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A B S T R A C T   

In this paper we execute a complex test campaign to develop a novel methodology for the Remaining Useful Life 
(RUL) estimation of complex multi-stiffened composite aeronautical panels utilizing Machine Learning models 
trained with Structural Health Monitoring (SHM) data from hierarchically simpler elements, i.e., single-stiffened 
panels. Distributed Fiber Optical sensors (DFOS) are employed to monitor the panels’ behavior undergoing 
variable amplitude compression-compression fatigue after multiple impacts. A data processing methodology is 
first applied to the DFOS data, to both alleviate the effect of the variable loading conditions on the monitored 
strain and ease the computational burden. In this upscaling endeavor, an advanced strain-based Health Indicator 
(HI) based on Genetic algorithms, created and validated on the single-stiffened panel data, is utilized as the 
prognostic feature for the RUL estimations of the multi-stiffened panels. The HI displays favorable characteristics 
in terms of monotonicity and prognosability which are highly desirable for more accurate RUL estimations. For 
the prognostic task, standard machine learning models are trained using the historical degradation data of the 
single-stiffened panels and a similarity analysis is performed to enhance the accuracy when predicting the RUL of 
the multi-stiffened panels. Despite the increased structural complexity of the multi-stiffened panels, we 
demonstrate that the RUL is able to be predicted with reasonable accuracy. The present work paves the road for 
upscaling and applying prognostic methodologies to more complex structures beyond simple coupons or generic 
elements.   

1. Introduction 

In the last few decades composite materials have seen an increased 
use in various fields of engineering with aerospace and automotive being 
some of the industries which are taking advantage of their unique me-
chanical properties. More specifically, composites are preferred over 
metallic materials due to their high strength-to-weight ratio and excel-
lent corrosion resistance, which can reduce operational and mainte-
nance costs. However, composite materials suffer from a significant 
disadvantage; their inhomogeneous, anisotropic nature, as well as the 
variety of different, interacting damage mechanisms make their degra-
dation extremely hard to comprehend and model. In service, such ma-
terials are also subjected to multiple loading and environmental 
conditions which further complicates their degradation behavior. To 

this end, advanced monitoring technologies need to be employed to 
efficiently monitor them. 

Structural Health Monitoring (SHM) is an emerging concept, gaining 
increased attention over the past couple of decades. Its main objective is 
to provide real-time assessment of the structure’s integrity. The final 
level of SHM is prognostics, which is a core aspect of Condition Based 
Maintenance (CBM). In a CBM paradigm, maintenance is performed 
only when necessary, based on condition monitoring data [1], reducing 
downtime costs and increasing equipment availability and reliability 
[2]. In the epicenter of every prognostic task is the term Remaining 
Useful Life (RUL) prognosis [3], which involves the process of esti-
mating the time-of-failure or the nominal end of life and plan accord-
ingly the maintenance actions. 

Structural RUL prognostics, especially for composite structures, is a 
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topic still at its infancy. The limited literature is revolved around two 
main philosophies to RUL estimation i.e. model-based and data-driven 
[4]. Model-based approaches rely on physical models to capture the 
degradation and estimate the RUL, while data-driven model use condi-
tion monitoring data to build the prediction models using machine (ML) 
learning and artificial intelligence (AI). Several researchers have 
attempted to study the task of RUL prognosis, although the vast majority 
of published works concern machinery and systems prognostics [5–7] 
whilst very few studies investigate the prognostics of composite struc-
tures. Concerning model-based approaches for RUL estimation of com-
posites, in [8] a Bayesian filtering framework is presented, which 
considers multiple failure modes for the different failure mechanisms, 
for RUL estimation. Stiffness degradation models have also been used to 
predict fatigue life [9,10]. Corbetta et al. [11], proposed a particle filter 
model for damage prognosis in composite laminates, where the Bayesian 
framework proposed in [12] was extended to account for multiple 
damage mechanisms, and the approach was validated on data collected 
from tension-tension fatigue experiments on notched CFRP coupons. 
Through a modified Paris law, the damage could also be propagated into 
the future and make predictions regarding the RUL. 

However, due to the lack of accurate, universally accepted models to 
characterize the degradation behavior of composite materials, data- 
driven models are commonly utilized which apparently request for 
historical degradation data to train algorithms or statistical models that 
carry out the prognostic task. Liu et al. [13] proposed a Gaussian Process 
model to predict the RUL of composite beams using damage indexes 
extracted from acoustic emission (AE) and PZT condition monitoring 
data. The two monitoring methodologies were compared in terms of 
RUL prediction results with AE slightly outperforming. The same group 
[14], proposed a methodology for a prognosis model of notched CFRP 
specimens subjected to uni-axial and bi-axial fatigue loading. The pro-
posed RUL prediction model consisted of an online-diagnostics process, 
i.e., direct cross-correlation analysis, and the offline prognostics process 
via Gaussian process regression. Eleftheroglou et al. [15] also used strain 
data to predict the RUL of open-hole composite coupons. A 
Non-Homogeneous Hidden Semi Markov Model (NHHSMM) is used for 
the prediction tasks, which estimates the degradation state by employ-
ing condition monitoring data in order to predict the RUL. The same 

