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75TH ANNIVERSARY OF SIGNAL PROCESSING  
SOCIETY SPECIAL ISSUE
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Geert Leus , Antonio G. Marques , José M.F. Moura , 
Antonio Ortega , and David I Shuman  

S ignal processing (SP) excels at analyzing, processing, and 
inferring information defined over regular (first continu-
ous, later discrete) domains such as time or space. Indeed, 

the last 75 years have shown how SP has made an impact in 
areas such as communications, acoustics, sensing, image 
processing, and control, to name a few. With the digitaliza-
tion of the modern world and the increasing pervasiveness of 
data-collection mechanisms, information of interest in current 
applications oftentimes arises in non-Euclidean, irregular do-
mains. Graph SP (GSP) generalizes SP tasks to signals living 
on non-Euclidean domains whose structure can be captured by 
a weighted graph. Graphs are versatile, able to model irregu-
lar interactions, easy to interpret, and endowed with a corpus 
of mathematical results, rendering them natural candidates to 
serve as the basis for a theory of processing signals in more 
irregular domains.

The term graph signal processing was coined a decade ago 
in the seminal works of [1], [2], [3], and [4]. Since these papers 
were published, GSP-related problems have drawn significant 
attention, not only within the SP community [5] but also in 
machine learning (ML) venues, where research in graph-based 
learning has increased significantly [6]. Graph signals are well-
suited to model measurements/information/data associated 
with (indexed by) a set where 1) the elements of the set belong 
to the same class (regions of the cerebral cortex, members of 
a social network, weather stations across a continent); 2) there 
exists a relation (physical or functional) of proximity, influence, 
or association among the different elements of that set; and 3) 
the strength of such a relation among the pairs of elements is 
not homogeneous. In some scenarios, the supporting graph is 
a physical, technological, social, information, or biological net-
work where the links can be explicitly observed. In many other 
cases, the graph is implicit, capturing some notion of depen-
dence or similarity across nodes, and the links must be inferred 
from the data themselves. As a result, GSP is a broad frame-
work that encompasses and extends classical SP methods, tools, 
and algorithms to application domains of the modern techno-
logical world, including social, transportation,  communication, 
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and brain networks; recommender systems; financial engineer-
ing; distributed control; and learning. Although the theory 
and application domains of GSP continue to expand, GSP has 
become a technology with wide use. It is a research domain 
pursued by a broad community, the subject of not only many 
journal and conference articles, but also of textbooks [5], spe-
cial issues of different journals, symposia, workshops, and spe-
cial sessions at ICASSP and other SP conferences.

In this article, we provide an overview of the evolution of 
GSP, from its origins to the challenges ahead. The first half is 
devoted to reviewing the history of GSP and explaining how 
it gave rise to an encompassing framework that shares mul-
tiple similarities with SP, and especially digital SP (DSP). A 
key message is that GSP has been critical to develop novel and 
technically sound tools, theory, and algorithms that, by leverag-
ing analogies with and the insights of DSP, provide new ways 
to analyze, process, and learn from graph signals. In the second 
half, we shift focus to review the impact of GSP on other dis-
ciplines. First, we look at the use of GSP in data science prob-
lems, including graph learning and graph-based deep learning. 
Second, we discuss the impact of GSP on applications, includ-
ing neuroscience and image and video processing. We finally 
conclude with a brief discussion of the emerging and future 
directions of GSP.

The early roots
The roots of GSP can be traced to algebraic and spectral graph 
theory, harmonic analysis, numerical linear algebra, and spe-
cific applications of these ideas to areas such as data represen-
tations for high-dimensional data, pattern recognition, (fast) 
transforms, image processing, computer graphics, statistical 
physics, partial differential equations, semisupervised learn-
ing (SSL), and neuroscience. Algebraic graph theory [7] dates 
back to the 1700s, and spectral graph theory [8] dates back to 
the mid-1900s. They study mathematical properties of graphs 
and link the graph structure to the spectrum (eigenvalues and 
eigenvectors) of matrices related to the graph. However, they 
generally did not consider potential signals that could be liv-
ing on the graph.

