory, agents are often competitive and
nwilling to share their private information. Thus, the agents
ecide based on local information and expectations.

.2. Related work on path planning

Multi-agent path finding (MAPF) is an important field of multi-
gent planning. Paths are planned for multiple agents, so that
gents can travel from their origins to destinations simultane-
usly without collision with other agents or obstacles in the
nvironment. MAPF has a wide range of real-world applica-
ions, including automated warehouse [36], traffic control [37],
obotics [38], and airport surface operations. [39,40] provide
survey of MAPF algorithms and their applications. Existing

lgorithms that solve classical MAPF problems include A∗ ap-
roaches such as operation decomposition [41], independence
etection [41], enhanced partial expansion A∗ [42], increasing
ost tree search [43], conflict based search [44], meta-agent con-
lict based search [44], cooperative A∗ [5], hierarchical coopera-
ive A∗ [5], windowed hierarchical cooperative A∗ [5], conflict ori-
nted windowed hierarchical cooperative A∗ and conflict oriented
4

indowed hierarchical cooperative A∗ with prioritization [6],
conflict-based search with priorities [7], priority based search [7],
boolean satisfiability [45], constraint satisfaction problem [46,47],
answer set programming [48], integer linear programming [38].
Most of these algorithms are based on the assumptions that time
steps are discrete, the shapes and sizes of the agents are uniform,
and movements are in orthogonal directions. These methods are
improved by considering continuous time steps or non-uniform
shapes and sizes. The MAPF solvers using continuous time steps
are SIPP [8] and continuous-time conflict-based search [49]. A
MAPF solver that considers the shapes of agents is LA-MAPF [50],
multi-agent path finding for large agents. Multi-agent motion
planning, MAMP, is the generalization of the MAPF. [51] use
the term MAMP to refer to the task of finding kinodynamically
feasible plans for agents. MAMPs are used to model the move-
ment of ground handling vehicles. SIPP [8] considers the paths
reserved by the other agents as obstacles and forms the basis for
MAMP approaches. Safe interval path planning with reservation
table [52] handles agents with volumes. Soft conflict interval
path planning [53] is an extension of SIPP that adapts (enhanced)
conflict-based search to continuous time.

The main difference between SIPP and other priority based
approaches [5–7] is that SIPP searches in a state space consisting
of pairs of agent configurations and intervals rather than con-
figurations and time steps. A configuration is a set of variables,
describing an agent’s physical position, heading, velocity and/or
other related information. Safe intervals and conflict intervals are
used to limit the size of the search space. One timestep before and
after a safe interval, the configuration is in collision with dynamic
obstacles, and the opposite is true for collision intervals.

2.3. Related work on ground handling

A recent work focusing on cooperative scheduling models
for ground handling operations under flight uncertainty is the
study of [54]. The focus of this study was on refuellers and
coordination with bus shuttles. They developed mixed integer
programming models with chance constraints to reflect the
uncertainty of flights and provide a coordinated optimization
schedule for ground-handling vehicles’ dispatching, to reduce
the waiting times and delays. [55] focuses on scheduling airport
baggage transport vehicles using genetic algorithm. [56] presents
an agent-based distributed control system for resource schedul-
ing and provide an application on managing ground handling
operations based on radio frequency identification feedback. The
work of [57] is one of the few studies addressing the whole
ground handling operations at the airport ramp. They developed
a bi-objective optimization model for scheduling operations of
ground handling vehicles including catering, baggage handling,
deboarding, cleaning, fueling, water and lavatory services, to
minimize waiting times of vehicles and turnaround time. An-
other study that consider all ground handling operations as part
of a mathematical optimization model for schedule recovery
optimization is the work of [58]. The mathematical model is
applied on peak hours at an airport with 20 turnarounds.[59]
model and simulate the turnaround process using Petri Nets. A
recent work towards automation of ground handling operations is
provided by [60] where they propose an on-line fleet assignment
problem for assigning GSE vehicles to ground handling tasks. A
stochastic approach that combines simulation based on actual
data with optimization, to find robust scheduling solutions for
GSE equipment is proposed by [61], and the results show that
number of aircraft handled within the planned time windows
and robustness of the schedules increased. The limitation of these
studies is that they do not address the collision-free movements
of GSE equipment on the airside in an automated system, thus,
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Fig. 3. Automated ground handling at aircraft stands of a pier.

he path planning and safety of automated GSE vehicles, which
re in the scope of Robotics and Automation, are not included in
esearch. The solutions are usually provided for a single aircraft
tand and traveling between different stands are not considered.
lso, many of the existing studies suggest centralized solutions
or improving the ground handling process, rather than modeling
distributed agent-based approach.

. Problem definition

We present a brief description of the problem in Sections 3.1,
.2, 3.3, 3.4, 3.5, 3.6. Further details related to problem and model
escription are presented in Section 4.

.1. Scope and layout

Amsterdam Schiphol Airport has 91 connected gates, located
cross 7 piers. We focus on ground handling operations of a
ingle pier. We take the pier B at Amsterdam Schiphol Airport as
eference, to set the configuration, the number of aircraft stands,
nfrastructure and operating flights. We consider the ground han-
ling tasks, refueling, catering, baggage handling, water service
nd lavatory service. We present the general overview of the
roblem in Fig. 3.
The aircraft stands are located next to each other in the pier.

ach stand is occupied by an aircraft. GSE vehicles serve to the
ircraft at several stands. At the top in Fig. 3, GSE vehicles are
raveling on the service road. Within the stands, they are heading
o the service points around the aircraft or to the exits of the
tands. Some of them are parked at the service locations to
omplete the tasks. At each stand, white vehicles serving on the
ight are the baggage handling trucks, while the green vehicles
re the galley trucks. Each type of GSE vehicle must serve at
pecific positions around the aircraft.

.2. Aim and constraints

The aim is to find multi-agent task allocation and path plan-
ing solution which minimizes delays, makespans, collisions for
ll agents that are serving the aircraft located at several stands
etween flights during a time period of the day. GSE vehicle
leet size is limited, and they are shared and reused at different
imes and platforms. Each GSE vehicle agent tries to minimize
he makespan of its own schedule while a short turnaround time
or each flight is also aimed to be maintained. The tasks have to
e completed within specific time windows. GSE vehicles have
apacity and precedence constraints, and mobility restrictions.
here are traveling direction constraints on the service road, and
locked parts at the layout which are occupied by static obstacles

uch as the aircraft or passenger boarding bridges. d

5

Fig. 4. The depot (terminal), service road, and aircraft stands, T1: depot,
1, B2, B3: aircraft stands.

.3. GSE vehicles

Five types of GSE vehicles, refueling truck (RE), catering truck
CA), baggage handling truck (BA), water service truck (WA) and
avatory service truck (WC) are defined to execute refueling,
atering, baggage handling, water service and lavatory service
asks at the bays. The vehicles are positioned at the terminal
here their depots are located before the service starts.

.4. Flight schedules

We consider the flight schedules within the four hours plan-
ing windows. The time intervals between flights define the time
indows constraints to complete ground handling tasks. Let F1,

2, F3, F4 be the time intervals during which an aircraft stands
t BAY1 within the planning time window of the day. The ground
andling tasks have to be completed for a different aircraft during
ach one of the time intervals F1, F2, F3, F4 at BAY1. Similarly, if F5,
6, F7, F8 and F9, F10, F11, F12 are respectively the time intervals the
ircraft stand at BAY2 and BAY3, ground handling services have to
e completed during each of these intervals at BAY2 and BAY3 by
he available GSE fleet.

.5. Bays

Available GSE vehicles serve three bays, BAY1, BAY2, BAY3, with
pecific entrance and exit points for GSE vehicles. A refueling
ruck follows a path that passes through the service road and
ntrance point of a bay, reaches to the refueling service point at
hat bay for service, and leaves the bay using the exit point to go
ack to terminal or to another bay. The same is valid for other
ehicles. Fig. 4 illustrates the depot, service road and the bays.

.6. Grid-maps, distances, paths

We define a grid based environment and find the paths on
rid-maps using Manhattan distance. The terminal, service road,
nd the bays are included as grid-maps. Although there are short-
st paths to reach destinations in Manhattan form, these paths
an change to avoid obstacles or collisions with other vehicles.
e define two types of grid-based environment: the basic and

he extended model. The basic model is defined by 16 × 16 grid-
ap with 4 m cell size, and unit-sized agents, while the extended
odel is defined by 64 × 64 grid-map with 1 m cell size and
gents have non-unit sizes occupying several cells. Fig. 5 presents
he basic (a) and extended (b) grid-based environments for air-
raft stands with the service locations for refueling (RE), catering
CA), baggage handling (BA), water service (WA), and lavatory
ervice (WC), and the complete modeling environment (c) includ-
ng the service road, terminal, aircraft stands, and pick-up and

elivery locations on this environment.
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Fig. 5. Modeling environment: (a) 16 × 16 grid-map environment of aircraft
tands including the locations of service points. (b) 64 × 64 grid-map envi-
onment for aircraft stands including the locations of service points. (c) The
omplete environment including the service road, terminal, bays, bay entrance
nd exists, and pick-up and delivery locations of GSE vehicles on 16 × 16
rid-maps.

. Design considerations

We design a multi-agent system model for automation of
ircraft ground handling operations. We specify the features and
nteractions of ground handling equipment, operations, infras-
ructure, environment as grid maps, and agents in Sections 4.1–
.3.
We focus on the ground handling activities at the aircraft

tands. Aircraft stands are areas of an airport where aircraft
ark between flights for passenger boarding and deplaning, cargo
oading and unloading, refueling, and other cabin services. Typical
round handling activities carried inside or outside the cabin
re, passenger deplaning and boarding, cabin cleaning and prepa-
ation, catering preparations, safety and security checks, cargo
nloading and loading, catering galleys unloading and loading,
onnecting and disconnecting Ground Power Unit (GPU), connect-
ng and disconnecting pre-conditioned air unit (PCA), refueling,
ater and lavatory service, connecting and disconnecting passen-
ers boarding stairs or Passenger Boarding Bridge (PBB). In this
tudy we consider the activities outside the aircraft cabin. The
ctivities we consider are, refueling, catering, baggage handling,
ater service and lavatory service. The ramp layout and ground
ervice equipment handling the activities outside the cabin for
oeing 737-800 are shown in Fig. 2. We refer to this layout to set-
p the environment for the model. In Fig. 2, the baggage handling,
efueling, and catering (galley truck) vehicles are located on the
ight side of the Boeing 737-800 aircraft, and water and lavatory
ervice trucks are located on the left side of the Boeing 737-800
ircraft. Thus, we set the service locations of catering, refueling,
aggage handling, water service and lavatory service trucks in our
nvironments based on the layout of Boeing 737-800. We also
odel the area covered by the passenger boarding bridge as an
bstacle that the GSE vehicles cannot move on.
6

4.1. Assumptions

4.1.1. Ground handling activities
We focus on the ground handling operations of the aircraft

used for short-haul flights. We consider the ground handling
activities of a single type of aircraft, Boeing 737-800, outside
the aircraft cabin. These activities include refueling the aircraft,
unloading and loading the catering galleys, unloading and loading
the baggage, water and lavatory service. Refueling and charging
of the ground handling vehicles, seasonal operations such as
de-icing are not included.

4.1.2. Infrastructure
Aircraft stands (also referred to as aircraft bays) are the park-

ing spots for aircraft to park between flights. Regarding the in-
frastructure of the aircraft stands, it is assumed that all aircraft
stands are equipped with Passenger Boarding Bridges (PBB), and
all passengers are able to board the aircraft via PBBs. Also, all
aircraft stands have an underground fueling system so that only
small fuel filling vehicles are needed.

4.1.3. Operation
We consider the case where Ground Service Equipment are

shared by the aircraft stands in the same pier and the same
type of ground handling vehicles are homogeneous. GSE vehicles
required to serve one short haul flight are listed and sorted as Fuel
filling truck (RE), Catering truck (CA), Baggage vehicle (BA), Water
service truck (WA), Lavatory service truck (WC) from highest
to lowest priority (adapted from [10] and internal documents).
In case of conflicts between movements of GSE vehicles, the
listed order is used to set the priority. There is no bound on the
number of personnel available to support the operation of GSE.
Movements of aircraft are not considered in the path planning
stage of the model. Thus, we perform path planning only for the
GSE vehicles. Taxiing and towing of aircraft are not included in
the scope of this research. The path planning of PBB is also not
considered. For safety reasons, ground handling vehicles have to
enter or exit the ramp through specified traffic lanes.