model was used for RUL prediction of open-hole specimens subjected to 
tension-tension fatigue using AE features and was compared with a 
Bayesian Neural Network (BNN) [16]. The NHHSMM was found to 
outperform the BNN, with more coherent predictions and converging 
confidence intervals. The previous methodology was extended in [17], 
which added an adaptive layer to the NHHSMM. More specifically, the 
model was tested on unseen events and was proven able to adapt and 
make accurate predictions of RUL by learning and updating its param-
eters in real-time. Xu et al. [18], monitored the degradation of composite 
laminates using AE. Damage sensitive AE features are discovered, and a 
Convolution Neural network is used to predict the RUL using the five 
most dominant features. It was observed that model performance was 
dependent on the degradation stage, and the best results were obtained 
during the final degradation stage. Galanopoulos et al. [19], proposed a 
degradation feature based on genetic algorithm optimization, which was 
used to predict the RUL of stiffened composite panels. Gaussian process 
regression and the NHHSMM were used, as the regression algorithms 
demonstrating the capability of estimating RUL in complex structures, 
since both approaches displayed good prediction performance. 

A crucial factor for data-driven RUL prognostics is the quality of the 
degradation features. The three most sought properties are mono-
tonicity, prognosability and trendability [20]. These degradation fea-
tures are commonly referred to as Health or Damage Indicators (HIs or 
DIs). In this work we are referring to them as HIs to avoid confusion. 
These HIs are classified into two major categories as seen in the litera-
ture [21]. There are physical HIs (pHIs), which are tied to a physical 
property of the structure, such as strain or temperature and virtual HIs 
(vHIs), which are created solely to provide enhanced diagnostic/ prog-
nostic performance and have no direct correlation to physical properties 
[21]. Examples of HIs can be found in the relevant literature. RMS is a 
common pHI in bearing applications [22,23]. In composites, axial strain 
is commonly used as a pHI in [15] to predict the RUL of open-hole 
coupons. Galanopoulos et al. [24], extracted pHIs from both strain 
and AE data collected from single-stiffened composite panels. 

In the vHI front, Loukopoulos et al. [1] used the statistical properties 
Q and T2 from PCA as vHIs to predict the RUL of reciprocating com-
pressors. Shahid et al. [25], used a dimensionality reduction algorithm 
to reduce the size of the available inputs and created a vHI based on a 

Fig. 1. Schematic representation of the MSP and sensorised MSP on the test machine.  
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distance metric with a radial basis normalization. Ren et al. [26] 
extracted time and frequency domain features which were passed 
through an autoencoder to automatically select and combine the most 
promising features. Baraldi et al. [27], utilized an Auto-Associative 
Kernel regression algorithm to combine together different sensor read-
ings with respect to monotonicity, prognosability and trendability. 
These features corresponded to measurements from aircraft engines and 
the extracted hyperfeature was deemed capable of completing the RUL 
prediction task. In a similar notion Nguyen and Medjaher [28] used a 
two-stage optimization scheme to create a HI. First automated feature 
extraction is performed and in the second stage the extracted features 
fused together. Both optimization stages used monotonicity and prog-
nosability (among others) as part of their objective functions. Genetic 
Algorithm was also used in [29], to combine both strain-based pHIs and 
vHIs into a hyperfeature for RUL prognosis of composite stiffened 
panels. What was shown, is that the quality of the prognostic features 
can greatly impact the final RUL prediction results. 

From the literature review, it is evident that most research of both 
RUL estimation and HI formulation is not focused on composite mate-
rials or structures. The little research available is centered around simple 
coupons, while studies on the prognostics of more complex structures 

are to the best of our knowledge very limited if any. In this work we 
attempt to fill this gap. Building on results from our previous research 
[29], we investigate the feasibility of upscaling the methodologies 
developed for single-stiffened panels (SSPs) to multi-stiffened panels 
(MSPs). Strain data collected from Distributed Fiber optical sensors 
(DFOS) are processed in a novel way to extract useful information. The 
processed strains are used to calculate HIs [24] as well as an advanced 
HI [29], which possesses promising prognostic attributes. Finally, the 
advanced HI is used to predict the RUL of the SSPs using an ensemble 
learning framework trained with data from the SSPs and a predefined 
failure threshold. 

The paper is structured as follows, Section 2 describes the experi-
mental campaign and pre-processing methodologies, Section 3 presents 
the ensemble learning framework and the regression algorithms. Sec-
tion 4 discusses the preliminary results and shows the RUL prediction, 
and finally, the paper is summarized in Section 5. 