In the late 1990s and early 2000s, graph-based methods for 
analyzing and processing data became more popular, indepen-
dently, in a number of disciplines, including computer graphics 
[9], image processing [10], graphical models in Bayesian statis-
tics [11], [12], dimensionality reduction [13], SSL [14], and neuro-
science (e.g., the detailed history included in [15]). For example, 
in computer graphics, Taubin utilized graph Laplacian eigen-
vectors to perform surface smoothing by applying a low-pass 
graph filter to functions defined on polyhedral surfaces [9], and 
later used similar ideas to compress polygonal meshes. In image 
processing, weighted graphs can be defined with edges being a 
function of pixel distance and intensity differences. Such semilo-
cal and nonlocal graphs were exploited for denoising (bilateral 
filtering), image smoothing, and image segmentation (e.g., in 
[10] and [16]). Graphical models [12]— in particular, undirected 
graphical models, also referred to as Markov random fields—
model data as a family of random variables (the vertices), with 

the graph edges capturing their probabilistic dependencies. 
Through the graph, these models sparsely encode complex 
probability distributions in high-dimensional spaces. Graphical 
 models have been widely used in Bayesian statistics and Bayes-
ian probabilistic approaches, kernel regression methods, statis-
tical learning, and statistical mechanics [17]. We return to SSL 
and neuroscience and their connections with GSP in the “SSL” 
and “Applications to Neuroscience” sections, respectively.

Also in the late 1990s, two new models were introduced 
for random networks (graphs) to model the structure of com-
plex engineered systems, going well beyond the classical 
Erdös–Rényi random graphs: real-world large networked sys-
tems exhibit small-world characteristics (the Watts–Strogatz 
model) and scale-free degree distributions (the Barabási–
Albert model). This led to a flurry of activity, usually referred 
to as network science, concerned with analyzing and design-
ing complex systems like telecommunication, power grid, and 
large-scale infrastructure networks [18]. Although the central 
focus of network science was on properties of the network and 
its nodes (e.g., centralities, shortest paths, and clustering coef-
ficients), network science researchers also leveraged graphs to 
explore the dynamics of processes such as percolation, traf-
fic flows, synchronization, and epidemic spread [18, Part 5], 
often adopting mean field approximations. For example, in the 
investigation of the susceptible-infected-susceptible epidemio-
logical model in scale-free graphs in [19], each vertex can be 
seen as having a 0/1 (susceptible/infected) signal residing on it. 
Advancements in network science have certainly informed the 
subsequent development of GSP.

In parallel, a stream of new methods for analyzing data on 
graphs were investigated. These methods tried specifically to 
combine 1) intuition and dictionary constructions for perform-
ing computational harmonic analysis on data on Euclidean 
domains with 2) generalizable ways to incorporate the structure 
of the underlying graph into the data transforms. For example, 
one of the first general wavelet constructions for signals on 
graphs was the spatial wavelet transform of [20], which was 
defined directly in the vertex domain. In the seminal work of 
Crovella and Kolaczyck [21], diffusion wavelets were construct-
ed by 1) creating a multiresolution of approximation spaces, 
each spanned by graph signals generated by diffusing a unit of 
energy outwards from each vertex for a fixed amount of time, 
and 2) computing orthogonal diffusion wavelets to serve as basis 
functions for the detail spaces that are the sequential orthogo-
nal complements of the approximation spaces. Spectral graph 
wavelets [1] traded off the orthogonality of diffusion wavelets 
for a simpler generative method for each wavelet atom: define 
a pattern in the graph spectral domain and localize that pattern 
to be centered at each vertex of the graph. Meanwhile, the alge-
braic SP approach [22], [23]  showed that classical SP can be 
captured by a triplet defined by a shift operator. Different shifts 
lead to different SP models and different Fourier transforms. 
In particular, it showed that a shift based on Chebyshev poly-
nomials, appropriate for lattice models like in images, leads to 
standard block transforms such as the discrete cosine transform 
(DCT) and  Karhunen–Loève transform (KLT), which can be 
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understood as Fourier transforms on certain graphs. Numer-
ous other types of multiresolution transforms and dictionaries 
for data residing on graphs, trees, and compact manifolds were 
investigated in the subsequent few years. These included lift-
ing and pyramid transforms, graph filter banks, tight spectral 
frames, vertex-frequency transforms that generalized the clas-
sical short-time Fourier transform, and learned dictionaries (see 
[24] and [25] for a more complete literature review and list of 
references). GSP arose from these different fields, coalescing 
multiple perspectives into a common framework and set of 
ideas. In the last decade, this unifying framework has evolved 
into a full-fledged theory and technology.

