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Abstract
Finite elements with mass lumping allow for explicit time stepping when modelling

wave propagation and can be more efficient than finite differences in complex geolog-

ical settings. In two dimensions on quadrilaterals, spectral elements are the obvious

choice. Triangles offer more flexibility for meshing, but the construction of polynomial

elements is less straightforward. The elements have to be augmented with higher-degree

polynomials in the interior to preserve accuracy after lumping of the mass matrix. With

the classic accuracy criterion, triangular elements suitable for mass lumping up to a

polynomial degree 9 were found. With a newer, less restrictive criterion, new elements

were constructed of degree 5–7. Some of these are more efficient than the older ones. To

assess which of all these elements performs best, the acoustic wave equation is solved

for a homogeneous model on a square and on a domain with corners, as well as on

a heterogeneous example with topography. The accuracy and runtimes are measured

using either higher-order time stepping or second-order time stepping with dispersion

correction. For elements of polynomial degree 2 and higher, the latter is more efficient.

Among the various finite elements, the degree-4 element appears to be a good choice.

K E Y W O R D S
acoustics, computing aspects, modelling, numerical study, seismics, wave

INTRODUCTION

The finite-element method can be attractive for solving the
wave equation because irregular topography and large con-
trasts in material parameters do not necessarily have to
degrade the spatial accuracy, as is the case with higher-
order finite differences. Mass lumping avoids the cost of a
lower-upper decomposition of the large sparse mass matrix.
However, when applied to the regular polynomial elements on
triangles or tetrahedra, mass lumping can lead to non-positive
weights, causing instability of the explicit time stepping
scheme. In addition, the spatial accuracy may decrease. These
two problems can be avoided by enriching the element with

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium,
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higher-degree polynomials in the interior. Unlike spectral ele-
ments on quadrilaterals based on Legendre–Gauss–Lobatto
points (Komatitsch & Vilotte, 1998; Orszag, 1980), the
construction of higher-order continuous mass-lumped finite
elements is not straightforward. So far, elements up to degree
9 on triangles have been found by various authors (Chin-Joe-
Kong et al., 1999; Cohen et al., 2001; Crouzeix & Raviart,
1973; Cui et al., 2017; Liu et al., 2017; Mulder, 1996; Mulder,
2013; Tordjman, 1995).

The classic accuracy criterion for lumping of the mass
matrix (Ciarlet, 1978, for instance) requires that polynomi-
als up to a certain degree should be integrated exactly by the
quadrature weights. That degree depends on the polynomial
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2 MULDER

T A B L E 1 Element polynomial degree 𝑝, interior polynomial degree 𝑝′, number of nodes per element 𝑛p and the estimated

Courant–Friedrichs–Lewy (CFL) number for the old and new elements. The results for the old elements have an asterisk. The letter or number before

the colon denotes a version label in case more than one element was found for the given degree.

𝒑 𝒑
′

𝒏𝐩 CFL

1 1 3 1.14∗

2 3 7 0.367∗

3 4 12 0.210∗

4 5 18 0.128∗

5 7 30 0.0512∗

A:0.0747, B:0.0660, C:0.0635, D:0.0503, E:0.0366, F:0.0779, G:0.0661

6 9 46 D:0.0387∗

8 39 A:0.0404, B:0.0215

7 10 57 1:0.0288∗, 2:0.00614∗

A:0.0253, B:0.00954, C:0.0333

8 11 69 0.0180∗

degree of the element on the edges, the higher polynomial
degree in its interior and the order of the partial differen-
tial equation. The lumped mass matrix is proportional to
the weights.

Geevers et al. (2018b) proposed a sharper and less restric-
tive accuracy criterion, enabling the construction of tetrahe-
dral elements that are significantly more efficient than the
ones obtained with the classic criterion (Chin-Joe-Kong et al.,
1999; Mulder, 1996). When applied to triangular elements,
the less restrictive criterion provides the same elements for
degree 2–4 as with the classic criterion but leads to infinitely
many new elements of degree 5 and 7, whereas two were
found for degree 6 (Mulder, 2022b).