2. Experimental campaign 

2.1. Specimen and experiment definition 

Five-stringered composite panels were manufactured from IM7/ 
8552 unidirectional prepreg CFRP by Optimal Solutions (Portugal). The 
layup for the skin and T-shaped stiffeners is [45/-45/0/45/90/-45/0]s 
and [45/-45/0/-45/45]s, respectively. Resin tabs are cast on the panels’ 
top and bottom free edges to ensure proper load introduction and uni-
form loading. The panels have a length of 1100mmand the width is 
850mm. Distance between the stiffeners is 200mm and with the tabs the 
free length is 1020mm. The SSPs have a length of 300 mm and their 
width is 165 mm and have the exact same layup. A schematic repre-
sentation of the panels’ geometry is shown in Fig. 1. Before subjecting 
the panels to fatigue testing, a quasi-static compression test with a 
constant displacement rate of 0.5 mm/min is performed to assess the 
ultimate compression strength and guide the decision of the fatigue 
loads. The collapse load was estimated at 310 kN and based on this 
result, the initial fatigue load is determined. 

To create stress concentration areas and accelerate the degradation 
process, Barely Visible Impact Damage (BVID) is induced. The tested 
panels are impacted multiple times from the skin side with various en-
ergies, using an air gun, as analyzed in Table 1. The impacts create 
subsurface damage in the skin-stringer interface, which will propagate 
under fatigue loading and ultimately lead to the failure of the panels. 

Table 1 
MSP load and damage initial damage information.  

Specimen 
# 

Impact Location Impact 
Energy 

Load # of Cycles to 
failure X 

(cm) 
Y 
(cm) 

Min. Max. 

MSP 01 25.3 79.5 15.2 J 19.5 195 8 
18.5 185 2076 

40 80 19.8 J 10 100 350k 
15 150 13k 

45.5 66 15.2 J 12 120 50k 
20 200 136k 

58 64.5 17.2 J 23 230 540k   
1046k 

MSP 02 40.5 58 13 J -15 -150 680k 
-17 -170 120k 
-20 -200 110k 
-23 -230 230k   

1140k 
MSP 03 25.5 66.5 15.2 J 20 200 540k 

39.6 66.6 17.2 J 
46 79 15.2 J 
59.5 78.9 25.2 J  

Fig. 2. Representative load sequence.  
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The initial fatigue load was determined similar to [24,30], at 60% of the 
collapse load. The variable loading conditions are created for two rea-
sons. First, similar to [24,29], we wanted to create different loading 
scenarios and evaluate the ability of our methodologies to tackle and 
adapt to these scenarios. Secondly, the loads were adapted in order to 
eliminate the snap-back behavior (buckling waves abruptly shifting to a 
higher mode) [31–33]. The loads and fatigue life can be seen in Table 1. 

The fatigue tests are performed in the Aerospace Structures and 
Materials Laboratory of Delft University of Technology in an MTS hy-
draulic machine with 3500 kN load capacity. As mentioned earlier, 
variable amplitude, compression-compression fatigue tests are con-
ducted with a constant frequency of 1Hz and load ratio of 10. 

Regarding the SHM methodologies that monitor the structural 
integrity during the fatigue tests, the panels are equipped with a 
distributed fiber optic sensing (DFOS) system, as well as AE, lamb wave 
PZT and FBG optical sensors for vibration measurements. In this study, 
we utilize only strain data from the DFOS system. The DFOS is encased 
in a SMARTape™ [34], and is bonded with acrylic glue on both feet of 
the three middle stiffeners. The total measuring length is approximately 
5m, 840mm per foot, focused on the middle section. The LUNA odisi-B 
acquisition system is used with an acquisition frequency of 23.8Hz 
and a spatial resolution of 0.65mm. 

The loading sequence is depicted in Fig. 2. Every 1000 cycles, fatigue 
is stopped, and the panel is subjected to quasi-static (QS) loadings from 
5 kN up to the maximum fatigue load level under a constant displace-
ment rate of 0.5mm/min, during which the DFOS measurement were 
obtained. Every 10,000 cycles, the applied load is reduced to 5 kN to 
allow for LW measurements. The load is arbitrarily changed after a few 
tens of thousands of cycles for the aforementioned reasons. 

2.2. Raw data pre-processing 

Under the variable loading conditions (which are closer to real life 
operational conditions), the peak strains display a certain variability. 
This variability does not represent only damage accumulation, or 
structure degradation as it is desired, but also the effect of the changing 
loading conditions. For this reason, it is imperative to discover a pre- 
processing methodology attempting to eliminate the effects of the 
varying loads. A first attempt to eliminate the variable loading effect was 
proposed in [24]. In this research we build on and extend our previous 
methodology. 