The theoretical underpinnings
Ten years ago, [1], [2], [3], and [4] introduced the field of GSP 
and established many of its foundations. Remarkably, these 
works approached the problem from two different perspectives. 
Inspired by graph theory and harmonic analysis, the authors of 
[1] and [2] use the graph Laplacian as the core of their theory, 
naturally generalizing concepts such as frequencies and filter 
banks to the graph domain. Differently, the authors of [3] and 
[4] follow an algebraic approach, under which the multiplica-
tion of a graph signal by the adjacency matrix of the supporting 
graph yields the most basic operation of shift for a graph signal. 
Based on this simple operation, more advanced tools such as 
filtering, graph Fourier transforms (GFTs), graph frequency, 
or total variation can be generalized to the vertex and spec-
tral graph domains. Rather than being considered competing 
approaches, these works brought complementary views and 
tools and, jointly, contributed to increasing the attention on the 
field. After introducing some common notations, this section 
reviews these two approaches and then explains how they were 
merged into an integrated framework that facilitated drawing 
links with classical SP and propelled the growth of GSP.

Basic definitions and notational conventions
The goal in GSP is to leverage SP and graph theory tools to 
analyze and process signals defined over a network domain, 
with notable examples including technological, social, gene, 
brain, knowledge, financial, marketing, and blog networks. 
In these setups, graphs are used to both index the data and 
represent relations/similarities/dependencies among the loca-
tions of the data. We denote the underlying weighted graph 
by ( , , ),G V E ~=  where { , , }N1V| f=  denotes the set of 
N graph vertices; E V V#1  denotes the set of graph edges; 
and : RE "~  is a weight function that assigns a real-valued 
weight to each edge, with a higher edge weight representing 
a stronger similarity or dependency between the two vertices 
connected by that edge. A graph with edge weights all equal 
to one is called unweighted. A graph signal contains informa-
tion associated with each vertex of the graph. For simplicity, we 
focus our discussion on scalar, real-valued graph signals (each 
signal is a mapping from V  to ),R  but the values associated 
with each node could be discrete, complex, or even vectors (e.g., 
when multiple features per node are observed). Each  scalar, 
real-valued graph signal can equivalently be represented as an 

N-dimensional vector [ , , ] ,x xx N1| f= <  with xi  (also written 
sometimes as [ ] )x i  representing the value of the signal at vertex 
i. An example of a graph signal is shown in Figure 1.

To gain some insight, consider the problem of studying 
Twitter patterns. Assume that we have N Twitter users: each 
vertex i V!  represents a user i, and each edge ( , )e i j E!=  
captures that two users i and j follow each other. The data, ,xi  
indexed by node i could, e.g., be the number of tweets that user 
i tweeted in a given time interval. In a second application, to 
understand traffic flow in cities, we can examine the number of 
pickups of for-hire vehicles (e.g., taxis, Uber or Lyft cars, and 
so on) over a given time period. The graph G  can be the city 
road map, with the vertices i V!  representing intersections, 
and the edges e E!  representing road segments between 
intersections. The data xi  at each vertex i might, e.g., be the 
number of pickups close to that intersection over the time peri-
od of interest. The graphs G  in such real-world applications 
can be modeled as undirected (if ( , ) ,i j E!  then ( , ) ),j i E!  
or directed (e.g., to capture one-way streets).

Classical SP signals such as audio and image signals that 
reside on Euclidean domains can also be viewed as graph 
signals. Consider for instance, finite-length discrete-time 1D 
signals, e.g., the N vertices of the graph are the time instances 

, , ,i N0 1f= -  with N being the window length. As the signal 
value xi 1+  at time i 1+  is usually closely related to the signal 
value xi  at the preceding time, there is a directed edge from ver-
tex i to vertex .i 1+  At ,i N 1= -  there are different options for 
the boundary conditions; here, we consider the periodic bound-
ary condition, which means that the time instant “next” to the 
terminal instant N 1-  is .i 0=  The resulting “time graph” is 
then a directed cycle Gdc  (see Figure 2). By similar reasoning, 
vertices in the image graph represent the pixels, and because 
the image brightness or color x ,i j  at pixel (i, j) is usually highly 
related to the brightness or colors of its four neighboring pixels, 
there are undirected edges from (i, j) to its neighboring pixels. 
The corresponding graph is then an undirected 2D lattice.