Here, their relative performance will be examined on a
homogeneous acoustic problem with a point source and on
an inhomogeneous one with topography, in terms of the error
as a function of the solution unknowns or degrees of free-
dom and as a function of the measured computing time. The
latter provides an indication of the element’s efficiency. The
comparison is made for a number of traces rather than for all
the unknowns, in contrast to a preliminary version (Mulder,
2022a).

With the second-order formulation of the wave equation,
the numerical dispersion of a second-order time-stepping
scheme will dominate the error for all but the linear ele-
ment. This can be avoided by higher-order time stepping (von
Kowalevsky, 1875; Lax & Wendroff, 1960; Dablain, 1986;
Shubin & Bell, 1987) or Stork’s dispersion correction (Ander-
son et al., 2015; Dai et al., 2014; Koene et al., 2018; Li et al.,
2016; Mittet, 2017; Qin et al., 2017; Stork, 2013; Wang & Xu,
2015; Xu et al., 2017). Both approaches will be considered.

The next section briefly reviews the mass-lumped finite ele-
ments and the time-stepping scheme. Implementation details
can be found in earlier publications (Mulder, 1996, 2001) and
in textbooks on the finite element method (Cohen, 2002, for

instance). Then, the numerical results are discussed in terms
of the error as a function of the number of degrees of free-
dom and as a function of computing time. The required time
to reach a certain accuracy serves as performance measure.
The last section summarizes the main results.

REVIEW OF THE METHOD

Finite elements

The examples in this paper solve the acoustic wave equation in
the second-order form:

1
𝜌𝑐2

𝜕2𝑢

𝜕𝑡2
− ∇ ⋅

(
1
𝜌
∇𝑢

)
= 𝑓 (𝑡, 𝐱) = 𝑤(𝑡)𝛿(𝐱 − 𝐱𝑠). (1)

Here the pressure 𝑢(𝑡, 𝐱) depends on the space coordinates

𝐱 and time 𝑡, the material parameters are density 𝜌(𝐱) and
sound speed 𝑐(𝐱) and the source 𝑓 (𝑡, 𝐱) is a delta functions
at 𝐱𝑠 with wavelet 𝑤(𝑡). Initial values are 𝑢(0, 𝐱) = 0 and
𝜕𝑡𝑢(0, 𝐱) = 0. In the accuracy tests, the influence of less than
perfect absorbing boundary conditions is avoided by using
either zero Dirichlet boundary conditions, where the pressure
is zero on all boundaries, or zero Neumann boundary con-
ditions, which are the natural boundary conditions with zero
normal derivatives. The method can equally well be applied
to the elastic wave equation (Geevers et al., 2018b; Geevers
et al., 2019; Mulder & Shamasundar, 2016).

Finite-difference methods sample the solution on a regu-
lar grid. The spatial derivatives are approximated by fitting a
polynomial through neighbouring solution values and evalu-
ating its derivative at the desired point. Usually, polynomials
of higher degrees are chosen to reduce the discretization error.
Across discontinuities in the material parameters, the pressure
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EFFICIENCY OF TRIANGULAR FINITE ELEMENT 3

F I G U R E 1 (a) Exact solution for a point source at the centre and reflecting boundaries. (b) Seismogram for a horizontal receiver line 200 m

below the source.

F I G U R E 2 Effect of the taper width on the error. Noise appears for small width and decreases at larger width. The trace was extended by

0.001 s in panel (a) and 0.1 s in (b), but only the part of trace between 0 and 1.25 s is shown. There were 15 samples between 1.25 s and the onset of

the taper.

is continuous but has a discontinuous derivative and causes a
deterioration of the accuracy to second order in the grid spac-
ing. On top of that, if the material parameters are just sampled
on the grid, the unspecified position of an interface between
the discontinuous materials will cause a first-order error.