In the first step, processing is performed in the spatial domain. Since 
measurements are available every 0.65mm for 5m, it is evident that there 
is an excessively large amount of data. To reduce the amount of data, 

and at the same time simulate similarities to the small scale experiments 
of our previous research [24], where FBG point measurements are ob-
tained, only k data points are retained per foot as virtual FBG (vFBG) 
sensors. Since the panels are approximately 3 time larger than the SSPs k 
= 15 was assumed since the smaller panels had 5 FBG sensors per foot. 
The vFBGs were spaced equally along the measurement length with a 
spacing of 50mm. An example of the strain distribution and some 
example vFBGs can be seen in Fig. 3. The different colored lines repre-
sent different time instances of measurement. The notations L1 and R1 
correspond to the left and right foot of the first stiffener. The peaks and 
valleys represent the depict buckling waves captured by the fiber. The 
entirety of the measured strains at a specific point in the fiber (black 
box) are used to create the measurements of each vFBG. In Fig. 4a, the 
strain through time of a single vFBG is presented. Each line represents 
the measurements at a QS load for a representative vFBG. 

On the second step, the strains are processed in the time axis, in an 
attempt to eliminate the load effect. n random points of the QS are 
sampled, equal to 1/3 of the total sample length, using a uniform dis-
tribution (see Fig. 4a zoom, where each point represents a randomly 
selected QS strain value) and the average of these points is considered as 
the strain at each time instance. The QS interval is 1000 cycles and hence 
each extracted strain values is assigned a timestamp of n*1000, where n 
is the increasing serial number of the QS. This methodology eliminates 
the bias of the strains towards the load since they are sampled at random 
unknown loads. Since the strain values are sampled randomly at each QS 
the resulted strains display a noisy behavior. To smooth out the effect of 
this noisy behavior, the final results are processed via a moving average 
filter (Fig. 4b). 

3. Prognostic methods 

An ensemble learning, similarity-based methodology is investigated 
for the RUL estimation of the MSP panels. Two machine learning algo-
rithms, Gaussian Process Regression and Long Short-term Memory 
Networks, are trained with the SSP HI data and are employed to estimate 
the RUL of the MSP. This similarity ensemble learning methodology, 
enhances the accuracy of the predictions by looking for similarities in 
the degradation trends of the MSPs and SSPs. These methodologies are 
discussed in depth in the following subsections. 

3.1. Ensemble learning 

Ensemble learning entails training diverse sub-models and using 
their combined outputs for extrapolating the final results. A proper 

Fig. 3. Pre-processing methodology in the spatial axis.  
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weighting strategy can enhance the ensemble results. Bauer et al. [35] 
has shown that such models are able to provide superior performance by 
taking advantage of the diverse outputs of each model. A typical 

ensemble model can be seen in Fig. 5. The creation of diverse sub-models 
is usually performed using bagging or boosting [36], however in our 
case; where a variety of different panels with multiple different failures 
are available, we opted in using the database of the SSPs and build 
sub-models, for each unique SSP. This option provides not only a variety 
of different failure scenarios and lifetimes, but also variety of different 
loading conditions and initial damages. 

3.2. Similarity analysis 

To effectively exploit the output of the diverse sub-models an effi-
cient dynamic-weighting strategy is implemented. Similar to [37], a 
Fuzzy Similarity Analysis (FSA) scheme is proposed, to calculate dy-
namic, time varying weights for each sub-model. More specifically, we 
aim to estimate the similarity between each MSP’s degradation curve, as 
described by the Health Indicator HIGA, with each SSP’s from the 

Fig. 4. Pre-processing methodology in the time axis. a) quasi-static through time for a vFBG and b) the final extracted strain.  

Fig. 5. Schematic representation of the ensemble learning methodology.  

G. Galanopoulos et al.                                                                                                                                                                                                                         



Composites Part C: Open Access 11 (2023) 100366

6

available historic database. In total there are M = 15 available degra-
dation instances of HIGA comprising our database. 

Let D = (d1,d2,…, dN) be the degradation trend of a jth SSP and x =
(x1,x2,…, xL) the degradation curve of the MSP, where L ∕= N the 
different sequence lengths. Then the weights for each sub-model are 
calculated as follows:  

• Pointwise Euclidean distance computation. The first step consists of 
calculating the Euclidean distance between D and x denoted with the 
vector δi×1 = ‖ D − x ‖2 for i = 1, …, min(N, L). 