At the core of GSP are N N#  matrices that encode the 
graph’s topology. The most prominent are 1) the weighted 
adjacency matrix A, whose (i, j)-entry is the edge weight 

(( , ))i j~  if ( , )i j E!  and zero otherwise; 2) the combinato-
rial (or nonnormalized) graph Laplacian ,L D A|= -  where 

( )diagD A1=  is the diagonal matrix of vertex degrees (sums 
of the weights of the edges adjacent to each vertex) and 1 is an 
N 1#  vector of all ones; and 3) the normalized graph Lapla-
cian .L D LD( / ) ( / )1 2 1 2

norm|= - -  We elaborate on the role of these 
matrices in the next section.

The spectral approach for GSP
Classical Fourier analysis of a 1D signal decomposes the sig-
nal into a linear combination of complex exponential functions 
(continuous or discrete) at different frequencies, with increasing 
frequencies corresponding to higher rates of oscillation and ba-
sis functions that are less smooth. The spectral approach to GSP 
[1], [2] generalizes this classical Fourier analysis by  writing 
graph signals as linear combinations of a basis of graph signals 
with the property that the basis vectors can be (roughly) ordered 
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according to how fast they oscillate across the graph, or, related, 
how smooth they are with respect to the underlying graph struc-
ture. By “smooth” in this context, we mean that the values of 
the graph signal at each pair of neighboring vertices are similar.

The operator that captures this notion of smoothness with 
respect to the underlying (undirected) graph is the graph 
Laplacian L. It is a discrete difference operator as we have

[ ] ( ) ( )A x x A x xLx , ,i i j i j i j i j
jj

N

1 Ni

= - = -
!=

//

where Ni  is the neighborhood of node i and A ,i j  is the (i, j)-
entry of the adjacency matrix A. Because L  is a real symmet-
ric matrix, it has a set of orthonormal eigenvectors { }v N

0
1

, ,=
-  

and a set of real nonnegative eigenvalues { } .N
0
1m, ,=
-  Assuming a 

connected graph, it can further be shown that there is only one 
eigenvalue zero, e.g., ,00m =  with corresponding eigenvector 

/ .N1v0 =  In matrix form, we obtain ( ) ,diagL V Vm= <  
with [ , , ]V v vN0 1f= -  and [ , , ] .N

T
0 1fm m m= -

Importantly, the graph Laplacian can also be viewed as a 
graph extension of the time-domain Laplacian operator / .t2 22 2  
Just as the 1D complex exponentials—the eigenfunctions of 
the time-domain Laplacian operator—capture a notion of fre-
quency, we can interpret the graph Laplacian eigenvectors as 
graph frequency vectors, with the associated graph Laplacian 
eigenvalues capturing a notion of the rate of oscillation [2].

The Laplacian operator introduces a measure of smooth-
ness for a graph signal ,x  through the graph Laplacian qua-
dratic form

 ( )A x xx Lx ,
( , )

i j i j
i j

2

E

= -<

!

/  (1)

which penalizes large differences between signal values at 
strongly connected vertices. Because ,v Lv m=<

, , ,  it is then clear 
from (1) that the larger the graph frequency ,m,  the less smooth 
(or more variable) the graph Laplacian eigenvector .v,  So, with 
the indexing convention ,0 N0 1 1g1 # #m m m= -  the graph 
frequency vectors { }v N

0
1

, ,=
-  are ordered according to increasing 

variability (see Figure 1). Using the Laplacian eigenvectors as 
the basis, we can now define a GFT as .V<  It transforms a graph 
signal x into its frequency components as .V xx = <t