Finite elements follow a different route towards discretiza-
tion. The computational domain is divided up into small
subsets 𝑗 (𝑗 = 1,… , 𝑁 ) of, for instance, triangular or
quadrilateral shape. A set of polynomials inside each of these
is chosen to represent the solution. If polynomials of degree
𝑝 ≥ 1 are chosen on triangles, there are 1

2 (𝑝 + 1)(𝑝 + 2) coef-
ficients or degrees of freedom per element. After choosing
a set of nodes 𝐱𝓁 inside the triangle, the solution inside 𝑗
can be expressed as 𝑢𝑗(𝐱) =

∑𝑝(𝑝+1)∕2
𝑘=1 𝑢𝑗,𝑘𝜙𝑗,𝑘(𝐱), where the

Lagrange interpolating polynomials 𝜙𝑗,𝑘(𝐱) are elements of
the set 𝑃𝑝 containing polynomials up to degree 𝑝 and have the
property 𝜙𝑗,𝑘(𝐱𝓁) = 𝛿𝑘,𝓁 . Continuity across elements implies
that the degree of freedom 𝑢𝑗,𝑘 are shared between neigh-
bouring elements if the nodes lay on the element edges or
on the vertices. To have a unique one-dimensional polyno-
mial representation on an edge, including the vertices at the
endpoints, 𝑝 + 1 nodes are required, leaving 1

2𝑝(𝑝 + 1) − 3𝑝 =
1
2 (𝑝 − 1)(𝑝 − 2) for the interior.

With this representation, the spatial discretization follows
from the substitution of 𝑢(𝑡, 𝐱) = ∑

𝑗 𝑢𝑗(𝑡, 𝐱) into Equation (1)
and integration against 𝜙𝑗′,𝑘′ (𝐱). The result is

𝐌𝜕𝑡𝑡𝐮 +𝐊𝐮 = 𝐟 , (2)

 13652478, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1365-2478.13383 by T

u D
elft, W

iley O
nline L

ibrary on [11/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4 MULDER

F I G U R E 3 Convergence under mesh refinement for degree for degrees 2–8 with higher-order time stepping. The maximum error in the

seismogram, scaled by the maximum value of the data, is plotted as a function of 𝑁1∕2, with 𝑁 the total number of degrees of freedom (a,c). The

panels on the right (b,d) depict errors as a function of the elapsed time for time stepping. The legend contains the degree and either the order for

higher-degree time stepping (a,c) or dispersion correction (b,d) denoted by ‘(d)’, followed by the number of nodes and the version name, if necessary.

with mass matrix 𝐌, stiffness matrix 𝐊, source vector 𝐟 and
solution 𝐮, a vector that contains all 𝑁 unknowns or degrees
of freedom. The contribution to the mass matrix of a single
element 𝑗 is

𝐌𝓁(𝑗,𝑘1),𝓁(𝑗,𝑘2) = ∫𝑗d𝐱
1

𝜌
𝑗
𝑐2
𝑗

𝜙𝑗,𝑘1
𝜙𝑗,𝑘2

, (3)

where 𝓁(𝑗, 𝑘) is the local-to-global map from indices 𝑘 in
element 𝑗 to a global index 𝓁(𝑗, 𝑘) that takes care of the
shared degrees of freedom at the element boundaries. The
contribution to the stiffness matrix is

𝐊[𝑚,𝑛]
𝓁(𝑗,𝑘1),𝓁(𝑗,𝑘2)

= ∫𝑗d𝐱
1
𝜌
𝑗

𝜕𝜙𝑗,𝑘1

𝜕𝑥𝑚

𝜕𝜙𝑗,𝑘2

𝜕𝑥𝑛
(𝑚, 𝑛 = 1, 2). (4)

These contributions can then be combined into a global mass
matrix and three stiffness matrices, but this is not done here.

Instead, the mass matrix will be lumped and assembly of the
stiffness matrices is carried out on the fly, as in Mulder (1996),
Mulder and Shamasundar (2016) and others. In the current
paper, 𝜌 and 𝑐 are assumed to be constant per element 𝑗 for
simplicity, but they may be discontinuous from one element
to the other.