• Pointwise distance scoring. There are numerous cases where the sim-
ilarity measure allows for a gradual transition between “similar” and 
“non-similar” as stated in [38,39]. This can be achieved by resorting 
to a fuzzy logic modeling paradigm in which the pointwise distance 
δi × 1 of D and x is mapped into a corresponding similarity value μi × 1 
with respect to an “approximately zero” fuzzy set. For the definition 
of the latter, triangular, trapezoidal, and bell-shaped are among the 
most popular functions [40]. In the application illustrated in this 
work, the following bell-shaped function shown in Eq. (1) is used, 
since it provides more robust results due to its gradual smoothness: 

μi× 1 = exp
(

−

(
− ln(α)

β2

)

δi× 1

)

(1)   

Where α and β are parameters which define the shape of the simi-
larity measure to the fuzzy rule set. Through trial and error, α = 5.75 and 
β = 0.5 are used. To address the issue of the variable sequence lengths, 
the similarities of SSPs with shorter sequence lengths (shorter lifetime) 
are set to 0 after failure has occurred, since it is considered that they do 
not provide any more information towards the RUL estimation. The 
distance score dl = 1 − μl is computed, where l = 1, …, L.  

• Weight definition. Finally, the weight wl given to the jth training 
specimen, accounting for how similar it is to the test one, is 
computed by the arbitrarily chosen decreasing monotone function, 
which guarantees that the smaller the distance dl the larger the 
impact given to the jth specimen. 

wl = (1 − dl)⋅exp
(

−
1
β
dl

)

(2)   

By repeating the previous steps for all available sub-models, the 
weight matrix WL × M is obtained. These weights are applied in the 
ensemble learning paradigm to derive the final output of the ensemble 
model for each MSP. Given HIGA of one MSP as the input vector x to the 
prognostic sub-models created, from each SSP, the predicted value of its 
RUL using the subsequent j = 1, …, M sub-model is represented as ŷj =

f(x), where f( ⋅ ) is the regression approach. 
Then, the proposed simple but efficient strategy for combining sub- 

model outputs is to estimate the RUL as a weighted mean of those M 
sub-models: 

ŷ =
1
M
∑M

j=1
wj⋅ŷj (3) 

The idea behind the weighting of the individual ŷj is that all his-
torical degradation patterns provide some useful information for esti-
mating the RUL of the current degradation sequence. 

4. Regression algorithms 

4.1. LSTM network 

The Long Short-Term Memory (LSTM) neural network, which be-
longs to the Recurrent Neural Network (RNN) family, was initially 
described in [41]. Unlike traditional RNNs, LSTM includes a memory 
cell that assesses whether past information is still relevant or not, pre-
venting the vanishing or exploding gradient problem when processing 
long sequences. Consequently, it maintains a steady error that can be 
back propagated through time and layers, allowing the network to learn 
continuously over extended periods [42]. 

LSTM’s fundamental principle is that its memory cell serves as a 
repository of state information, functioning like a conveyor belt that 
runs through the entire chain with only minor linear interactions. The 
information flows effortlessly and remains unchanged. Gates, such as 
the forget gate, the input gate, and the output gate, are used in LSTM to 
remove or add information to the cell state. These gates control the 
passage of information along sequences, accurately capturing long- 
range dependencies. While working over longer periods, the gates 
allow LSTM units to read, write, and remove information from memory. 
This feature enables the units to hold only pertinent data, while dis-
carding irrelevant information. The lower flow controls the combination 
of the short-term state of the last cell (ht − 1) and the input of the current 
cell (xt), while the upper flow updates the current cell’s long-term state 

Fig. 6. Proposed LSTMN network architecture.  
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(Ct). The updating equations are 

it = σ(Wi⋅xt +Ri⋅ht− 1 + bi) (4)  

ft = σ
(
Wf ⋅xt +Rf ⋅ht− 1 + bf

)
, (5)  

ot = σ(Wo⋅xt +Ro⋅ht− 1 + b0) (6)  

C̃t = tanh(Wc⋅xt +Rc⋅ht− 1 + bc) (7)  

Ct = ft ∗ Ct− 1 + it ∗ C̃t (8)  

ht = ot ∗ tanh(Ct) (9)  

yt = σ
(
Wy⋅ht + by

)
(10) 

The mathematical model of LSTM is shown in Eqs. (4)–(10). Where it, 
ftand ot represent the input gate, forget gate, and output gate, respec-
tively with their appropriate weight Wi,f, o, c, Ri,f, o, c and bi,f, o, c bias 
matrices, while the tanh, σ (sigmoid) function are the activation func-
tions of the linear combination of ht − 1and xt. The gate vectors in the 
LSTM network serve to regulate the information flow by controlling the 
output value within a range of 0 to 1 [43] If the gate is set to 0, the signal 
is blocked. Using the equations provided above, the current state of Ct is 
updated based on the previous unit states Ct − 1 and the candidate cell 
state C̃t which are multiplied by the forget and input gate, and then 
combined. Then, the ot determines which information is converted from 
Ct to ht. Lastly, as shown in Eq. (10), the output yt is calculated according 
to ht. 