Graph filters can then be interpreted as operators that mod-
ify the different frequency components of a signal x individu-
ally. That is, the graph filter operation can be represented in the 
graph Fourier domain by :R RH "  so that [ ] ( ) [ ] .xy H m=, , ,t t  
In most cases, the spectral function H  (oftentimes referred to 
as a kernel) is set to a prespecified analytical form (typically 
parametric) that promotes certain properties in the output sig-
nals [e.g., rectangular kernels promote smoothness and remove 
noise (see Figure 1)]. However, nonparametric approaches 
can also be used. Equally as important, Shuman et al. [2] also 
illustrate how graph filters can be used to interpolate missing 
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FIGURE 1. (a) An example of a graph with a color-coded graph signal on top. (b) The signal in the graph frequency domain and in red the frequency 
response of a potential low-pass graph filter. (c) The filtered graph signal. (d) The first three eigenvectors of the graph Laplacian ordered with decreasing 
smoothness (increasing eigenvalue). 
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 values, and to design signal dictionaries whose atoms concen-
trate their energy around a few frequencies or vertices, high-
lighting their relevance in a number of applications.

The algebraic approach for GSP
In classical SP, convolution is a key building block pres-
ent in many algorithms, including filtering, sampling, and 
 interpolation. In defining convolution and filtering, the time 
shift, that is, the unit delay that transforms a signal into a de-
layed version of itself, plays a critical role. The output of a lin-
ear time-invariant filter is a weighted linear combination of 
delayed versions of the input. Similarly, the discrete Fourier 
transform (DFT) can be understood as the transformation that 
diagonalizes every linear time-invariant filter and provides an 
alternative description for signals and filters.

In extending these ideas to GSP, the two key contributions 
of [3] and [4] are 1) highlighting the relevance of defining a 
“graph-aware” operator that plays the role of the “most basic 
operation” to be performed on a signal x defined over a graph 

;G  and 2) setting this operation as ,Ax  i.e., the multiplication 
of the graph signal x by the adjacency matrix A of .G  The 
motivation for the latter choice is twofold. First, A is a simple 
(parsimonious and linear) operator that combines the values 
of x in a manner that accounts for the local connectivity of .G  
Second, when particularized to time-varying signals defined 
over the directed cycle ,Gdc  using A xdc  is equivalent to the 
classical unit delay, i.e., [ ] [ ] .A x xi i1dc =+

How can this basic, graph-aware operator be leveraged to 
design 1) linear graph filters that are applied to a graph signal 
to generate another graph signal and 2) 
linear transforms that provide an alter-
native representation for a graph sig-
nal? In classical SP, the basic, nontrivial 
operation applied to a signal is the unit 
delay (time shift); in other words, the 
simplest filter is the time-shift filter .z 1-  
Because graphs are finite, we consider 
DSP with finite signals, and, for sim-
plicity, with periodic signal extensions. 
Generic linear filters are then polyno-
mials of this basic operator of the form 

( ) ,p z p p z p z ( )N
0 1

1
1

1g= + + +- - -  
with z l-  being the consecutive appli-
cation of the operator z 1-  to a time 
signal l times. DSP polynomial filters 
are shift invariant in the sense that 

( ) ( ) .z p z p z z1 1$ $=- -

Hence, to address the first ques-
tion, [3] sets the simplest signal 
operation in GSP as multiplication 
by the adjacency matrix A and, sub-
sequently, defines graph filters as 
(matrix) polynomials of the form 

( ) .p p p pA I A A( )
N

N
0 1 1

1g= + + + -  
It is easy to see that polynomial fil-
ters are A invariant, in the sense that 

( ) ( ) .p pA A A A$ $=  Apart from the theoretical motivation, 
the polynomial definition exhibits a number of advantages. 
When applied to a graph signal x, the operation Ax can be 
understood as a local linear combination of the signal values at 
one-hop neighbors. Similarly, A x2  is a local linear combina-
tion of Ax, reaching values that are in the two-hop neighbor-
hood. From this point of view, a graph filter ( )p A  represented 
by a polynomial of order L is mixing values that are at most L 
hops away, with the polynomial coefficients { }pl l

L
0=  represent-

ing the strength given to each of the neighborhoods. Another 
advantage is that if A is set to Adc  (the graph representing the 
support of classical time signals), the graph polynomial defini-
tion ( )p Adc  reduces to the classical time-shift definition ( )p z 1-  
so that graph filters become linear time-invariant filters.