4.1.4. Task duration and time windows
We define the duration and time windows of different types

of ground handling tasks referring to the turnaround time chart
of aircraft B737-800 provided in technical documentation of Boe-
ing [12]. The time chart is only a guideline for various turnaround
operations. The real execution time of the ground handling tasks
is affected by different factors. The execution duration of ground
handling tasks should lie in the specified time windows.

4.2. Environment specification

An airport stand can be modeled as an environment with grids,
as shown in Fig. 2. In the multi-agent system, we model an airside
environment, including vehicle depots, a service road, and several
aircraft stands. All modeled elements are represented by grid
maps with obstacles. Consulting the typical GSE vehicle layouts
on an aircraft stand, we modeled grid-map environments with
15%–20% obstacles. The aircraft, the passenger boarding bridge,
and the towing vehicle are fixed objects and they are modeled
as obstacles. An instance of modeling environment is shown in
Fig. 6.

To model the aircraft stands, we use 16 × 16-grid maps
where each GSE vehicle agent occupies one cell of the map, the
basic model, and 64 × 64-grid maps where GSE vehicle agents
occupy several cells around reference points, the extended model.

The environment of aircraft stand modeled by 64 × 64-grid
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Fig. 6. An instance of modeling environment: Service road, aircraft stands, entrance, exit, pickup and delivery locations of ground handling vehicles.
Fig. 7. Environment of an aircraft stand modeled by 64 × 64-grid map and the
ositions of non-unit size GSE vehicles for refueling (RE), baggage handling (BA),
atering (CA), water service (WA), and lavatory service (WC).

ap, together with the locations for performing different ground
andling tasks, is illustrated in Fig. 7.
Depending on the grid size used for the aircraft stands, we

odeled the service road environment as open grids with the
ame grid size as the aircraft stands. We applied directional
onstraints on the grids of the service road. The constraints make
ure that the GSE vehicles always drive on the right side of the
oad. The vehicle depots are represented by the cells connected
o the service road. GSE vehicles have to enter or exit the aircraft
tands via corresponding bay entrances and exits.

.3. Agent specifications

The multi-agent system consists of the following types of
gents: task allocation agents, GSE vehicle agents, path planning
oordination agents, and environment agents.

.3.1. Task allocation agents
The task allocation agents are modeled as the auctioneers of

he auctions. Every type of ground handling task is allocated
eparately, so there is one task allocation agent for each type of
round handling task. The agents have the following properties:

• Task announcement property: Given the flight schedule
within the model planning window, agents first formulate
different types of ground handling tasks that have to be
7

performed for the flights. Then, as auctioneers, the task
allocation agents announce the tasks to the bidders, the
GSE vehicle agents. The auction has multiple rounds and
one task is announced in each round. Information about
tasks including their locations, duration, and time windows
is declared at this stage.

• Winner determination property: After announcing the task
in every round of the auction, GSE vehicle agents bid on
the task and send their bids to the task allocation agents
(the auctioneer). The task allocation agent determines the
winner of the task depending on the agents’ bids.

• Task allocation property: After determining the winning
agent of a task, the task allocation agent announces the
winner and allocates the task to the GSE vehicle agent.

4.3.2. GSE vehicle agents
Each GSE vehicle is modeled as an agent. The GSE vehicle

agents are involved in both task allocation and path planning
mechanisms of the model. The agents are classified by their type
of ground handling tasks. There are two available GSE vehicle
agents for each type of ground handling task except for baggage
handling, for which four available GSE vehicle agents exist. The
GSE vehicle agents have the following properties:

• Bidding property: The GSE vehicle agents are bidders in the
task allocation auctions of their type of ground handling
task. After the auctioneer announces the task to bid in each
round of the auction, every bidder determines its bid for the
task. The bidder then sends its bid to the auctioneer. Task
allocation is discussed in more detail in Section 5.

• Scheduling property: If the GSE vehicle agent is chosen as the
winner of a ground handling task, the agent adds the task
into its schedule. Based on its schedule, a GSE vehicle agent
can plan trip itineraries including the locations it needs to
visit.

• Path planning property: Given the trip itineraries of all
agents, map of the environment, and continuous periods
without collisions for every grid on the map (safe intervals),
the GSE vehicle agents are able to plan their paths without
colliding with other agents or obstacles in the environ-
ment. Paths of individual trips in the agents’ itineraries
are planned separately. Path planning is discussed in more
detail in Section 6.

4.3.3. Path planning coordination agent
The path planning agent manages the priority order of the

agents. Agents are first sorted based on their types of ground
handling tasks, then they are sorted by their departure time from
the depot. The priorities of agents from highest to lowest are
as follows: Fuel filling truck (RE), Catering truck (CA), Baggage
vehicle (BA), Water service truck (WA), Lavatory service truck
(WC).
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.3.4. Environment agents
The environment contains two kinds of maps: service road

nd bay maps. There are several bay maps and one service road
ap in the model. For each map the corresponding map agent is
efined.

• Safe interval management property: The map agents keep
track of the safe intervals on their map. Every time a path is
planned on a map by a GSE vehicle agent, the path is sent to
the corresponding map agent. The safe intervals of the cells
on the map are then updated.

4.4. Solution approach

First, task allocation problem is solved to assign tasks to GSE
ehicle agents. The shortest paths to complete the assigned tasks
re known after the task allocation is finished, since the time to
raverse the paths between various cells of grid-maps are also
ncluded the schedules of GSE vehicle agents. However, these
aths are not collision-free. At this stage, path planning is used
o find the collision-free paths for GSE vehicles. The vehicles
ither stop and wait or prefer to use alternative paths in case of
onflicts. Task allocation is solved using an optimization based
uction procedure. GSE vehicles optimize their schedules at each
ound of the auction and bid accordingly. We convert the single
gent task scheduling problem into single vehicle pick-up and
elivery problem with time windows. We solve the single vehicle
ick-up and delivery optimization model using GUROBI solver
ith a solution time limit of 5 s, for each GSE vehicle agent, to
enerate the bids of GSE vehicles at each round of the auction.
ollision-free paths are found using priority based path planning
lgorithms.

. Task allocation

Task allocation is one of the main components of automated
ircraft ground handling. To complete various kinds of ground
andling tasks of all flights on time, ground handling tasks must
e allocated to GSE vehicles using a effective and efficient proce-
ure that minimizes the completion times, while respecting the
apacity, connectivity, and temporal constraints. In this research,
n auction mechanism inspired by temporal sequential single-
tem (TeSSI) auction [4] is proposed to allocate tasks to GSE
ehicles. The distinctive part of the proposed procedure from
eSSI is that the executions of ground handling tasks in schedules
f GSE vehicles are modeled as single vehicle pickup and deliv-
ry optimization problems (SPDP) [62] to generate the bids for
he auction. Bundling of tasks is also included in the model to
peed up the allocation process. As the required GSE vehicles for
ifferent types of ground handling tasks are different, each type
f ground handling task is allocated separately.

.1. Adapted TeSSI auction for ground handling task allocation

Within the planning window and planning scope of the model,
ifferent types of ground handling tasks for flights are allocated
eparately in several adapted temporal sequential single item
TeSSI) auctions. TeSSI auctions are extensions of single sequen-
ial item auctions introduced by [4]. The strength of TeSSI is its
bility to handle temporal constraints. Time windows are used
o indicate the time intervals within which tasks have to be
rocessed.
Consider a set of agents A = {a1, a2, . . . , an}, representing the

available ground handling vehicles, and a set of ground handling
tasks T = {t1, t2, . . . , tm}. Each task ti has its earliest possible
start time Esti and its latest start time Lsti, where Esti ≤ Lsti. The
duration of the task is denoted as Dur and the latest finish time
i

8

is Lfti, with Lsti + Duri = Lfti. The interval [Esti, Lfti] defines the
time interval in which the task has to be performed.

In the auction, tasks are allocated independently in multiple
rounds. In each round of the auction, all participating agents bid
on an unallocated task. The agents evaluate the cost of commit-
ting to the task-to-bid, taking into account their current schedule.
After generating bids on tasks, the agents send their bids to
the auctioneer. Once the auctioneer receives all the bids, the
auctioneer performs winner determination and allocates the task
to the agent who bids the best price. If no agent bids on a task,
resulting in the task cannot being assigned, the task is removed
from the set T . The auction continues until all the tasks in T have
been allocated or discarded. If a task is discarded because there
is no feasible solution and infeasibility is proven before the time
limit of the solver is reached, the number of GSE vehicles could
be increased to avoid discarded tasks in real world. In the event
that neither the infeasibility is proven nor a feasible solution is
found within the time limit, repair heuristics could be used to find
feasible allocations for discarded tasks if such solutions exist.

In the original TeSSI auction, agents maintain the temporal
consistency of their allocated tasks using simple temporal net-
works (STN). In this research, we model the execution of ground
handling tasks as pickup and delivery operations. Therefore, STN
for agents is substituted with single agent pickup and delivery
optimization models, which is discussed in Section 5.2. We refer
to the new optimization based TeSSI auction approach as Adapted
TeSSI auction.

5.1.1. Bidding rules
Unlike common auctions, auction mechanisms used for task

allocations are usually cooperative auctions. It is crucial in co-
operative auctions to establish bidding rules that optimize the
problem objectives. In the model, we consider two different team
objectives. The first objective is to minimize the maximum com-
pletion time over all tasks allocated to a team of agents (also
known as makespan). Minimizing makespan is often referred to
as MINIMAX and it is commonly used in auction-based routing
literature [63]. Another objective we aim to minimize is the total
traveling time of all GSE vehicles to complete all tasks in the
task set. It is a variant of the objective MINISUM [63]. We use
the term sum-T to refer to the objective in this paper. Let F =

F1, F2, . . . , Fn} be the final allocation of tasks, where Fi contains
all allocated tasks of agent ai. Cmax(Fi) denotes the makespan
for agent ai to complete all allocated tasks in Fi. Also, TT (Fi)
represents the minimum traveling time that agent ai must spend
to perform its allocated tasks in Fi. The objective functions that
are to be minimized are the maximum makespan over all agents,
z1 = maxi[Cmax(Fi)], and the sum of travel times of all agents,
(sum-T ), z2 =

∑
i TT (Fi).

Let t be the task-to-bid in the current round of auction, and
S = {S1, . . . , Sn} be the current partial allocation of the tasks to
agents ai, i = 1, . . . , n. Depending on the objective, the following
bidding rules are applied:

• bid for objective makespan – makespan of agent ai: Agent ai
bids the new minimum makespan of its tasks after including
task t in its plan, min[Cmax(Si ∪ t)].