Mass lumping

The time discretization can be obtained with finite differenc-
ing in time, approximating 𝜕𝑡𝑡𝐮 at time 𝑡 = 𝑛Δ𝑡 by (𝐮𝑛+1 −
2𝐮𝑛 + 𝐮𝑛+1)∕Δ𝑡2 where 𝐮𝑛 = 𝐮(𝑡𝑛, 𝐱). To avoid inversion of
the global mass matrix at each time step, it may be lumped by
replacing it by a diagonal matrix with its row sums, which
is trivial to invert. The problem with that is a loss of spa-
tial accuracy for triangular elements with polynomial degree
𝑝 > 1. This can be repaired by augmenting the interior of the
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EFFICIENCY OF TRIANGULAR FINITE ELEMENT 5

F I G U R E 4 As Figure 3, but for the relative RMS error.

F I G U R E 5 One of the meshes for the corner problem with the

source position in red and receivers on the blue line.

element with polynomials of a higher degree 𝑝′. In the case
of the reference element with coordinates 𝜉1,2 ∈ [0, 1], ver-
tices (0,0), (0,1) and (1,0) and 𝜉0 = 1 − 𝜉1 − 𝜉2 ∈ [0, 1], the
polynomials are of the form 𝑏𝜙(𝜉1, 𝜉2) with bubble function
𝑏 = 𝜉0𝜉1𝜉2, a cubic polynomial that vanishes on the edges, and

F I G U R E 6 Seismogram as a function of time and receiver depth

for the corner problem.

a polynomial 𝜙(𝜉1, 𝜉2) ∈ 𝑃𝑝′−3. Note that with quadrilaterals,
the Gauss–Lobatto nodes and Legendre polynomials can be
chosen in each coordinate direction on the reference element,
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6 MULDER

F I G U R E 7 Relative RMS errors for degrees 2–8 with higher-order time stepping for the corner problem as a function of the square root of the

number of degrees of freedom 𝑁 (a) or computing time (b). The convergence deteriorates at smaller error values.

F I G U R E 8 Model with density (a) and P-wave velocity (b) for the inhomogeneous problem.

a square, and do not suffer from loss of accuracy after mass
lumping (Komatitsch & Vilotte, 1998; Mulder, 1999; Orszag,
1980).

A triangular element is characterized by its degree 𝑝 on the
edges and 𝑝′ ≥ 𝑝 in the interior, as well as the positions of
the nodes that support the degrees of freedom. This leaves the
problem of how to choose the nodes and degrees, subject to
the following requirements. Continuity between elements is
obtained for 𝑝 + 1 distinct points on each edge, two of which
are the vertices. The nodes on each element are symmetri-
cally arranged. Accuracy should be preserved after lumping.
The lumped mass matrix consists of numerical quadrature
weights, apart from a scaling factor, and these should be
strictly positive to avoid time-stepping instabilities. The set
of polynomials 𝑈 = {𝑏}⊗ 𝑃𝑝′−3, with degree 𝑝 on the edges
and 𝑝′ in the interior of an element, should be unisolvent, that

F I G U R E 9 Seismogram as a function of time and receiver depth

for the inhomogeneous problem.
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EFFICIENCY OF TRIANGULAR FINITE ELEMENT 7

is, the values on the nodes should define a unique Lagrange
interpolating polynomial on each element (Cui et al., 2017;
Marchildon & Zingg, 2022; Mulder, 2022b, 2023b).

The classic accuracy criterion requires numerical quadra-
ture to be exact for polynomials of degree 𝑝 + 𝑝′ − 2. The
less restrictive one (Geevers et al., 2018b; Mulder, 2022b)
requires exact quadrature for polynomials in the set𝑃𝑝−2 ⊗𝑈 .
In either case, the requirement that numerical quadrature is
exact for the polynomials in the set leads to a nonlinear system
of equations, which is linear in the quadrature weights but has
coefficients that are polynomials in the parameters describing
the node positions on the reference element.

This nonlinear system may have no solution or a finite or
an infinite number of solutions, which are complex-valued
in general. If the number of equations equals the number of
unknowns, comprising the weights and node parameters, one
may expect to have a finite number of solutions, although
this is not always the case. If the number of complex-valued
solutions is finite, it grows very rapidly with the degree and
problem size and is bounded by the Bézout number (Li, 2003,
for instance). If there are less equations than unknowns, an
infinite number of solutions can be expected. An example
with an infinite number of solutions is the degree-6 element
obtained with the classic criterion (Mulder, 2013). Among
the solutions, only the real-valued ones with strictly posi-
tive weights and node positions that do not lie outside the
reference triangle are acceptable for mass lumping with the
wave equation.