Our proposed LSTMN architecture can be seen in Fig. 6. The network 
comprises of the input layer, the LSTM layer, the fully connected layer, a 
dropout layer and finally, the regression output layer. The input layer 
accepts as input a time series data string, while dependences between 
input and targets are learned at the LSTM layer. Dropout layer serves as 
guard against overfitting and improving the generalization capabilities. 

For the training of the LSTM network, since it is prone to the scale of 
the data, a normalization methodology is employed. The inputs and 
outputs need to be normalized in the desired range of [0, 1] using the 
minimum and maximum values of RUL from the training set, according 
to: 

y′

=
y − ymin

ymax − ymin
(11) 

Consequently, the model learns to predict the RUL in the [0, 1] range 
as a percentage rather than as the anticipated cycles. 

Training is conducted for 100 epochs utilizing the Adam algorithm. 
For simplicity, the final model, which is universally used for all SSPs, has 

a LSTM layer with 64 hidden units, a dropout probability p = 0.2 and 
lastly the regression layer of size 1 is used to minimize the half-mean- 
squared-error (MSE) of the predicted responses for each time step as 
the loss function: 

MSE =
1

2M
∑M

l=1
(yl − ŷl)

2 (12) 

M is the sequence length. For uncertainty quantification, the boot-
srap algorithm [44,45] is used. 

4.2. Gaussian process regression 

Gaussian Processes (GP) have found extensive use in predicting the 
RUL of a variety of systems [46–49] and structures [13,14,19]. GPs 
constitute of a set of random variables following a joint Gaussian dis-
tribution, and are a function of f(x) at x=[x1, x2, …, xn]T. GP can be 
defined [50] by its mean function: 

m(x) = E[f (x)] (13) 

And its covariance function: 

k(x, x′

) = E[(f (x) − m(x))(f (x′

) − m(x′

))] (14) 

Then the GP is expressed as: 

f (x) ∼ GP(m(x), k(x, x′

)) (15) 

Typically, the mean function m(x) is chosen to be zero, but in our 
case, we opted for a linear function m(x) = ax + b. As noted in [50] 
different covariance functions yield different regression results, so the 
selection of this function should be done with caution based on the data. 
It was observed that our data are better represented by a Mattern 5/2 
covariance function: 

k(r) = σ2
f

(

1+
̅̅̅
5

√
r2

σ2
l

+
5r2

3σ2
l

)

exp
(

−

̅̅̅
5

√
r

σl

)

(16) 

Let us consider a degradation history H = [xi, yi ]
N
i=1, where xi rep-

resents the input variables, and yi = f(xi) + εi represents the noisy target 
variables, with εi being an i.i.d with mean 0 and variance σ2

n (εi ∼ i.i.
d N(0,σ2

n)). The joint distribution of observed target values y = [yi ]
N
i=1 

and unobserved target values f* at new input locations x* can be 
denoted as: 
[

y
f ∗
]

∼ N

(

0,

[
K(x, x) + σ2

nI K(x, x∗)
K(x∗, x) K(x∗, x∗)

])

(17) 

I is the identity matrix and K a matrix containing the covariance pairs 

Fig. 7. HIGA progression through time for the different a) SSPs and b) MSPs.  
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ofx and x*. The posterior distribution for GPR, given the new inputs x*, 
the historic input data x and targets y is defined by: 

p(f ∗|x, y, x∗) ∼ N(f ∗, cov(f ∗)) (18)  

f ∗ = E[f ∗|x, y, x∗] = K(x∗, x)
[
K(x, x) + σ2

nI
]− 1y, (19)  

cov(f ∗) = K(x∗, x∗) − K(x∗, x)
[
K(x, x) + σ2

nI
]− 1K(x, x∗) (20)  

5. Results and discussion 

5.1. Degradation feature 

In our previous work in SSPs [29], an enhanced strain-based 
degradation feature was discovered using genetic algorithms. This 
feature denoted by HIGA is presented in eq. (21). The simple HIs used to 
create HIGA are included in the Appendix 1 for the sake of completeness. 

HIGA = vHI1

(

HI4 −
vHI2 + 0.5HI3

vHI2

)

+ 1 (21) 

Although HIGA was engineered to possess high prognosability and 
thus eliminate the necessity for a predefined failure threshold, the 
overall trend of the raw data and the scale and experimental dissimi-
larities between the MSPs and the SSPs required a conservative failure 
threshold to be set at 0.85. This value is not arbitrary and corresponds to 
the lowest observed value of the SSP specimens at the time of failure (see 
Fig. 7a) which are used to train the predictive algorithms. The pro-
gression of HIGA through the lifetime for the SSPs and MSPs can be seen 
in Fig. 7a and b respectively. The coding of the SSPs is presented in [29] 
and is repeated in the Appendix. 2 

It is evident, that the behavior of the HI especially at the final stages 
is not desirable for the two out of the three MSPs. An almost constant 
value of 1 is observed for several thousand cycles. This is a result of the 
raw strains displaying a constant value after a point as can be seen in 