• bid for objective sum-T – marginal-sum-T : Agent ai bids the
marginal increase of traveling time incurring in adding t to
its plan, min[TT (Si ∪ t)] − min[TT (Si)]

5.1.2. Pseudo-code
The procedure of TeSSI auction for the auctioneer is shown in

Algorithm 1. The inputs of the algorithm contain a set of agents,
A, and a set of tasks, T , that are to be allocated to agents. Task
set, T , contains the tasks that cannot be allocated. In the
unallocated
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eginning, the task set Tunallocated is an empty set. For each task
in T , every agent a ∈ A evaluates the task using the function
valuateTask. According to the applied bidding rule, each agent
generates a bid on the task and a corresponding schedule if

he task can be included in its schedule without violating any
onstraint. The generated bids for task t from agents are com-
ared to the current lowest bid lowestBid. If the minimum bid is
ower than the existing lowest bid, the current lowest bid replaces
he existing lowest bid. The bidding agent a and its generated
chedule tempSchedule are saved. Also, the task t is marked as
ssigned. After all the agents have tried to bid on the task t , it is
llocated to the winning agent winner. The schedule of the agent
inner is updated. On the other hand, if task t is not assigned
o any of the agents, it is moved into the unallocated task set
unallocated. The auction procedure continues until all the tasks in T
re allocated or moved to Tunallocated. The outputs of the algorithm
re sets of assigned tasks for all agents a ∈ A, and the final
chedules Schedulea, a ∈ A.
1: Input:
2: A: Set of agents
3: T : Set of tasks to be allocated
4: Output:
5: Sa: Sets of assigned tasks for agents a, a ∈ A
6: Schedulea: Final schedules Schedulea for agents, a ∈ A
7: Tunallocated = ∅;
8: for t ∈ T do
9: lowestBid = ∞

0: assigned = False
1: for a ∈ A do
2: Bid, tempSchedule = a.evaluateTask(t)
3: if Bid < lowestBid then
4: winner = a
5: lowestBid = Bid
6: winnerSchedule = tempSchedule
7: assigned = True
8: end if
9: end for
0: if assigned = True then
1: Swinner = Swinner ∪ {t} {update the set of assigned tasks for the

winning agent}
2: Schedulewinner= winnerSchedule {update the schedule of the

winning agent}
3: else
4: Tunallocated = Tunallocated ∪ {t}
5: end if
6: end for

Algorithm 1: TeSSI auction for the auctioneer
Algorithm 2 presents the evaluateTask procedure for the ve-

icle agents. The inputs are the set of assigned tasks for the
gent, Sa, and the task to be evaluated, t . The evaluation set,
evalSet , includes the set of tasks in the existing partial schedule
nd the candidate task. To calculate the agent’s bid value, the
asks in the evaluation set are optimized in a single vehicle pickup
nd delivery optimization model, which is discussed in detail in
ection 5.2. For every pickup and delivery optimization task, a
olution time limit of 5 s is applied. If the optimal solution is
ound within the time limit, the optimizer returns the objective
alue and the optimized schedule of the set of tasks TevalSet . The
bjective value is the Bid that the agent bids on task t . The
rocedure evaluateTask generates the value of the bid and the
orresponding schedule as output for any agent.
If the time limit is reached before an optimal solution is found,

he agent bids the feasible solution obtained at the end of the
ime limit. In this case, the chance that the task will be assigned
o the agent might decrease, as there are other competing agents.
f no feasible solution exists or no feasible solution is found within
he time limit, the bid of the agent is set to infinity and the agent
s withdrawn from the current round of the auction.
9

1: Input:
2: Sa: Set of assigned tasks for agent a, a ∈ A
3: t: Task to be evaluated
4: Output
5: Bid: Bid of task t for agent a, a ∈ A
6: Schedulea: Schedule of agent a considering task t , a ∈ A

7: TevalSet = Sa ∪ {t}
8: objective, Schedulea = optimizerSPDP(TevalSet , a)
9: if objective exists then
0: Bid = objective
1: else
2: Bid = −

3: end if
Algorithm 2: Procedure evaluateTask for agent a

.1.3. Handling uncertainties
In real-world aircraft ground handling operations, the duration

f executing a certain ground handling task is not fixed. For GSE
ehicles, the travel time between their depots and locations on
ircraft stands varies, depending on the airside traffic congestion.
o deal with the temporal uncertainty, uncertain vehicle traveling
ime is incorporated in the auction mechanism of the model. To
uccessfully plan the paths for agents, possible traveling delays
nd waiting times due to conflicts should already be taken into
ccount in the task allocation phase. Considering a constant speed
f agents, the traveling time between two airside locations is
efined in Eq. (1). The distance buffer coefficient is normally
istributed random variable. We use a mean value of 1.4 and a
tandard deviation of 0.2.

istance buffer coefficient × shortest distance ÷ speed (1)

.2. Pickup and delivery optimization

To generate a bid on a certain ground handling task in the task
llocation process of automated ground handling, an agent needs
o evaluate the task-to-bid considering its existing schedule. We
se an optimization solver that optimizes the agent’s sched-
le including the existing tasks and the task-to-bid. We model
he single agent task scheduling problem as capacitated vehicle
outing problem with time windows, pickups and deliveries.

.2.1. Solving the single agent scheduling problem as a vehicle rout-
ng problem with pickups and deliveries

To complete its allocated tasks, a GSE vehicle has to visit
set of pick up and delivery points at different locations of

ircraft stands and the vehicle depot, starting and finishing its
ervice within specific time windows at the pickup and delivery
ocations. The route of a GSE vehicle needs to be optimized
y determining the pick-up and delivery times at visited task
ocations. GSE vehicle has a loading capacity. While traveling
etween locations outside and inside aircraft stands, it has to pass
hrough specific entrance and exit locations of different aircraft
tands. The goal is to minimize the makespan or total traveling
ime of the GSE vehicle by scheduling a set of tasks, to bid on the
andidate task. Although the original problem is a single agent
cheduling problem with earliest start time and latest completion
ime constraints, the required time to complete a task is not
nly dependent on the processing time, but also affected by the
ositions of GSE vehicles, their service points and routes between
oading and unloading locations.

We present a novel approach by re-designing the single agent
ask scheduling problem as a vehicle routing problem with time
indows, pickups and deliveries. To convert the GSE vehicle
cheduling problem to the vehicle routing problem with pickups
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Fig. 8. Representation of a capacitated catering truck (GSE) tour with pick-up and delivery service points, and vehicle loads between visited points.
Fig. 9. Representation of a capacitated baggage handling vehicle (GSE) tour with pick-up and delivery service points, and vehicle loads between visited points.
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Table 1
The ground handling sub-tasks for GSE vehicles at pick-up locations.
Vehicle Pick-up Task

location

RE terminal N.A.
CA terminal pick up food
BA unload bay unload baggage from aircraft
BA load terminal pick up baggage from terminal
WA terminal fill up water tank of the truck
WC bay drain the waste from aircraft lavatory

RE: refueling; CA: catering service; BA: baggage handling; WA: water service;
WC: lavatory service.

and deliveries, ground handling tasks are redefined by being
split into several pickup and delivery sub-tasks that occur at
various loading/unloading locations and service points. The paths
between the locations are generated by considering the exit and
entrance positions at the bays in addition to the pick up and
delivery locations. These paths serve as single links or edges
between the task nodes.

For outbound flights, the loading of resources to vehicles is
et as a pickup task, while loading or supplying the resources to
he aircraft represent the delivery task. Two examples for pickup
nd delivery representation of ground handling tasks are shown
n Figs. 8 and 9. For the catering service task in Fig. 8, loading
he food from the terminal to the GSE vehicle and loading the
ood from GSE vehicle to the aircraft represent the pick up and
elivery sub-tasks, respectively. For the baggage handling task in
ig. 9, loading the baggage from terminal and from aircraft to
he GSE vehicle are defined as pickup sub-tasks, whereas loading
he baggage from GSE vehicle to the aircraft and unloading the
aggage from GSE vehicle to be placed on the conveyor belt are
odeled as delivery sub-tasks. In Figs. 8 and 9, the values on the

inks connecting pickup and delivery nodes denote the load of the
ehicle while traveling between two nodes.
The pick-up and delivery sub-tasks for different ground han-

ling tasks are given in Tables 1 and 2.
Apart from the makespan, various objective functions can be

sed to generate the bidding value in the auction model. We use
wo different objectives, makespan and sum-T, for bidding in the
uction models. The proposed pickup and delivery optimization
odel is used to generate these objective values for each agent,

hus being a sub-problem of the higher level auction model.
hen the bidding strategy is based on makespan, each agent

akes an offer with the minimum makespan of the GSE vehicle

10
Table 2
The ground handling sub-tasks for GSE vehicles at delivery locations.
Vehicle Delivery Task

location

RE bay refuel the aircraft
CA bay load new catering galleys to aircraft
BA unload terminal unload baggage from vehicle
BA load bay load baggage to aircraft
WA bay fill the water tank of aircraft
WC terminal drain the waste from truck

RE: refueling; CA: catering service; BA: baggage handling; WA: water service;
WC: lavatory service.

that is obtained by solving the pickup and delivery model, using
the makespan objective, over the set of previously assigned tasks
and including the candidate task. In the sum-T case, agent offers
the minimum marginal-sum-T by solving the model using the
sum-T objective which includes only the traveling time of the GSE
vehicle.

Data related to the set of tasks to be evaluated and optimized
contains the following information: task identity numbers i, re-
ource (pickup) locations Pi, task (delivery) locations Di, earliest
ickup time EstPi , latest pickup time LstPi , earliest delivery time
stDi , latest delivery time LstDi , pickup duration DurPi , and delivery
uration DurDi of the tasks. The pickup and delivery locations are

either the depot of the vehicle or the locations of certain ground
handling tasks on aircraft stands. We define pickup and deliv-
ery locations and distances between locations based on realistic
airport airside operations.

In our model, the focus of the ground handling task executions
is on the operations that are performed on the aircraft stands. In
this procedure, in some cases delivery sub-tasks, in other cases
pick-up sub-tasks are critical due to the strict time windows
constraints and being the main task rather than a supporting task
such as collecting or delivering an empty vehicle at the depot. To
give an example, for a refueling task, the delivery sub-task is more
critical than pickup sub-task. Pickup sub-task of a refueling truck
has significantly shorter duration and has no strict time window
constraint.

5.2.2. Optimization model
We present the mathematical model for optimization of

ground handling operations of a single agent at terminal and
aircraft bays. This model, which we design by adapting the

mathematical model of the single vehicle pickup and delivery
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roblem (SPDP) presented in a survey of pickup and delivery
roblems [62], is given as follows:

arameters. The parameters of the model are as follows:

n: number of pickup vertices
ñ: number of delivery vertices
P: set of pickup vertices, P = {1, . . . , n}
D: set of delivery vertices, D = {n + 1, . . . , n + ñ}

A virtual start node 0 and a virtual end node n + ñ + 1 are
lso added to the original graph. The problem is modeled on a
omplete graph G = (V , A), where V is the set of all vertices, and
is the set of all arcs, defined as follows:

V : the set of all vertices, V = {0, n + ñ + 1} ∪ P ∪ D
A: the set of all arcs, A = {(i, j) : i, j ∈ V , i ̸= n + ñ + 1, j ̸=

0, i ̸= j}
qi: demand/supply at vertex i; pickup vertices have positive
qi values, while delivery vertices have negative values. The
start vertex 0 and the end vertex n + ñ + 1 have zero
supply/demand values, q0 = qn+ñ+1 = 0
ei: earliest time to begin service at vertex i
li: latest time to complete service at vertex i
di: service duration at vertex i
tij: travel time from vertex i to vertex j
C: capacity of the ground handling vehicle (depends on the
type of ground handling task)
S: the set of groups of vertices, S = {s1, . . . , sm}, where
pickup or delivery tasks executed on the same aircraft stand
belong to the same group, sk ∈ S, k = 1, . . . ,m

In airport environment, GSE vehicles enter or exit aircraft
stands via specified bay entrances and exits. The travel distance
is found by computing the length of the path from vertex i to
vertex j, which also passes through entrance or exit points in
between. For simplicity, we assume that GSE vehicle agents move
with unit speed. Therefore, the travel distance and travel time
between nodes are equivalent. To align with the design of the
path planning algorithm, distances used here are not Euclidean
but Manhattan distances.

Decision variables. The decision variables of the model are as
follows:

xij: binary decision variable that is equal to 1 if arc (i, j) is
selected for the vehicle’s route, or 0 otherwise
Qi: load of the vehicle after leaving vertex i
Bi: beginning time of service at vertex i

Objectives. The objective of the optimization problem depends on
the bidding rule of the auction that is used to allocate the ground
handling tasks. The bidding rule of the auction can be makespan
or sum-T. Bidding makespan means that the agent bids the total
time span of its schedule including its current allocated tasks and
the task-to-bid; while bidding sum-T means that the vehicle bids
the extra travel time if the task-to-bid is included in its current
schedule. Below we formulate the objective function for the SPDP
based on two bidding rules.

Bid makespan:

minimize Bn+ñ+1 − B0 (2)

Bid sum-T :

minimize
∑

tijxij (3)

(i,j)∈A

11
Note that the objective (3) is the total travel time of the
vehicle. The marginal travel time is the required extra travel time
if the task-to-bid is included in its current schedule. The value
of the bid used in the TeSSI auction should be the value of the
objective (3) minus the total travel time of the agent’s current
schedule.