The less restrictive criterion was applied by Mulder (2022b)
and led to the same elements as the classic one for degrees
up to 4. For degrees 5 and 7, infinitely many elements were
found. They have the same number of nodes as the old ele-
ment. For degree 6, two new elements with less nodes were
found. Table 1 summarizes results from Mulder (2013, 2022b)
and Liu et al. (2017). These papers contain node positions and
quadrature weights as well as pictures of the nodes for the
reference elements.

In Mulder (2022b), the equations that prescribe exact
quadrature for the degree-5 element comprise a set of 13 poly-
nomial equations in 14 unknowns, seven for the quadrature
weights and seven node parameters for the 30 nodes. The
solution can be expressed as functions of one of the node
parameters, which obeys a quartic equation. Two of its four
roots provide useful solutions, each for a certain range of the
parameter. To find a single solution, an additional constraint
can be imposed, for instance, maximization of the Courant–
Friedrichs–Lewy (CFL) number (Courant et al., 1928) that
controls the maximum size of the time step. This led to an ele-
ment labelled as version F for one of the roots of the quartic
equation and version G for the other.

Likewise, there are 26 equations for 27 unknowns for
degree 7 with an infinite number of solutions. The equa-
tions were solved with a Newton-type method starting with

random initial solution values. Once a solution was found, the
vector that characterizes the one-dimensional null space of the
Jacobian of the polynomial system could be followed to find
a larger CFL number. Version C was obtained in that way.

In the performance study, the degree-8 element of Cui
et al. (2017) or Liu et al. (2017) is included. These elements
are identical, which is not true for the degree-9 element.
The one of Cui et al. (2017) actually has degree 10 instead
of 9 on the edges. The element of Liu et al. (2017) has
less nodes and the proper degree 9 on the edges. How-
ever, when trying to reproduce this element in Mathematica
(Wolfram Research, Inc., 2016) with substantially extended
precision, a modified Newton method starting from the values
provided in the paper did not converge any further. Therefore,
the element is not considered here.

Time stepping

The maximum allowable time step is controlled by the CFL
number. For the finite elements, it can be estimated easily by
considering a single element in natural coordinates (Mulder,
2013). This enables the initial screening of elements if more
than one exists for a given degree and the number of nodes.
In the actual simulations later on, the power method (von
Mises & Pollaczek-Geiringer, 1929) is used instead because
it provides a slightly sharper estimate.

Higher-order time stepping is obtained by removing
error terms containing higher-order temporal derivatives
that can be replaced by repeated application of the spa-
tial operator. The approach goes by several names, such as
the Cauchy–Kovalewski (von Kowalevsky, 1875) or Lax–
Wendroff procedure (Lax & Wendroff, 1960), Dablain’s
scheme (Dablain, 1986) or the modified equation approach
(Shubin & Bell, 1987). Although the CFL number increases
for higher orders (Mulder, 2013, for instance), the larger
time step does not compensate for the increased cost of
repeatedly applying the spatial operator. Here, the time-
stepping order 𝑀𝑡 is chosen as the smallest even number
𝑀𝑡 ≥ 𝑝 + 1: 𝑀𝑡 = 2 f loor(𝑝∕2 + 1).

An alternative is Stork’s dispersion correction (Stork,
2013), which is based on the observation that second-order
time stepping is exact but at the wrong frequency. The time-
stepping error can be removed by mapping an observed time
series at the receiver to the correct frequency. Among several
implementations, the one suggested by Koene et al. (2018) is
chosen, employing Fourier interpolation on the time series.