Fig. 4b. This behavior is also intensified by vHI1(Eq. (A.5)) which relies 
on the SSP data, since it needs normalization parameters [24], which are 
obtained through similarity analysis between the MSP and the SSPs in 
the first 30,000 cycles. The observed plateaus may be attributed to the 
impact damage stopping to propagate/ grow, and hence the strain field 
is no longer changing, leading to this constant behavior on both the raw 
strain and the HI. A second reason could be that under the same damage 
conditions (size, growth) the SSPs may have failed or are close to failure 
and this is why HIGA for the MSPs is 1. The adoption of a failure 
threshold of 0.85 alleviates this problem, despite the fact that as damage 
is latent, we do not know the exact damage extent this failure threshold 
corresponds to. 

5.2. RUL prediction 

As previously discussed, an ensemble learning framework is pro-
posed to tackle the challenging task of RUL estimation. Two distinct 
regression algorithms are used, LSTMN and GPR, and their predictions 
are compared and discussed. Both algorithms are trained using each 
unique SSP identified after the similarity analysis, and their predictive 
outputs are combined via a dynamically weighted average, as described 
in Prognostic Methods, which significantly enhances the prognostic 
performance. The predicted normalized mean RULs and the associated 
90% confidence intervals (CIs) are shown in Fig. 8. It is evident that the 
overall RUL estimations for MSP 02 are rather conservative. More spe-
cifically, the predicted RUL underestimates the actual one, giving con-
servative predictions. However, it can be seen that both algorithms 
manage to converge to the true RUL near the EoL. For MSP 01 and MSP 
03, the mean RUL estimations are closer to the true RUL and the LSTMN 
predictions are slightly better. However, GPR shows slightly better es-
timations near the EoL which are almost similar to the true RUL. As far 
as the CIs are concerned, for MSP 02 the CIs include the true RUL only at 
the very early and very late life-time stages with either algorithm. For 
MSP 01 and MSP 03 CIs of the LSTMN include the true RUL for most of 

Fig. 8. RUL estimations for the different MSPs.  
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the lifetime, though GPR CIs only manages to include the actual RUL 
near the EoL. 

To validate the qualitative observations regarding the RUL pre-
dictions, common prognostic performance metrics are employed [51, 
52]. MAPE (Mean Absolute Percentage error) and CRA (Cumulative 
Relative Accuracy) are preferred (Fig. 9) since they calculate the per-
centage and relative differences from the true RUL and can better 
describe our case where the calculated RULs are in the range of [0, 1]. It 
can be seen, that with the exception of MSP 02, the algorithms achieve 
rather similar performance, with LSTM outperforming the GPR by a 
slight margin of less than 10%. 

Regarding the CIs, CICP (Confidence Interval Coverage Probability) 
is employed, to measure the percentage of lifetime that is included inside 
the CIs. It can be seen that the bootstrap procedure followed for the 
LSTMN provides slightly better coverage in comparison with the GPR. 
More specifically, for MSP 01 and MSP 03, LSTMN’s CIs include the true 
RUL for almost 80% of the lifetime, while GPR manages only an 
approximate 25%. The results are summarized in Fig. 10. 

6. Conclusions 

In this paper an upscaling methodology for Remaining Useful Life 
(RUL) estimation of multi-stiffened composite panels (MSPs) using SHM 
data and prognostic methodologies tested and validated only on lower 
hierarchically structures i.e., single-stiffened composite panels (SSPs) is 
presented. Unprecedented compression-compression fatigue experi-
ments with variable amplitude are conducted on MSPs where Distrib-
uted Fiber Optical Sensors (DFOS) are employed to monitor their strain 
distribution along the stiffener feet. The strain data are pre-processed in 
two axes, the spatial and the temporal, where in the first axis a data 
reduction methodology is proposed while in the second an attempt to 

eliminate the effect of the dynamic loading is made, both trying to retain 
and highlight the necessary degradation information. The extracted 
strains are used to construct Health Indicators (HIs) proposed in previ-
ous works to monitor the structural degradation and eventually estimate 
the RUL. However, the behavior of the HIs near the EoL was not perfect 
and hence A failure threshold is set based on the data from the SSP to 
increase prognosability. 