Constraints. The problem is subject to the following constraints:∑
i:(i,j)∈A

xij = 1, ∀j ∈ V \ {0}. (4)∑
j:(i,j)∈A

xij = 1, ∀i ∈ V \ {n + ñ + 1}. (5)

M(1 − xij) + Qj ≥ Qi + qj, ∀(i, j) ∈ A. (6)

max{0, qi} ≤ Qi ≤ min{C, C + qi}, ∀i ∈ V . (7)

Bi ≤ Bn+i, ∀i ∈ P . (8)

M(1 − xij) + Bj ≥ Bi + di + tij, ∀(i, j) ∈ A. (9)

ei ≤ Bi, ∀i ∈ V . (10)

Bi + di ≤ li, ∀i ∈ V . (11)

xij = 0, ∀i ∈ sk ∀j ∈ sk ∀sk ∈ S. (12)

Constraints (4) and (5) ensure that every vertex is visited
exactly once. Constraint (6) is a big-M constraint which ensures
that the load of the vehicle is updated after visiting a pick-up or
delivery node. Constraint (7) makes sure the vehicle’s load is not
greater than its capacity. In SPDP, pickup and delivery vertices
are paired. Therefore, the number of pickup vertices n equals the
number of delivery vertices ñ. The pickup vertices are indexed by
i = 1, . . . , n and the corresponding delivery points are indexed
as n + i. Using start time variables, constraint (8) ensures that
for every pickup–delivery pair, the pickup vertex is visited before
the delivery vertex. The big-M constraint in (9) ensures that the
start time of the task at vertex j is greater than or equal to the
completion time of task at vertex i plus the travel time from i
to j, if vertex j is visited right after vertex i. Finally, (10) and
(11) are added to ensure that the start time and end time of the
service are within certain time windows. It is worth noting that
by introducing constraints (9), (10), and (11), subtours of vertices
are eliminated. Typical subtour elimination constraints can be
omitted. Constraint (12) is a special constraint implemented to
fit the need of the path planning part in this research. If the
pick up and delivery tasks of an aircraft are to be consecutively
processed by the same GSE vehicle in the same stand, there exists
a waiting time after the completion of the preceding task due
to the earliest start time constraint of the successive task. In
path planning, having an agent occupying spaces on the aircraft
stand for a long period can cause some problems. For example,
the agent can block the necessary path of other agents with
lower priority, or it can stop the other agent from entering the
pickup or delivery location it occupies. Therefore, (12) forbids the
consecutive processing of tasks if they belong to the same aircraft.
There might be different types of path planning methods where
collisions are dealt with using different strategies. In these cases,
constraint (12) can be omitted.

By optimization of single vehicle pickup and delivery problem,
the schedule for the agent is constructed. A route of a GSE vehicle
is a tour of multiple pick up and delivery locations, starting and
ending at its depot at the terminal without visiting the depot

in between. The values of the decision variables xij are used in
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enerating the route or task sequence for the agent. The values
f start time variables Bi are the start times of tasks or services
t the nodes from which start times of ground handling tasks
n an agent can be extracted. The final schedules of agents are
ormed based on the iterative calls of optimization solver during
he TessI auction, till the last candidate is allocated to an agent.
hese schedules and routes of agents are used as inputs for path
lanning part of the model.

.3. Bundling

In TeSSI auctions, tasks are allocated one by one in multiple
ounds. The allocation process take long if the number of tasks to
e allocated is high. To accelerate the auctioning process, tasks
an be bundled before allocation. Agents evaluate the cost of
erforming all tasks in a bundle and generate a single bid on the
undle. All tasks in the bundle are then allocated to the same
gent with the best bid in the same round of auction. Tasks of the
ame type of ground handling operation, which are also the tasks
o be allocated in the same auction, can be combined into bun-
les. Checking all possible bundles is not applicable in real time
ue to the high computational time. Rather than exploring all
ossible combinations, [64] defined the bundle generation prob-
em (BuGP) to generate attractive bundles. The attractive bundles
re non-overlapping bundles covering all tasks to be assigned.
n this research, we adopt the idea of BuGP which generates
on-overlapping bundles. However, instead of applying genetic
lgorithm, we use a heuristic method to generate the bundles and
reallocation procedure. The aim is to keep bundling procedure

ess complex since optimization based auction and path plan-
ing procedures are already complex in terms of computational
equirements.

.4. Replanning

Aircraft ground handling is operated in a dynamic environ-
ent with many uncertainties, and disruptions occur frequently.
emoving the baggage of a no-show passenger can delay the
aggage loading operation, or malfunctions of GSE vehicles cause
elays in ground handling. The disruptions often happen during
he handling of the operation, and they cannot be taken into
ccount beforehand in the task allocation phase. The re-allocation
f ground handling tasks is needed to deal with operational dis-
uptions in a multi-agent system for automated ground handling.
herefore, we introduced a replanning function to respond to
isruptions and performed the experiments simulating a set of
isruptions of ground handling tasks. We apply replanning to
eal with disruptions as follows: When an allocated task cannot
e completed as planned, a disruption occurs. We allow the
elayed completion of the disrupted task and reschedule the
emaining tasks solving the optimization model with respect to
ew conditions and repeat the TeSSI auction.
For replanning, the additional variable fixing constraints, (13)

nd (14), are introduced to the existing optimization model. The
ew constraints and related parameters are presented as follows:
Parameters

E: Set of directed links that exist on path segment up to and
including the disrupted task node, in the original solution.
F : Set of task nodes that belong to the path segment up to
and including the disrupted task node.
T I
i : Start time of task i in the original solution.

Additional constraints for variable fixing

i,j = 1, ∀(i, j) ∈ E (13)

= T I , ∀i ∈ F (14)
i i

12
Fig. 10. Trajectories of GSE vehicles between the terminal and bays.

Fig. 11. Pick up and delivery tour with planned paths for refueling vehicle.

The constraint (13) ensures that the value of the binary deci-
sion variable, xi,j, regarding the directed link from node i to node
j is fixed to 1 in the optimization model, if the directed link (i, j)
belongs to the path segment that ends with the disrupted task
node in the original solution. Thus, the binary decision variable,
xi,j, cannot take a different value for this node pair and directed
link in the new replanning solution.

The constraint (14) fixes the value of the integer decision
variable Bi to the start time value, T I

i , if T
I
i is the start time value

of a task belonging to the path segment ending with disrupted
solution in the original schedule. Thus, the start time decision
variables cannot take different values for the task nodes belong-
ing to the sequence up to and including the disrupted task in the
new replanning solution.

6. Path planning

After allocating the ground handling tasks, collision-free paths
are found for GSE vehicle agents. Trajectories of GSE vehicle
agents between their depot locations at terminal and service
locations at aircraft stands are given in Fig. 10.

We modeled the path planning problem for GSE vehicle agents
as multi-agent path finding (MAPF) problem. For solving the
model, we employed priority based path finding approaches
which include SIPP and its adaptations, due to the priority orders
of GSE vehicles. We modeled a grid-based path planning envi-
ronment as depicted in Fig. 10. We solved MAPF for unit-sized
vehicle agents on 16 × 16 grid-maps and for square shaped non-
unit (large) agents on 64 × 64 grid-maps. To solve the large agent
path planning model on 64 × 64 grid-maps, we used an adapted
LA-SIPP. Fig. 11 shows the pick up and delivery tour with planned
paths for one GSE vehicle.

6.1. Prioritized SIPP

Inspired by SIPP [8] and SIPPwRT [52], we use a prioritized SIPP
which takes pre-defined priority order as input and transforms
the paths of agents with higher priority into (non-)safe intervals
for the cells on the map and stores them in a reservation table.
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Table 3
Example of precedence setting for GSE vehicles in path planning.
Prec GSE t Route

1 RE1 t1 terminal - bay1 - bay3 - terminal
2 RE1 t2 terminal - bay4 - terminal
3 RE2 t3 terminal - bay2 - bay3 - terminal
4 CA1 t4 terminal - bay1 - bay2 - terminal
5 BA1 t5 terminal - bay1 - bay2 - terminal
6 BA2 t6 terminal - bay3 - terminal

RE: refueling; CA: catering service; BA: baggage handling.

6.2. Defining priority orders for GSE vehicles

We set the precedence orders for GSE vehicles as we ex-
lain using the example in Table 3. Priorities of GSE vehicles
re mainly defined considering the types of tasks they operate.
ccordingly, refueling vehicle precedes catering vehicle, catering
ehicle precedes baggage handling vehicle, baggage handling ve-
icle precedes water service vehicle and water service vehicle
recedes lavatory service vehicle. The precedence order is s RE ≺

A ≺ BA ≺ WA ≺ WC with respect to vehicle task types. For the
ehicles with the same task type, the priority is determined by
he departure time, t , of the vehicle, and priorities are adjustable
ithin the same type of vehicle.
In Table 3, the GSE vehicle RE1 with departure time t1 precedes

he GSE vehicle RE1 with departure time t2, since t1 < t2. Thus,
he precedence orders for RE1 and RE2 are respectively prec = 1
nd prec = 2, where 1 ≺ 2. Similarly, the priorities of the vehicles
E1, RE1, RE2 with prec = 1, 2, 3 are higher than the priorities of
he vehicles CA1, BA1, BA2 with prec = 4, 5, 6, due to the vehicle
ypes and departure times.

.3. Prioritized SIPP for path planning of GSE vehicle agents

We form the trip itineraries for GSE vehicle agents, based on
he allocated ground handling tasks. The trip itinerary shows the
tart location, the intermediate stops, and the final destination
or an agent. For example, a trip itinerary for a refueling truck
gent might be: depot → bay1 entrance → refueling location at
ay1 → bay1 exit → depot. Every trip segment in the itinerary
elongs to a separate part in the modeling environment, either
he service road environment or one of the bay environments.
very trip segment is a path finding problem for the associated
gent. To plan paths for all involved GSE vehicle agents, the trip
tineraries are ordered by the type of GSE vehicle used. We sort
he trips with respect to their start times if they belong to the
ame type of GSE vehicle. Algorithm 3 shows the prioritized SIPP
pproach we used to solve automated ground handling problem.
The inputs of Algorithm 3 are the set of agents A = {a1, a2, . . . ,

n}, the trip itineraries Ga for agents, the map of the service road
nd the aircraft stand, and the safe intervals of the cells on the
ervice road and the aircraft stand. According to the priority order
or different types of GSE vehicles, paths for agents are planned.
aths in the itinerary of the same agent are planned in sequential
rder. The paths either belong to the service road environment or
ne of the aircraft stands. Corresponding maps and safe intervals
re used as the input for SIPP. Once a path is planned, it is stored
n Pa, and the safe intervals of the grids in the corresponding
nvironment are updated. The outputs of the model are sets of
aths Pa for agent a.
In the solution in Fig. 11, GSE vehicle first visits the points

ickup 1 and pickup 2 at the terminal to pick up resources and
oes to delivery 1 and delivery 2 locations at BAY1 and BAY2. From
AY2, it goes to the location pickup 3 at terminal to pick up new
esource and continues to delivery location delivery 3 at BAY2, and
eturns back to terminal. We show the path planning solutions
13
1: Input:
2: A: Set of agents
3: Ga: Sets of trip segments (itinerary) for agents a, a ∈ A
4: Mroad: Map of the service road
5: Mbay: Map of the aircraft stand (bay). It is identical for all bays
6: Sroad: Safe intervals of grids on the service road
7: Sbayb : Safe intervals of grids on the bth aircraft stand (bay)
8: Output
9: Pa: Sets of paths for agent a, a ∈ A

0: Initialize Sroad, Sbay
1: for a ∈ A do
2: for segment ∈ Ga do
3: if segment belongs to the service road then
4: path = SIPP(segment start, segment goal,Mroad, Sroad)
5: add path to Pa
6: Sroad = updateSafeInterval(path,Mroad, Sroad)
7: else if segment belongs to an aircraft stand then
8: b = id of the aircraft stand
9: path = SIPP(segment start, segment goal,Mbay, Sbayb )
0: add path to Pa
1: Sbay = updateSafeInterval(path,Mbay, Sbay)
2: end if
3: end for
4: end for

Algorithm 3: Prioritized SIPP

Fig. 12. Heat map of planned paths in the basic model.