PERFORMANCE

A measure for an element’s performance is the computing
time required to reach a given accuracy of the solution. The
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8 MULDER

F I G U R E 1 0 Relative maximum errors for the inhomogeneous problem for degrees 2–8 with higher-order time stepping (a,b) or dispersion

correction (c,d) for the inhomogeneous problem as a function of the square root of the number of degrees of freedom 𝑁 (a,c) or computing time

(b,d). The convergence deteriorates when the error drops below about 10−6.

efficiency is determined by several factors. A larger Courant–
Friedrichs–Lew (CFL) number will decrease the number of
required time steps. Table 1 lists estimates taken from ear-
lier papers (Mulder, 2013, 2022b). The values of the CFL
number are based on a single element with natural bound-
ary conditions for degrees 1–8. The asterisk marks values for
elements obtained with the old accuracy criterion. If multiple
elements were found, a version label is included as a single
letter or number, followed by a colon and the CFL number
estimate. Table 1 shows that the CFL number and its corre-
sponding maximum time step decrease for elements of higher
degree. This will lower their efficiency. The increased num-
ber of nodes per element and the decreasing CFL number
have to be compensated by using elements of larger size, and
it is expected that there is an optimum for some intermedi-
ate degree. In addition, simple models may allow for large
elements, but complex models with fine details may require

small elements for a proper representation, which naturally
would favour elements of a lower degree. The goal of the
current paper is to gain a rough idea of which element and
degree provides the best overall accuracy for a given amount
of computing time.

The spatial discretization error is expected to behave as
𝐶ℎ𝑝+1 with element size ℎ and error constant 𝐶 . Among
elements of the same degree, the constant 𝐶 may be quite
different for each version and will depend on the problem.
Because of that, a larger CFL number does not necessarily
imply a better performance.

Given these considerations, it is not straightforward to pre-
dict the actual performance. Therefore, numerical tests were
performed on a homogeneous test problem with an exact solu-
tion to obtain some insight into the relative efficiency of the
various elements. If there are multiple versions of an ele-
ment, only those for the most efficient one will be shown,
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EFFICIENCY OF TRIANGULAR FINITE ELEMENT 9

F I G U R E 1 1 As Figure 10 but for the RMS errors, showing a similar deterioration of the convergence below about 10−6.

namely version F for the 30-node degree 5, version A for
the 39-node degree-6 element, and version C for the 57-node
degree-7 element.

Homogeneous problem

The test problem consists in solving the acoustic wave equa-
tion (1) for a homogeneous problem with a delta-function
source at 𝐱𝑠 (c.f. Mulder, 2020). The domain is a square with
sides of 2 km. Zero Dirichlet boundary conditions are imposed
on all sides. The sound speed 𝑐 = 2 km/s and the density
𝜌 = 2 g/cm3. The point source at the centre has a wavelet

𝑤(𝑡) =

{[
4(𝑡∕𝑇𝑤){1 − (𝑡∕𝑇𝑤)}

]𝑞
, 𝑡 ∈ (0, 𝑇𝑤),

0, 𝑡 ∉ (0, 𝑇𝑤),
(5)

and in this example, 𝑇𝑤 = 0.2 s. The power 𝑞 = 16 is chosen
large enough to avoid a discontinuity in the higher derivatives

at the start and end of the wavelet, which would otherwise
reduce the accuracy. Note that a Ricker wavelet is infinitely
many times differentiable and does not have this problem, but
is not bounded in time, although in practice it is truncated to
where the amplitudes drop below machine precision.

Figure 1a displays the solution at time 𝑡max = 1.25 s for a
source at 𝑥𝑠 = 𝑧𝑠 = 1 km. Figure 1b shows the seismogram
for receivers between 𝑥𝑟 = 200 and 1800 m at a 50-m interval
and a depth 𝑧𝑟 = 1200 m.

The error in the numerical solution is measured by the rela-
tive maximum error, defined as the maximum absolute value
of the error over all traces divided by the maximum value
of the recorded values. The computations were carried out in
double precision (16 digits).

The maximum time step for second-order time stepping
is taken as Δ𝑡max =

√
2∕𝜎max, where 𝜎max is the maximum

eigenvalue of the spatial operator, the product of the inverse
diagonal mass matrix and the stiffness matrix. The power
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10 MULDER

method (von Mises & Pollaczek-Geiringer, 1929) provided
an estimate of 𝜎max for each run. The results turned out to be
only slightly larger, by a few percen than the crude estimates
in Table 1, obtained on a single reference element with natural
boundary conditions. As mentioned before, Δ𝑡max should be
increased by a given factor for higher-order time stepping.