Regarding the RUL estimates, we treat the prognostic task as a 
regression one. Two standard machine learning algorithms are 
employed to this direction i.e., Long-Short Term Memory Networks 
(LSTMN) and Gaussian Process Regression (GPR). An ensemble learning 
similarity framework is proposed, which trains unique models using 
data and information from the SSP and then combines their output using 
a similarity-based weighted mean. More specifically, dynamic similarity 
is measured between the SSPs and the tested MSP and the similarity 
weights are used to combine the ensemble learning outputs and estimate 
the final RUL. Regarding confidence intervals (CIs), they are an inherent 
property of GPR. However, for the LSTMN, the bootsrap algorithm is 
used to create the CIs. The RUL estimates for the MSPs achieve a quite 
good performance, managing to stay close to the actual RUL especially 
towards the End of Life (EoL). The quality of the HI highly affects the 
predicted RUL and generally a more gradual HI behavior leads to better 
estimation of the RUL. A drawback of the proposed methodology con-
cerns the arbitrary EoL threshold. For this threshold to be more robust 
and meaningful, correlation with a degradation property such as dam-
age size or stiffness reduction is necessary and is in our intentions for 
future research. Overall, this first attempt of upscaling methodologies 
trained with SHM data in lower hierarchically structures to prognose the 
RUL of more complex structures is considered successful. 

Though the attempt can be considered successful there are several 
limitations that need to be addressed. First and foremost, the method-
ology is data-dependent, and hence the quality of the raw data greatly 
affects the HIs and the results. Also, as we stated, the failure threshold is 
arbitrarily set, and for it to be more meaningful it is best if it is correlated 
with a physical property. Finally, the methodology relies on the effec-
tiveness and reliability of the SHM system. Potential fault of the system 
can significantly hinder the performance and negatively affect the 
results. 
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Appendix 1: Health Indicators 

In this appendix we list the Health Indicators that are used to create HIGA. εi(t) and εi
ref are the strain reading of sensor i at time t and reference state 

respectively. 

Physical health indicators 

Ii1(t) =

⃒
⃒
⃒εi

ref − εi(t)
⃒
⃒
⃒

⃒
⃒εi

ref

⃒
⃒

(A.1) 

Evaluates the strain change at current time t relative to the reference stage (pristine or early SHM measurements) 

HIi2(t) =
εi(t)
∑n

1
εi(t)
n

−
εi(t = 0)
∑n

1
εi(t=0)
n

, t > 0 (A.2) 

Indicates the proportion each FBG sensor contributes to the cumulative strain among the 10FBG sensors of the same foot 

HI3(t) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑ (

miHIi1(t)
)2

√

(A.3) 

A fusion of HI1 for all FBG sensors, respectively, with weights being the monotonicity mi of each HIi
1 curve 

HI4(t) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑ (

miHIi2(t)
)2

√

(A.4) 

A fusion of HI2 for all FBG sensors, respectively, with weights being the monotonicity mi of each HIi
2 curve 

Virtual health indicators 

vHI1(t) = exp

(

−
(dL(t) − dLmin)

2

σL

)

, (A.5) 

Where, σL = −
(dLmax − dLmin)

2

2

[
1

log10ε+
1

log10(ε+δ)

]

The Euclidian distance is calculated as dL(t) = ‖Z(t) − Z0‖, where Z(t) is the vector [PC1(t),PC2(t)], where PC1 and PC2 are the first two principal 
components of a PCA The HI is normalized via a radial basis function. 

vHI2(t) =
∑N

1
(xi(t) − xri (t))

2 (A.6)  

statistical quantity of PCA, also known as the squared sum of residual reconstructed error. 

Table A.1 
Information for the SSPs.  

Specimen 
# 

Impact Energy/Disbond 
Size 

Max Load # of Cycles to 
failure 

ca1 10 J − 65 kN 280,098 
ca2 10 − 65 kN 144,969 
ca3 10 J − 65 kN 133,281 
ca4 30 × 20 mm2 − 50 kN − 60 kN * 438,000 
va1 7.4 J − 40 kN to − 60 kN 202,300 
va2 10 J − 40 kN to − 55 kN 243,000 
va3 10 J − 40 kN to − 50 kN 217,000 
va4 25 × 20 mm2 − 35 kN to − 60 kN 345,000 
va5 7.37 J − 40 kN to − 60 kN 242,000 
sp1 10 J − 50.4 kN to − 78.0 

kN 
1580,000 

sp2 10 J − 50.4 kN to − 78.0 
kN 

529,000 

sp3 10 J − 50.4 kN to − 82.0 
kN 

1300,000 

sp5 10 J − 45.9 kN to − 78.0 
kN 

452,000 

sp7 25 × 20 mm2 − 45.9 kN to − 59.7 
kN 

1160,460  
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Appendix 2: Single stiffened panel information 

In this appendix we present information on the panels used in our previous research (Table A.1) [29]. Three different experimental campaigns are 
launched, comprising of constant amplitude (ca), variable amplitude (va) and spectrum (sp) compression fatigue experiments. In ca fatigue, fatigue 
load is constant throughout the experiment. In va fatigue the load is applied in block of constant loads and the max load is increased if no damage 
growth is observed. In the sp fatigue, the fatigue sequence is generated from an algorithm and each load is randomly applied for a predefined number 
of cycles. 
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