Fig. 13. Heat map of planned paths in the extended model.

for all GSE vehicles over a set of simulations using heatmaps,
which are presented in Figs. 12 and 13 on 16 × 16 and 64 × 64
grid-maps in Section 7.4.1.

6.4. LA-SIPP for path planning of large GSE vehicle agents

In real-world aircraft ground handling, GSE vehicles have dif-
ferent geometry shapes. In the environments for aircraft stands,
GSE vehicle agents can occupy multiple cells. In the extended
model on 64 × 64 grid-map, we included the squared shape
agents with non-unit sizes. To deal with such agents, some ad-
justments to SIPP are needed. [52] proposed the concept of time
offsets in the SIPPwRT algorithm that is able to deal with circular
agents of different sizes. We apply similar ideas and general-
ize them to agents with square shapes. The algorithm is called
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Table 4
Randomly generated turnaround times for three aircraft stands in normal
scenario.
Flight Aircraft stand 1 Aircraft stand 2 Aircraft st. 3
no [ta, td] [ta, td] [ta, td]

1 [7, 52] [35, 77] [33, 83]
2 [52, 92] [77, 119] [83, 129]
3 [92, 134] [119, 168] [129, 172]
4 [134, 180] [168, 213] [172, 222]
5 [180, 229] [213, –] [222, –]
6 [229, –] [–, –] [–, –]

Table 5
GSE vehicle types and codes.
GSE vehicle type GSE code

refueling truck RE
catering truck CA
baggage handling vehicle BA
water service vehicle WA
lavatory service vehicle WC

large agents safe interval path planning (LA-SIPP). In LA-SIPP,
the search for state space is similar to that of the original SIPP.
Elements of LA-SIPP that differ from SIPP are the generation of
successors and the way that the safe intervals are updated.

7. Results

Experimental design is based on the assumptions discussed
n Section 4.1 and the model environment specifications pre-
ented in Section 4.2. For the task allocation experiments, the size
f aircraft stand map was not considered as a critical parame-
er, thus the environment was represented by a 16 × 16-grid.
ath planning experiments were performed using both the ba-
ic 16 × 16-grid and the extended 64 × 64-grid. Moreover, a
ensitivity analysis is included.

.1. Instance generation and instance features

We explain the generation of datasets and instance char-
cteristics in Sections 7.1.1, 7.1.2, 7.1.3, 7.1.4, 7.1.5, 7.1.6, and
.1.7. The parameters to generate instance sets were selected in
onsultation with a major European airline.

.1.1. Flight schedules
We generate three types of flight schedules based on frequent,

ormal, less-frequent flights during 4-hour time window, and the
perations of these flights are handled in three aircraft stands.
nce the previous aircraft leaves, an aircraft can enter the aircraft
tand and the turnaround starts. We generate the turnaround
imes of the flights using three uniform distributions, U(50,60),
(40,50), U(30,40), of time intervals in minutes. This random
eneration leads to 13 flights in off-peak scenario, 16 flights in
ormal scenario, and 20 flights in busy scenario. An instance of
andomly generated turnaround times for three aircraft stands
ithin 4-hours in normal scenario is given in Table 4.

.1.2. Vehicle types, tasks, and sub-tasks
In problem instances, we include five types of GSE vehicles

hich are listed in Table 5.
The number and type of vehicles required to perform the

round handling tasks for one short-haul flight are given in Ta-
le 6. This shows the most limited (and necessary) resource case
or the original ground handling problem. In general, a fleet can
ontain several GSE vehicles with the same type that can be used
t various times or locations.
14
Table 6
Minimum sizes of GSE resources for each type of ground handling task to
complete the operations for one aircraft, in the original ground handling model
GSE code Task type Required number of GSE

RE refueling 1
CA catering 1
BA baggage handling 1
WA water service 1
WC lavatory service 1

Table 7
The tasks GSE agents operate and bid on in the
original model.
GSE code Tasks to bid on

RE refueling tasks
CA catering tasks
BA baggage handling tasks
WA water service tasks
WC lavatory service tasks

In the original ground handling problem, each type of GSE
vehicle can operate and bid on only one type of task. These are
shown for the original ground handling model in Table 7.

There are several tasks with the same task type since there
are several aircraft occupying the stands or several flights during
a day. Thus, the GSE vehicle can bid for any of the suitable task
types but not allowed to bid for a different task type. For example,
when there are several aircraft, catering truck (CA) can operate
several catering tasks at various bays or at different times at the
same bay, as long as the task types are catering and unless the
load exceeds its capacity.

When we convert the problem into vehicle routing problem
with pick-ups and deliveries, we redefine the task types each GSE
vehicle can handle, since we split the original tasks into pick-
up and delivery sub-tasks. In this case, a catering truck (CA) can
operate catering pick-up sub-tasks at specific pick-up locations at
the terminal and catering delivery sub-tasks at catering positions
around the aircraft at the bays. Similarly, a refueling truck (RE)
and water truck (WA) pick up fuel and water at pick-up loca-
tions at the terminal and deliver the fuel and water at delivery
locations at aircraft bays. We redefine the baggage handling truck
(BA). One type of baggage handling vehicle picks-up the baggage
from the aircraft at its pick-up location at the bay and delivers it
at its delivery location at the terminal, while another type picks-
up the baggage from its pick-up location at the terminal and
delivers it to aircraft at its delivery location at the bay. In Table 8,
we present the list of the GSE vehicle types and the sub-task types
they operate, in the transformed model, which is the pick-up and
elivery version of the ground handling model.

.1.3. GSE fleet size
In the instances, except for the sensitivity analysis, we set the

inimum fleet size required to complete the services for one
ircraft as available resource. The numbers of vehicles for each
SE type in this fleet are given in Table 9. The fleet is reused
o serve several aircraft at the same bay for different flights or
ne type of vehicle can serve several aircraft at different bays.
e aimed to test the most limited resource availability case
y setting the available fleet size to minimum required value.
his instance type is the hardest one to find feasible solutions.
ncreasing the fleet size, leads to solutions that are easier to find
nd have better quality, in sensitivity analysis in Section 7.5.

.1.4. Number of tasks to bid for each GSE vehicle
The number of tasks that vehicles can bid on depends on

he number of flights, which is a variable in the simulation. For
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Table 8
GSE tasks in pick-up and delivery model, transformed model.
GSE Task Sub-task Type Location

RE refueling load fuel to GSE pick-up terminal
RE refueling load fuel to aircraft delivery bay
CA catering load food to GSE pick up terminal
CA catering load food to aircraft delivery bay
BA baggage handling load baggage to GSE pick-up terminal
BA baggage handling load baggage to aircraft delivery bay
BA baggage handling unload from aircraft pick-up bay
BA baggage handling unload from GSE delivery terminal
WA water service load water to GSE pick-up terminal
WA water service load water to aircraft delivery bay
WC lavatory service drain waste from aircraft pick-up bay
WC lavatory service drain waste from GSE delivery terminal
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Table 9
Number of available GSE vehicles for each type in simulations.
GSE vehicle type Number of available vehicles

refueling truck (RE) 2
catering truck (CA) 2
baggage handling vehicle (BA) 4
water service vehicle (WA) 2
lavatory service vehicle (WC) 2

Table 10
Number of tasks the available GSE vehicles can bid on: An example for the
normal scenario with 16 flights within 4-hours time window.
GSE resource Tasks to bid on for 16 flights in normal scenario

2 RE vehicles 16 refueling tasks to bid on
2 CA vehicles 16 catering tasks to bid on
4 BA vehicles 16 baggage loading and 16 baggage unloading

tasks to bid on
2 WA vehicles 16 water service tasks to bid on
2 WC vehicles 16 lavatory service tasks to bid on

example, in the normal scenario, there are 16 flights in the 4-
hour-planning window, and the numbers and types of tasks that
available GSE vehicles can bid on in this planning window and
traffic scenario are given in Table 10.

7.1.5. Locations of GSE vehicles
The source locations (depots) of GSE vehicles at the terminal

re randomly selected cells connected to the service road on
he grid-maps. The service locations of GSE vehicles at aircraft
tands are specific standard positions around the aircraft. Each
SE vehicle type has to serve the aircraft at a certain location,
hich is dissimilar to the service locations of other types of GSE
ehicles. We have defined these locations considering the service
ocations for the aircraft type, Boeing 737.

.1.6. Distance buffer coefficient
The distance buffer coefficient handling uncertainties on trav-

ling times of GSE vehicles is Y , where Y ∼ N(1.4, 0.22). Although
he assumption for the GSE vehicles was to travel one unit step
t a time, we used this coefficient to consider the variable travel
imes due to uncertain conditions.

.1.7. Other features
The turnaround of the next flight starts immediately after

he turnaround time of the previous flight ends. The duration
f ground handling tasks were identical for all flights. The time
indows were determined based on the arrival times of flights.

.2. Experimental setup

For the experiments we define eight simulation groups as
iven in Table 17. These simulation groups include the tests
15
ith normal, busy, offpeak scenarios with no bundling or re-
lanning, normal scenarios with bundling, normal scenarios with
isruption and replanning, normal scenarios with disruption and
o replanning, scenarios with the objectives of minimizing the
akespan and sum − T , and the scenarios with the basic and
xtended environments. In Experiment A, we ran the experiments
n simulation sets I, II, III, to see the performance of the algorithm
or normal, offpeak, busy scenarios on the basic environment with
he objectivemakespan. In Experiment B, we compared the results
or simulation sets I and IV, to see the effect of bundling compared
o no bundling, for the normal scenario on the basic environ-
ent with makespan objective. In Experiment C, we ran the tests
n simulation sets V and VI, to compare the cases (i) when a
isruption occurred and no replanning was used, and (ii) when
disruption occurred and replanning was used, in the normal

cenario with the basic environment and makespan objective. In
ddition to experiments A, B, C, we ran tests on simulation sets VI
nd VII, to compare the results when the makespan and sum − T
bjectives were aimed to be minimized on the basic environment
n the busy scenario. In path planning experiments, we repeated
he tests on simulation set VIII on the extended environment , in
he normal scenario with makespan objective. Furthermore, for
ensitivity analysis, we compared the results by increasing the
umber of available GSE vehicles, and changing the processing
imes of ground handling tasks.

We reported the obtained objective function values makespan
nd sum− T , CPU time, allocation rate, path length, path duration,
uccess rate, agent on-time rate, task on-time rate when applicable.
e compared the collision-free path planning results with the

hortest paths with collisions, which we used as baseline for
olution quality.
For each simulation set, we repeated the simulations over a

et of 100 instances. We set the number of simulations based on
reliminary stability tests provided in Section 8.1.
Gurobi 9.5.0 was used to solve the pickup and delivery opti-

ization problem for each agent during the bidding phase. Sim-
lations were conducted on an 8-core Apple M1 chip with 8 GB
AM. For each pickup and delivery optimization, the solution
ime limit was 5 s.

.3. Task allocation experiments

Experiments were performed to investigate the model perfor-
ance for different traffic demand scenarios and task allocation
bjectives. The performances of the task bundling and replanning
ere also evaluated by the experiments. These experiments in-
lude the Experiments A, B, C, and experiments regarding the
bjective functions. For each experiment, 100 simulation runs
ere performed on the simulation sets I, II, III, IV, V, VI, VII. We
etermined the number of simulations after performing a large
umber of simulations until the coefficient of variation of simula-
ion outputs reach to a stable level. The stability was reached after
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Table 11
The median values of simulation outputs over 100 simulation runs on different instances for each
type of ground handling task, and the overall results based on mean and total values over the
outputs of all GSE vehicles.
Task (s) Makespan (minutes) Allocation rate CPU time (seconds)

median over 100 inst.. median over 100 inst. median over 100 inst.