Note that the sampling criterion for dispersion correction
for a maximum frequency 𝑓max is Δ𝑡 ≤ 1∕(𝜋𝑓max), smaller
than the usual Nyquist bound Δ𝑡 ≤ 1∕(2𝑓max) (Koene et al.,
2018). Here, the maximum time step in the simulations was
limited to Δ𝑡 ≤ 4 ms, corresponding to about 80 Hz with the
first sampling criterion. At this frequency, the amplitude of
the wavelet has decreased well below 10−10, relative to its
maximum at zero frequency.

The zero frequency in the wavelet causes problems with
the implementation of dispersion correction by Koene et al.
(2018). At the maximum recording time, the recorded sig-
nal is cut off abruptly and this leads to large errors towards
the end of the trace. To avoid this problem, the recording
time was extended beyond 𝑡max and the tail of the recorded
data was tapered to zero, with a smooth taper of the form
𝜉2(3 − 2𝜉), 0 < 𝜉 < 1, where 𝜉 decreases linearly from 1 at
a number of samples beyond 𝑡max down to zero at the end of
the trace. Then, the dispersion correction was applied and the
result truncated to 𝑡max = 1.25 s. To avoid large errors around
that time, the taper should start at a larger time value, at some
distance beyond 𝑡max. Figure 2 illustrates how the taper length
affects the error. In Figure 2a, the taper is a width of about 1 ms
or seven sample points and starts at 15 samples beyond 𝑡max.
The noise and signal are similar in size. With a taper width
of 10 ms, involving 687 samples and starting at 15 samples
beyond 𝑡max, the noise is no longer visible in Figure 2b. The
following results are based on a rather large taper length of
0.19 s, starting at 𝑡max + 0.01 s. A similar extension is applied
at the start of the wavelet, adversely affecting the efficiency
of the dispersion correction. The advantage of this generous
choice is that the same tapering parameters can be used in all
simulations, but the disadvantage is that the computing times
are larger than strictly necessary. This should be kept in mind
when judging the convergence results.

Figure 3a displays convergence results for the degree-2 to
degree-8 elements. The total number of degrees of freedom,
including the zero boundary values, is denoted by 𝑁 . In two
dimensions, the average element size ℎ ∝ 𝑁−1∕2. The relative
maximum error is plotted as a function of 𝑁1∕2. The slope of
the curves on average follows the expected convergence rate
of 𝑁−1∕2(𝑝+1). To translate this result into the finite-element
equivalent of points per wavelength, a frequency of 20 Hz
is taken, where the spectrum of the wavelet has dropped to
10% of its maximum value. With a sound speed of 2 km/s
and sides of 2 km, the domain contains 20 wavelengths in
the horizontal or vertical direction and about 𝑁1∕2∕20 nodes
per wavelength.

Figure 3b shows the relative maximum error as a func-
tion of the observed wall clock time for the higher-order
time stepping, measured only for the time-stepping part of
the run and averaged over five runs. The C code dates back
to 1995 and was at the time used to prepare the material for
Mulder (1996). The observed times are not at all representa-
tive of what can be obtained on modern hardware but are still
useful for a relative comparison. Figures 3c and 3d display
similar results for second-order time stepping and dispersion
correction. When the errors become very small, around 10−7
to 10−8, the results are not as accurate as with the more robust
higher-order time stepping, but the computing cost is signifi-
cantly smaller. Figure 4 shows similar results for the relative
root-mean-square (RMS) error. The results suggest that the
degree-4 element is a good choice for an accuracy down to
10−4 to 10−5 in this simple example.