RE 142.53 202.62 166.13 0.9231 0.8750 0.7500 18.38 20.29 43.09
CA 138.65 220.47 209.07 1.0000 1.0000 0.9500 2.7800 15.08 43.16
BA 203.48 221.05 218.71 1.0000 1.0000 1.0000 0.90 1.32 2.08
WA 140.12 199.97 218.15 1.000 0.875 0.7500 7.73 32.20 63.50
WC 144.25 222.88 191.88 1.0000 0.9375 0.8000 9.10 16.70 40.53

offpeak normal busy offpeak normal busy offpeak normal busy

mean makespan mean allocation rate total CPU time (seconds)
mean over all tasks mean over all tasks total over all tasks

overall 153.81 213.40 200.79 0.9846 0.9375 0.8500 38.89 85.59 192.38

offpeak normal busy offpeak normal busy offpeak normal busy
100 simulation runs in most of the tested scenarios. We provided
these stability tests in Section 8.1. In Table 11, Table 12, Table 13,
and Table 14, the results related to different types of ground han-
dling tasks are the median values retrieved from the outputs of
100 simulations runs each of which were performed on different
instance sets. The results regarding the overall model perfor-
mances are the mean of medians of makespans and the mean
of medians of allocation rates, over all types of ground handling
tasks, and the total CPU time that is the sum of computational
times of all different types of tasks.

7.3.1. Experiment A: Traffic demand scenarios
To test scenarios of different traffic demand levels, three dif-

erent flight schedules were used. We use turnaround times of
0 to 60 min, 40 to 50 min, and 30 to 40 min to simulate the
raffic demand of offpeak hours, normal hours, and busy (peak)
ours in an airport terminal. A longer turnaround time does not
ecessarily mean that the ground handling tasks take longer to
erform. It was used to represent longer waiting time between
he arrival of two successive flights because the task duration
nd the time windows of ground handling tasks were consistent
mong all flights. For three aircraft stands and four-hour planning
indow, there are 13, 16, and 20 flights in the offpeak, normal,
nd busy hours schedule, respectively.
Table 11 shows the median values of the simulation outputs,

akespan, allocation rate, CPU time, over 100 problem instances
or each type of ground handling task and the overall performance
f the model. The overall performance outputs are the mean
alues of medians of makespans over all task types, the mean
alues of medians of task allocation rates over all task types, and
he total computational times over all task types, for different
raffic scenarios.

The mean makespan of the normal scenario was higher than
that of the offpeak scenario in Table 11. However, the mean
makespan of the busy scenario was lower than that of the normal
scenario. The reason is that more tasks were able to be allocated
to some GSE vehicles in the normal scenario compared to the
busy scenario.

The mean task allocation rates in the scenarios with busier
schedules were lower (Table 11). Because, the number of flights
was higher in busier scenarios, while the number of available GSE
vehicles remained the same.

The CPU times in Table 11 are affected by increasing the
number of flights and ground handling tasks. For the offpeak
scenario, allocation of tasks for all flights in the 4-hour planning
window took around 38 s. The total CPU time (total over all tasks’
median CPU times over 100 instances) increased to 85 s, when the
number of flights increased from 13 to 16, and to 192 s, when the
number of flights increased from 16 to 20.
16
7.3.2. Experiment B: Bundling
Allocating bundles of tasks reduces the number of auction

rounds. However, the allocated task sets with bundling would
be different than the sets allocated without bundling. This can
also affect the solution quality and CPU time. We tested whether
bundling tasks accelerates or improves the task allocation pro-
cedure or not. Bundles of tasks were assigned using TeSSI auc-
tions to evaluate the makespan, allocation rate and CPU time.
In bundling, tasks in the same bundle cannot be allocated to
different agents. This may affect the optimization of the task
allocation and lead to changes in obtained makespan. Bundles are
formed using the bundle generation heuristics, taking temporal
and spatial proximity among tasks into account. Tasks bundles
that cannot be assigned to any agents are broken down into
individual tasks and these tasks are allocated in the last few
rounds of the auction. Agents with allocated bundled task sets
have less flexibility in their schedules.

Table 12 shows the simulation results for bundling. The me-
dian values of makespans, allocation rates, and CPU times are
presented for bundling and not bundling. The median makespan
was higher for each GSE vehicle in the allocation with bundling.
Bundling has not improved the makespan. Bundling of tasks
increases the solution time of pickup and delivery optimization
and for some task bundles the agents lose the opportunity to
bid. The median task allocation rate was lower with bundling for
the refueling truck and the lavatory service vehicle. median task
allocation rate was higher with bundling for the water service
truck. median task allocation rate was equal to 1 for the baggage
handling truck and for the catering truck. For these vehicles,
the CPU times are also less than the other vehicles. Task allo-
cation rates depend on the performance of SPDP optimization
to generate bids within the solution time limit. The CPU times
with bundling are the CPU times of task allocation plus bundle
generation. However, the higher CPU times with bundling were
not mainly caused by generation of bundles. Finding feasible
positions takes more time for the pickup and delivery optimizer
for bundled tasks. The time windows that were originally gener-
ating cuts and leading to faster convergence become tighter, thus
less effective with bundling. This makes it more difficult for the
optimizer to find feasible solutions within limited time or it takes
longer to find feasible or optimal solutions. Therefore, although
bundling reduces the number of auction rounds, since we use an
optimization based hybrid auction method, we do not observe an
improvement in CPU time.

7.3.3. Experiment C: Replanning
To deal with the disruptions of the ground handling oper-

ations, a replanning function was implemented. We evaluated
the performance of the replanning function by simulating two
scenarios with the same disruptions. In one of the simulation sets,
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Table 12
Median values of simulation outputs of 100 instances, for each GSE vehicle, with
and without bundling.
Task Makespan (minutes) Allocation rate CPU time (seconds)

No bundle Bundle No bundle Bundle No bundle Bundle

RE 202.62 237.87 0.8750 0.8125 20.29 52.78
CA 220.47 224.14 1.0000 1.0000 15.08 22.02
BA 221.05 241.88 1.0000 1.0000 1.32 3.55
WA 199.97 218.82 0.8750 1.0000 32.20 36.25
WC 222.88 229.38 0.9375 0.8125 16.70 40.10

Table 13
Median values of simulation outputs of 100 instances, for each GSE vehicle, with
and without replanning.
Task Makespan (minutes) Allocation rate

Replan No replan Replan No replan

RE 221.68 199.72 0.9375 0.8750
CA 220.73 223.63 0.9375 1.0000
BA 233.75 225.02 1.0000 1.0000
WA 200.88 200.12 1.0000 0.8750
WC 222.95 219.38 0.9375 0.9375

the allocation of tasks remained unchanged. The completion time
constraints of all tasks that had not been performed or had partly
been performed at the time of the disruption were prolonged
by the length of delay. In another simulation set, the replanning
function was activated and task allocation was repeated for a
group of tasks if disruptions occurred. The function works as
described in Section 5.4. In the simulation scenario, for every
ground handling task, the probability of being disrupted was 20%
and in the event of a disruption, the processing duration of the
task was increased by 20%.

The simulation results of test scenarios with and without
he replanning are shown in Table 13. The median values of
akespans were lower in the replanning scenario for the catering

ask. For all other ground handling tasks, the median values of
he makespans were higher. This might be due to the higher
llocation rates in the replanning scenario. Except for the catering
asks, the task allocation rates after replanning were larger than
r equal to the allocation rates of the scenario with no replan.

.3.4. Exploring the task allocation objectives
Two objectives to be minimized, makespan and sum-T, were

ested as bidding rules in the adapted TeSSI auction for task
llocation, in this experiment. The comparison of the simulation
esults using the objective makespan and sum-T is shown in Ta-
le 14. The median allocation rate was smaller with the objective
akespan, except for the catering and baggage handling. Using
ifferent objectives, the agents bid different values on the same
asks, resulting in different task allocation. The median CPU time
as lower for allocation of the catering and baggage handling
asks, compared to the others, using the objective makespan. This
s consistent with the higher median allocation rates of cater-
ng and baggage handling tasks, using the makespan objective.
or both objectives, the median CPU time of allocating baggage
andling tasks was the lowest.

.4. Path planning experiments

We kept all settings in Section 7.3 unchanged to evaluate the
erformance of the path planning algorithm. We used the result
f task allocation as input, to plan paths of the GSE vehicles.
e ran the simulations in the basic and the extended modeling

nvironments, as defined in Section 4.2. In the basic model, each
ehicle agent has unit size. In the extended model, each agent

occupies a space of 3 × 3 grid. Agents move one cell per time
17
Table 14
Median values of simulation outputs of 100 instances, for each GSE vehicle, for
different objectives.
Task Allocation rate CPU time (seconds)

Makespan Sum-T Makespan sum-T

RE 0.8750 1.0000 20.29 4.06
CA 1.0000 1.0000 15.08 23.78
BA 1.0000 1.0000 1.32 1.48
WA 0.8750 1.0000 32.20 21.40
WC 0.9375 1.0000 16.70 13.37

Table 15
Mean values of performance indicators over 100 instances for path planning.
Performance indicators Basic model Extended model

path length (m) 400.63 372.76
path duration (s) 128.45 129.09
average delay per agent (s) 22.28 37.96
average delay per task (s) 15.49 27.66
agent ontime rate 0.94 0.93
task ontime rate 0.96 0.95
agent success rate 1.00 0.98
computational time (s) 5.11 86.83

Table 16
Solution quality of collision-free path planning compared to baseline, shortest
paths with collisions.

Suggested method Baseline

collision free shortest path
path planning with collisions

PI → path length (m) shortest path length(m)
mean over mean over
100 instances 100 instances

basic m. 400.63 400.15
extended m. 372.76 372.23

PI → path duration (s) shortest path
duration (s)

mean over mean over
100 instances 100 instances

basic m. 128.45 100.04
extended m. 129.09 93.06

step, which is equivalent to a speed of 4 m/s in our environment
setting.

We investigated the length and duration of paths for the GSE
vehicle agents in both models. For both models, the mean values
of the path length and duration in the performed simulations
are listed in Table 15. The shortest possible path length and
duration without considering conflicts with other agents are used
as baseline in Table 16 to prove the solution quality of the outputs
obtained by suggested collision free path planning. The closer
the collision free path lengths to the shortest path lengths with
collision is, the higher the quality of the path length obtained
by path planning algorithm, since it means that collision free
solutions were able to be found without deviating significantly
from the shortest paths. Similarly, the closer the collision free
path duration to shortest path duration is, the higher the quality
of solution of collision free path planning algorithm, since it
means that collisions were avoided without having to employ too
many waiting moves to avoid collisions.

Although the speed was constant for all agents, the path dura-
tion in the results was usually longer than the minimum time the
agents needed to complete traveling. This means that the agents
stopped and waited on their route to avoid conflicts with other
agents. For the basic and the extendedmodels, the lengths of paths
were respectively 1.0012 and 1.0014 times the shortest path
length. That is, the obtained traveling distances of agents con-
sidering conflicts were barely longer than the shortest possible
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istances without considering conflicts. Thus, the path planning
lgorithm is able to generate good solutions in our problem
etting. The path durations are 1.28 and 1.39 times the short-
st durations. Compared to the ratio of (actual) path length to
hortest path length, the ratio of (actual) path duration to short-
st duration is higher. This result discloses that agents tend to
top and wait on the path while encountering conflicts instead
f taking detours. This behavior can be interpreted as follows:
ubstitution paths might not exist in the environment. Also, it
s possible that the obstacles (agents with higher priorities) only
ccupy the paths for a short period, so agents are willing to wait
ather than detour.

In Table 15, we also showed the average delay per agent and
he average delay per task. For both models, the average delays
er agent were higher than the average delays per task. Similarly,
he ratio of tasks with no delays, the task on-time rate, was higher
han the ratio of agents with no delays, the agent on-time rate.
hese results indicated that agents were assigned multiple tasks,
nd delays occurred on multiple tasks of agents. The average task
elays of 15 and 28 s for the basic and the extended models were
ithin acceptable ranges for online use. The high on-time rates
ere also sufficient for real-world cases.
The algorithm used for path planning is a decoupled approach.

s paths for agents are planned one after another based on the
riority order, complete solution is not guaranteed. The success
ates that agents can successfully find paths in the modeling
nvironment are also listed in Table 15. Although the success rate
s not 1 in the extended model, it is still quite high. The last row
n Table 15 presents the mean CPU time for both models.

The maps, distribution of static obstacles, service locations,
aths lengths from GSE depots to service points, locations of
SE depots, ratio of agent sizes to available moving spaces, and
he ratio of agents’ time step to their sizes are slightly different
n the proposed basic and extended environments, thus perfor-
ance indicators are not comparable for these models. Similarly,

he standard grid-maps used in previous works [7,65] are not
omparable to our environment setting. We present a brief dis-
ussion on the benchmark models and algorithm performances in
ppendix A.

.4.1. Analysis of results for path planning using heat maps
We analyzed the results of path planning algorithms for GSE

ehicles using heat maps. Figs. 12 and 13 show the heat maps of
he planned paths for the basic and extendedmodels with 16 × 16
nd 64 × 64 grid-maps. The blue squares in Figs. 12 and 13 show
he depots of GSE vehicles, the entrances and exits of bays, and
he ground handling service locations. The color bar besides each
igure show the average times that the grids were occupied over
00 simulation runs. The number of simulations were determined
y measuring the coefficient of variation of results over a large

number of simulations for each GSE vehicle individually, and for
the overall multi-agent system including all vehicles. In most of
the instances, the coefficient of variation became stable after 100
simulation runs. Therefore, for each simulation set, we repeated
simulations for 100 runs with a variable set of instances and
reported all outputs as mean values over 100 simulation runs.

In the generated heat maps, the locations where the ground
handling tasks took place were where the GSE vehicle agents
stayed the longest. The intersections between the service road
and bay areas were also the places that were occupied most. Also,
the middle section of the service road connecting the two bay
entrances on the left was an area with busy traffic. The heatmaps
show the frequency of occupation of cells by agents, but they
do not show the waiting times of agents. The cells with brighter
colors on the maps indicated that the most of the agents took the
shortest possible routes instead of taking detours.
18
Some cells next to the task locations, especially the baggage
handling locations, also had high occupation rates in the heat
map. For a baggage handling vehicle, the reason was usually the
early arrival of a baggage loading vehicle at task location, thus its
waiting in front of the task location, till the baggage unloading
task is complete, before it can enter the cell. For other types of
vehicles, the vehicles which were already assigned new tasks for
the aircraft of next flight in the same aircraft stand could prefer
to occupy the cells while waiting for the next aircraft, instead of
leaving the cell and the bay.

7.5. Sensitivity analysis

In the previous experiments, the numbers of available ground
handling vehicles were fixed. Also, consulting experts in ground
handling operations, we had used the smallest possible numbers
of ground handling vehicles that are able to perform the tasks
for all flights within the planning window. The numbers of dif-
ferent types of GSE vehicles represent the limited resources in
task allocation. The more the resources are available, the more
flexible the allocation is. Therefore, the numbers of available
GSE vehicles are important factors in the allocation of ground
handling tasks. Another important factor that affects allocation is
the execution duration of tasks. We provide sensitivity analyses
on these factors.

7.5.1. Analysis on number of available GSE vehicles
Changing the number of GSE vehicles, we investigated three

main performance indicators: makespan, task allocation rate, and
computational time in different traffic demand scenarios.

Figs. B.15, B.16, B.17 show the simulation results when we
change the number of available GSE vehicles. The number of
available vehicles for the refueling, catering, water service, and
lavatory service is set to be 2, 3, or 4 for each task. The number
of available baggage handling vehicles is set to be 4, 6, or 8 for
sensitivity analysis, since both unloading and loading operations
are needed for a flight. The analyses show that the model is
sensitive to the number of available GSE vehicles. By increasing
the number of available vehicles, makespan and CPU time were
decreased and the allocation rate was increased, in all scenarios.
The analyses are presented in Appendix B.

7.5.2. Analysis on task processing duration
The refueling tasks have the most variable task duration. Re-

fueling time depends on the destination of the flight and whether
the aircraft carries fuels for the return flight or not. For European
flights departing from Amsterdam, refueling duration ranges from
10 to 25 min. In the simulations, we changed the refueling dura-
tion from 10 to 25 min in offpeak, normal, busy scenarios, for 2, 3,
and 4 available refueling vehicles. The makespan was used as the
bidding rule, and for each duration-scenario-fleet combination
100 simulation runs were performed.

The result is shown in Fig. 14. The colorbar in Fig. 14 shows
the maximum vehicle makespan. For each scenario, the maxi-
mum makespan values tend to be higher with smaller number
of vehicles, since more tasks are allocated to each vehicle. Higher
processing time increases the makespan for any vehicle, however,
the incremental change is smaller with higher number of vehicles.
The change in makespan also depends on optimization of alloca-
tion in flexible scenarios where there is room to rearrange the
order of tasks.
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Fig. 14. Contour plot of maximum vehicle makespan with the makespan bidding rule for three traffic demand scenarios, with varying numbers of available vehicles
nd task duration.
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.6. Scalability

With higher number of ground handling tasks and limited
umber of available vehicles, the problem is more complex. The
umber of ground handling tasks increases when the number of
lights within a specified time window is high. Considering the
perations at several bays and the operations for several flights
ather than one aircraft also increases the complexity.

The scalability of our framework is measured by its perfor-
ance when the number of flights and ground handling tasks at
everal bays are high within a short time window and the GSE
leet size is small.

The problem of task allocation and path planning is more
omplex than the NP-hard VRP, since the traveling is also affected
y the collisions with other vehicles. In ground handling, there
re also the static obstacles such as the aircraft and PBB.
We have not aimed to solve very large sizes of problem in-

tances, however we proposed a framework that can handle the
perations in realistic conditions, efficiently.
Given the minimum GSE fleet size, the proposed framework

enerates solutions for frequent, normal, and less-frequent flights
n 4-hour planning window, with high success rates. In frequent
cenario, there were 20 flights in 4 h and 20 main tasks to bid
n for each vehicle. The number of sub-tasks are higher than
he number of main tasks, and the SPDP optimization is solved
or a number of pick-up and delivery sub-tasks at each round
f the auction, for each GSE vehicle. In the frequent scenario,
he overall allocation rate and CPU time were 0.8500 and 192 s,
espectively. Considering he allocation rates in high frequency
cenario and short CPU times with high success rates in path
lanning, the scalability is good enough to automate the planning
nd operations to handle the ground handling tasks of various
lights in one pier of the major hub airport.

. Statistical analysis

.1. Coefficient of variation

The model outputs obtained by the experimental analysis are
ot normally distributed. To determine the minimum required
umber of simulations we used the measure of coefficient of
ariation, cv = σ/µ. The coefficient of variation is often applied in

agent-based simulations with a non-normal distribution of out-
puts [66]. For each simulation set, we performed a high number of
simulation runs until the coefficient of variation stabilize. In most
of the experiments the coefficient of variation stabilized when a
umber of 100 simulation runs was reached. The plots of the

oefficients of variation over a number of simulation runs are

19
presented for simulation set I in Figs. C.18, C.19, and C.20 in
Appendix C. The reported results are for the outputs, makespan,
allocation rate, and CPU time, for each one of the GSE vehicle
agents, RE, CA, BA, WA, WC, and for the overall outputs regarding
all GSE vehicles. The simulation sets, I to VIII, for which we ran
these tests are described in Table 17.

8.2. Statistical significance

To test the statistical significance, we used the non-parameteric
Wilcoxonsigned-rank test as the values retrieved from experi-
ments are paired but not normally distributed. The statistical
significance results were reported as p-values and the effect sizes
of all pairs of experiments were reported as Vargha–Delaney A-
values. The A-values reveal the probability that the experimental
values (makespans, allocation rates, or computational times) in
one data set is larger than the values in another set of data.
The p values with p < 0.05 are associated with statistically
significant test outcomes and the A values with A > 0.71 or
A < 0.29 are related to large effect sizes. The results regarding the
Experiment A (simulation sets I, II, III) and the hypotheses HA1,1,

A1,2 are given in Table 18, the results regarding the Experiment B
(simulation sets I, IV) and HB1,1, HB1,2, HB1,3 are given in Table 19,
nd the results regarding the Experiment C (simulation sets V,
I) and HC1,1, HC1,2 are given in Table 20. Results are evaluated
n Appendix D.

. Discussions and further research

The model is sensitive to the number of available GSE vehi-
les. In ground handling, the size GSE fleet is limited. Efficient
llocation of ground handling tasks to GSE vehicles is impor-
ant to deal with limited resources. We combine a decentralized
ask allocation mechanism, TeSSI auction, with centralized local
ptimization, the SPDP optimization.
We focused on the ground handling operations of flights, how-

ver, the impact of ground handling task delays on flight delays
ere not explored. We investigated the task allocation rates after
eplanning, but we did not analyze the flight delays caused by the
nterrupted tasks. For path planning, we modeled the agents as
tandard and large agents. However, we only used square shapes
nd kinematics of agents are not included in research.
We achieved high task allocation rates within the 4 hour-

lanning window in reasonable time. However, we limited the
olution time of GUROBI to 5 s to avoid high CPU time. Thus, in
ome cases, the optimizer might reach to the solution time limit
ithout finding a feasible allocation and rescheduling solution. In
ther cases, it is also possible that infeasibility is proven before
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Table 17
Simulation sets I to VIII used in stability tests and experiments.
Simulation set I II III IV V VI VII VIII

scenario normal offpeak busy normal normal normal normal normal
objective makespan makespan makespan makespan makespan makespan sum − T makespan
bundling no no no yes no no no no
delayed no no no no yes yes no no
replanning no no no no no yes no no
environment basic basic basic basic basic basic basic extended
Table 18
p and A values, non-parameteric Wilcoxonsigned-rank tests for Experiment A.

Offpeak-normal p Offpeak-normal A Normal-busy p Normal-busy A

vehicle (s) refueling vehicle (RE)

makespan 3.88E−18 0.0000 3.85E−18 1.0000
allocation rate 9.05E−21 1.0000 3.95E−23 1.0000
CPU time 2.49E−09 0.2889 3.90E−18 0.0000

vehicle (s) catering vehicle (CA)

makespan 3.88E−18 0.0000 6.04E−01 0.6400
allocation rate 1.97E−09 0.6800 3.82E−08 0.6484
CPU time 3.90E−18 0.0000 3.90E−18 0.0000

vehicle (s) baggage handling vehicle (BA)

makespan 3.88E−18 0.0000 2.65E−01 0.7440
allocation rate – 0.5000 1.31E−05 0.5950
CPU time 3.90E−18 0.0000 3.90E−18 0.0000

vehicle (s) water service vehicle (WA)

makespan 3.88E−18 0.0000 5.65E−07 0.1670
allocation rate 3.55E−20 0.9950 1.26E−19 0.9923
CPU time 3.90E−18 0.0000 3.90E−18 0.0000

vehicle (s) lavatory service vehicle (WC)

makespan 3.85E−18 0.0000 3.89E−18 1.0000
allocation rate 3.15E−22 1.0000 1.71E−19 1.0000
CPU time 3.90E−18 0.0000 3.90E−18 0.0000

vehicle (s) overall results (all vehicles)

makespan 3.90E−18 0.0000 5.27E−18 0.9852
allocation rate 1.41E−18 1.0000 3.25E−18 0.7143
CPU time 3.90E−18 0.0000 3.90E−18 0.0000
the time limit is reached. In both conditions, the GSE vehicle
agent cannot bid on the candidate task and loses the chance to
insert a new task into its existing schedule. If this happens for all
other vehicle agents, none of the agents bids on the task and task
is assigned into the set of unallocated tasks. The meaning of this
n real life is that some of the ground handling tasks, unallocated
asks, cannot be finished within specified time windows. How-
ver, if they are critical tasks such as refueling, they have to be
ompleted before aircraft takes off. This might cause flight delays
t the airport. One improvement approach would be to re-run a
entralized optimization or a heuristic method to check whether
feasible position exists for the unallocated tasks in alternative
olutions. Such a feasible solution might have been lost due to the
ecentralized approach. On the other hand, if it is proven that no
lternative feasible solution exists, it means that there is no way
o allocate and complete that task within the desired time interval
nd operational delays are unavoidable. This can only be resolved
y increasing the number of GSE vehicles dedicated to operate
he task. The exploration of the impact of using a centralized
ptimization solver as an additional repair or feasibility check
rocedure remains as an item of future research.