Corners

The homogeneous problem on the square confirms the
expected convergence behaviour with errors of the form
𝐶ℎ𝑝+1, where the mesh size ℎ is proportional to 𝑁−1∕2 for
a number of degrees of freedom 𝑁 . In general, however, this
convergence is not obtained, for various reasons. One is the
lack of regularity of the wavelet, but that is avoided here
by choosing a wavelet that is sufficiently many times differ-
entiable in time. If the finite-element mesh does not follow
the interfaces between different materials, where the model
parameters are discontinuous, the convergence degrades. The
same may happen with large variations of the material param-
eters inside an element. Distorted meshes (Geevers et al.,
2018a), sharp pinch-outs, thin layers, curved interfaces and
very rough surfaces can cause problems and may require some
form of homogenization to avoid elements much smaller than
the modelled wavelengths.

Corner singularities (Tschöke & Gravenkamp, 2018, for
instance) in the topography or at material interfaces can also
adversely affect convergence. As an illustration of the lat-
ter, Figure 5 shows a coarser mesh for a homogeneous test
problem with zero Neumann or natural boundary conditions
all around. The sound speed is 3 km/s, and the density is
2 g/cm3. The wavelet is taken as the second time deriva-
tive 𝑤′′(𝑡) of Equation (5) with a power 𝑞 = 16 and length
𝑇𝑤 = 0.1 s. The source is located at 𝑥𝑠 = 500 m and 𝑧𝑠 =
310 m. The vertical receiver line at 𝑥𝑟 = 400 m starts at
𝑧𝑟 = 250 m and ends at 𝑧𝑟 = 590 m with a 10-m spacing.
Figure 6 displays the seismogram. The convergence under
mesh refinement in Figure 7 with higher-order time step-
ping for elements for degree 2–8 initially shows the expected
behaviour, but the convergence of the relative RMS error
breaks down around about 10−4 to hardly better than second
order.
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EFFICIENCY OF TRIANGULAR FINITE ELEMENT 11

The wavelet has a peak frequency of 26 Hz, and its ampli-
tude has dropped by 10% at 54 Hz. The corresponding
wavelengths are 56 and 115 m. With an area of 0.59 km2, this
amounts to 𝑁1∕2∕14 or 𝑁1∕2∕6.7 nodes per wavelength.

Inhomogeneous example

Figure 8 displays a model for an acoustic test problem, the
same as in Mulder (2023a). The shot at 𝑥𝑠 = 100 m and 6-m
depth is indicated by a black star and the receiver positions
by the yellow line with 𝑥𝑟 = 0 m and 𝑧𝑟 from −750 to 1970 m
with a 20-m spacing. The wavelet is the second time derivative
𝑤′′(𝑡) of Equation (5) with a power 𝑞 = 16 and length 𝑇𝑤 =
0.2 s, different from the one in Mulder (2023a). Traces are
recorded up to 1.2 s. Figure 9 shows the seismogram, clipped
at 10% of its peak amplitude.

The errors were estimated by comparing it to a solu-
tion on a very fine mesh. Figures 10 and 11 display the
relative maximum and RMS errors. Convergence is reason-
able down to around 10−6 and then slows down. Again, the
degree-4 element performs quite well. Only for errors below
10−4, the higher-degree elements become more efficient in
this example.

CONCLUSIONS

The efficiency of two-dimensional continuous mass-lumped
finite elements on triangles was studied for elements of
degrees 2–8, including newer elements of degree 5–7 obtained
with a sharper and less restrictive accuracy criterion for mass
lumping than the classic one. There may, however, exist more
efficient elements of higher degree.

Three acoustic test problems were considered. The first is
a homogeneous example on a square domain and exhibits the
expected convergence behaviour in terms of element size. The
higher-degree elements are more accurate than those of lower
degrees but are most costly because they have a larger number
of nodes and impose smaller time steps. For a relative accu-
racy of around 0.01% or larger, the degree-4 element appears
to be a good choice. The second test problem is also homoge-
neous but has simple topography and as such will be impacted
by the notorious corner singularities. The convergence tests
on a sequence of successively finer meshes initially show
the same convergence as would be obtained on a rectangular
domain but deteriorates at smaller relative root-mean-square
errors, below 0.01%. In this case, the degree-4 element again
performs well. The third example is a check-shot problem
with a more complex topography and layers with different
properties, although still piecewise constant per layer. Again,
the degree-4 element appears to be the most attractive for an
accuracy of 0.01% or larger.
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