0. Conclusion

We propose a multi-agent system for automation of aircraft
round handling operations. The system is able to generate task
llocation optimization and path planning solutions for multi-
le agents. For task allocation we use an optimization based
ESSI auction method since there are multiple stakeholders in
20
the system. Unlike the existing auction methods, we generate
the bids by modeling and solving the task scheduling for agents
as single-vehicle pickup and delivery optimization problems. We
also propose and test bundling procedures for saving time and
replanning functions to deal with disruptions in real time. For
path planning, we use Prioritized SIPP since vehicle priorities are
commonly used in airside environments. We also use LA-SIPP to
represent non-unit sizes of GSE vehicles.

The experiments for task allocation include different traffic
demand scenarios, task bundling, replanning, and different ob-
jectives. We reported the allocation rates within 0.00–1.00 scale.
The task allocation rate was close to 1.00 for many of the tested
instances, higher than 0.875 in most of the cases, and 0.81 in the
worst case.

For path planning, the mean values of the performance indica-
tors were reported both for the 16 × 16 and 64 × 64 grid-maps.
The outputs were mean path length and mean shortest path length
in meters, mean path duration and mean shortest path duration,
mean of average delays for tasks, mean of average delays for agents
in seconds, mean agent on-time rate, mean task on-time rate, agent
success rate within a scale of 0.00–1.00, and mean computational
time in seconds.

The path length and path duration show the length and du-
ration of the obtained paths when collisions were handled with
path planning. In the solutions, the agent either waits for the
obstacle to move or travels around the obstacle using a longer
path. The baseline solutions, shortest path length and shortest path
duration are the shortest paths without considering any obstacles.

In the results, the path lengths were 1.0012 and 1.0014 times
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Table 19
p and A values, non-parameteric Wilcoxonsigned-rank test for Experiment B.

No bundle - bundle No bundle - bundle
p A

vehicle (s) refueling vehicle (RE)

makespan 3.89E−18 0.0072
allocation rate 2.86E−1 0.9750
CPU time 3.90E−18 0.0000

vehicle (s) catering vehicle (CA)

makespan 3.88E−18 0.0000
allocation rate 1.97E−09 0.3200
CPU time 3.90E−18 0.0017

vehicle (s) baggage handling vehicle (BA)

makespan 7.30E−18 0.0060
allocation rate 2.44E−02 0.5300
CPU time 3.90E−18 0.0000

vehicle (s) water service vehicle (WA)

makespan 9.04E−16 0.1779
allocation rate 9.91E−1 0.0318
CPU time 4.02E−18 0.0049

vehicle (s) lavatory service vehicle (WC)

makespan 3.88E−18 0.0000
allocation rate 1.73E−19 0.9906
CPU time 3.90E−18 0.0000

vehicle (s) overall results (all vehicles)

makespan 3.90E−18 0.0019
allocation rate 1.47E−10 0.7773
CPU time 3.90E−18 0.0000

Table 20
p and A values, non-parameteric Wilcoxonsigned-rank test for Experiment C.

Replan - no replan Replan - no replan
p A

vehicle (s) refueling vehicle (RE)

makespan 2.01E−15 0.8186
allocation rate 2.78E−13 0.8650

vehicle (s) catering vehicle (CA)

makespan 1.08E−01 0.4030
allocation rate 2.20E−08 0.2720

vehicle (s) baggage handling vehicle (BA)

makespan 8.63E−18 0.9902
allocation rate 6.33E−05 0.4200

vehicle (s) water service vehicle (WA)

makespan 1.12E−07 0.7836
allocation rate 2.73E−19 0.9888

vehicle (s) lavatory service vehicle (WC)

makespan 4.12E−18 0.9887
allocation rate 1.32E−01 0.5247

vehicle (s) overall results (all vehicles)

makespan 1.37E−17 0.9605
allocation rate 8.53E−17 0.9344

the shortest path lengths on 16 × 16 and 64 × 64 grid-maps,
espectively, which indicated that the path planning algorithms
ould plan paths without many collisions and produced high
uality solutions.
The path duration was usually longer than the required trav-

ling time to traverse the path. This means that the agents tend
o stop and wait to avoid collisions instead of detours. The path
durations were 1.28 and 1.39 times the shortest durations in basic
nd extended models, due to the tendency to wait. The means
f average delays per agent were around 20 and 40 s, while the
eans of average delays per task were around 15 and 30 s, for
6 × 16 and 64 × 64 grid-maps. Similarly, the means of ratios of

tasks with no delays (0.96 and 0.95) were higher than the means
21
of ratios of agents with no delays (0.94 and 0.93). However, all
on-time rates were significantly high and average delays were
reasonable for tasks and agents. The means of the success rates
that agents can successfully find paths on 16 × 16 and 64 × 64
grid-maps were also high (1.0 and 0.98). The mean of CPU times
for all experiments using 16 × 16 grid-map was 5.11 s, and the
mean of CPU times for all experiments using 64 × 64 grid-map
was 86.83 s. We generated the heatmaps of the paths obtained in
experiments, to see the frequencies of cell occupations on grid-
maps over different simulations. The frequently used paths or
cells were visible in these maps.

In general, the results show that the CPU times are sufficient
to dynamically generate solutions in real time for the ground
handling operations at one pier during a specified time window of
the day. Allocation rates are high given the solution time limit for
SPDP optimizer, and the collision-free paths do not highly deviate
from the shortest paths. Thus, using a decoupled approach, our
model can produce high quality solutions.
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Appendix A. Benchmarks

The commonly used environments in solving MAPF problems
are: a. Dragon Age Origins (DAO) for which the maps are publicly
available. b. Open N ×N grid-maps where the values of N are
usually 8, 16, 32. These maps are suitable for experiments in
which the ratios of agents to space are high. c. N ×N grid-maps
with random obstacles. d. Warehouse grid-maps that resemble
real-world autonomous warehouses. The common Dragon Age
Origins (DAO) maps are den520d and brc202d maps. The den520d
map has large open spaces. In contrast, the brc202d map has
fewer open spaces and has more bottlenecks. The configuration
of brc202d map is similar to airside environments with connected
taxiways and runways. The configuration of an aircraft stand is
dissimilar to den520d and brc202d maps. However, performances
of MAPF solvers on those maps are still valuable guidelines for
applications in ground handling. The success rates of existing
path planning algorithms on standard grid-maps were presented
by [7,65]. [65] provided the success rates for several optimal path
planning solvers tested on DAO brc202d map environment. The
success rates for optimal solvers were ranging from 0.80 to 1.00
for all solvers, up to 80 agents. [7] presented the success rates
of sub-optimal path planning solvers on 20 × 20 grid-map with
10% obstacles, and on DAO brc202dmap. The success rates of sub-
optimal solvers on 20 × 20 grid-map with 10% obstacles were
within the range of 0.8 to 1 approximately up to 40 agents. The
success rates of sub-optimal solvers on DAO brc202d map were
within the range of 0.8 to 1 approximately up to 100 agents. The
success rates of existing optimal [65] and near-optimal [7] path
planning solvers have significantly high success rates, approxi-
mately 1.00, when performed on standard environments for less

than 20 agents.
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Fig. B.15. makespan.

Fig. B.16. allocation rate.

ppendix B. Sensitivity analysis on number of available vehi-
les

Fig. B.15 shows the change observed in makespan for different
raffic demand scenarios, by changing the number of available
ehicles. When the number of vehicles increases, the makespan
ecreases, since a higher number of vehicles can share the same
et of ground handling tasks. Also, the busier the traffic demand
cenario is, the higher the makespan. The only exception occurs
hen the number of vehicles is 2. This is due to the low allocation
ates when the number of vehicles is limited.

Fig. B.16 shows the change observed in allocation rates for
ifferent traffic demand scenarios, by changing the number of
vailable vehicles. The largest number of ground handling tasks
xist in the busy scenario due to the largest number of flights.
he restricted resources do not allow all ground handling tasks
o be successfully allocated, resulting in a lower allocation rate.
n Fig. B.16, when the available number of vehicles is 2, allocation
ates are less than 1 for all scenarios, which means that not all of
he ground handling tasks could be allocated. The scenarios with
ewer flights have higher allocations rates. When the number of
vailable vehicles were increased to 3, all of the ground handling
asks were allocated in all scenarios.

Fig. B.17 shows the change in CPU times by increasing the
umber of available vehicles in all scenarios. CPU times were
22
Fig. B.17. computational time.

the highest in the busy scenario. The CPU time decreases when
the number of available vehicles increases in all scenarios. More
available vehicles result in fewer tasks in one vehicle’s schedule,
and fewer tasks reduces the CPU time to solve SPDP optimization
model for an agent to generate bids. This result is especially
evident in the busy scenario.

Appendix C. Simulation set I, coefficient of variation

Fig. C.18, Fig. C.19, Fig. C.20 show the coefficient of variation for
makespan, allocation rate, CPU time for simulation set I.

ppendix D. Evaluation of statistical significance

Table 18 shows the statistical significance and effect size val-
es for the results related to Experiment A (Simulation sets I, II,
II). Table 18 presents the non-parameteric Wilcoxonsigned-rank
est results for each GSE vehicle separately, and for the complete
olution. We present an evaluation of the results for the overall
olution. Our hypotheses were, HA1,1: ‘‘The makespan value is
igher in normal scenario compared to offpeak scenario’’, and
A1,2: ‘‘The makespan value is higher in busy scenario compared

to normal scenario’’. The p-value for offpeak-normal scenario
comparison supported the HA1,1. Compared to offpeak scenario,
the normal scenario includes a higher number of flights and
operations and the makespan was higher in the normal scenario
as expected. However, despite more frequent flights of busy
scenario, HA1,2 was rejected. Some of the tasks were not able to
be allocated in busy scenario, due to time windows constraints.
The test results regarding Experiment B (simulation sets I, IV) and
HB1,1, HB1,2, HB1,3 are given in Table 19. Our hypotheses were,
HB1,1: ‘‘The maximum vehicle makespan for the model with task
bundles is higher than that of the model without task bundles’’.,
HB1,2: ‘‘ The task allocation rates for the model with task bundles
are lower than that of the model without task bundles’’., and
HB1,3: ‘‘The CPU time for the model with task bundles is lower
than that of the model without task bundles’’. The p-values for no
bundle - bundle comparisons showed significant differences for
all ground handling tasks. The Vargha–Delaney A-values showed
that the incremental increases in makespans caused by bundling
were significant. Therefore, HB1,1 was supported. HB1,2 was tested
by comparing the allocation rates. The p-values showed signif-
icant differences between allocation rates. For RE and WC, the
task allocation rates with bundles were smaller. Thus, HB1,2 was
supported for RE and WC. For CA and BA, the medians of task
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Fig. C.18. Simulation set I, coefficient of variation for makespan.
Fig. C.19. Simulation set I, coefficient of variation for allocation rate.
Fig. C.20. Simulation set I, coefficient of variation for CPU time.
llocation rates were equal to 1 and the Vargha–Delaney A-values
howed that the effect sizes were small. There is no significant
ifference and this may be due to the short CPU time of allocation
or CA and BA. For WA, allocation rate was better with bundling
nd HB1,2 was rejected. We tested the HB1,3 by comparing the CPU
imes. Based on the p-values, there were significant differences in
he CPU times and the Vargha–Delaney A-values revealed large
ffect sizes. HB1,3 was rejected. The optimization solver could
e failing to find feasible allocation options for bundled tasks.
hus, more complex bundling procedures should be developed
o identify high quality bundles. For Experiment C, we tested
23
the significance and effect size for replan–no replan scenario
pair (simulation sets VI, V). Table 20 shows the related p and
A values for each GSE vehicle agent and for the overall results.
Hypotheses were, HC1: ‘‘The makespan of the simulation set with
an activated replanning function is lower than the one without
an activated replanning function’’, and HC2: ‘‘The task allocation
rate of the simulation set with an activated replanning function
is higher than the one without an activated replanning function’’.
There was no significant difference replan-no replan scenario
pairs. Only for the CA, the mean of makespans were lower in
the replanning scenario and except for the CA, the task allocation
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ates were higher in the scenario with replanning for each GSE
ehicle. Thus, HC1 and HC2 were not verified for all vehicle types.
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