To address the second question, [3] defines the GFT as the 
linear transform that diagonalizes these graph filters of the 
form ( ).p A  Letting ( )diagA V V 1m= -  be the eigendecom-
position of the (possibly directed) adjacency matrix A, then 

( ) ( ( ) ) ( (diag( ))p p pdiagA V V V V1 1m m= =- -  (note that we  
use V 1-  now instead of V<  because the eigenvectors are not 
necessarily orthonormal as for the Laplacian). In other words, 
matrix polynomials can be understood as operators that 
transform the input by 1) multiplying it by the matrix ,V 1-   
2)  applying a diagonal operator ( ( )),p diag m  and 3) transform-
ing the result back to the vertex domain with a multiplication 
by V. The GFT of a graph signal and the signal spectral repre-
sentation is then set as the multiplication by ,V 1-  and the fre-
quency response of a filter is found by calculating ( ( ))p diag m  
(similar to the spectral approach description in the previous 
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section). From the GFT of the signal, common SP concepts can 
now be defined in GSP [4], including ordering graph frequen-
cies from low and high graph frequencies, or designing low- 
and high-pass graph filters. Figure 2 shows the generalization 
of the time domain to a more general graph domain. The appli-
cations in [3] to data prediction, graph signal compression, data 
classification, and customer behavior prediction for service 
providers, and in [4] to filter design and malfunction detection 
in sensor networks show the breadth of application domains.

The benefits of a joint framework
Although having different origins, the approaches in [1] and 
[2], and in [3] and [4] bring complementary perspectives. The 
work in [1] and [2] relies on the graph Laplacian to capture 
the structure of ,G  uses its eigendecomposition to character-
ize graph signals and define filtering operations, and draws 
clear links with existing graph-based techniques in a number 
of applications. In [3] and [4], the focus is on the shift opera-
tion in the vertex domain, postulating the use of the adjacency 
matrix as the building block to design GSP algorithms, and 
unveiling a number of similarities with classical SP. Although 
some early works mixed the features of [1] and [2], and of [3] 
and [4] (e.g., the use of polynomials based on the Laplacian 
matrix), the publication of these four papers and related works 
led to the emergence of works that combine both approaches 
under a common framework. One way to do so is to define 
a generic “graph-shift operator” (GSO) that plays a dual role: 
1) it can be viewed as the most basic operation applied to a 
graph signal, and 2) it codifies the structure of the graph in a 
more generic way than L or A so that it can be used to tackle 
a broader range of setups. Under this framework, the linear 
GSO S RN N! #  has been set to different adjacency matrices 
(e.g., one and two hops), different graph Laplacians (e.g., com-
binatorial, normalized, and random walk), the precision matrix 
of a Gaussian–Markov random field, or even combinations of 
those. Based on the eigendecomposition of this operator, given 
by ( ) ,diagS V V 1m= -  linear graph filtering can be equiva-
lently understood as an operator that is linear and orthogonal 
(diagonal) in the frequency domain defined by ,V 1-  or as the 
multiplication by a matrix that is a linear combination of suc-
cessive applications (powers) of the GSO S:

 ( ) ( ) ( ) hdiag orH S V V H S Sh l
l

l

N
1

0

1

= =-

=

-
t /  (2)

where the ( )H S  notation is used to emphasize the dependence 
on the GSO S. The first definition in (2) focuses on the frequen-
cy domain, with the filter parameters being the N-dimensional 
frequency response [ , , ] .h hh N0 1f= <

-
t t t  The second defini-

tion in (2) focuses on the vertex domain, with the parameters of 
the filter being the N filter taps [ , , ] .h hh N0 1f= <

-  Although 
we focus on degree N – 1 polynomials, thanks to the Cayley–
Hamilton theorem, the definition in (2) can represent a matrix 
polynomial of any degree [3]. With these models at hand, the 
literature promptly addressed tasks such as prediction, classi-
fication, compression, filter identification, and filter design in 

graph/network contexts [3], [26], [27]. The particular solution 
obtained for any of these tasks depends on the GSO at hand as 
well as the assumptions on the graph filter. For example, if the 
goal is to estimate the graph-based linear mapping from a set 
of input–output pairs collected in matrices [ , , ]X x xM1 f=  
and [ , , ],Y y yM1 f=  one requires M N=  input–output pairs 
if no structure is assumed for H, and a single M 1=  pair if 
one assumes that H is a graph filter. Furthermore, defining the 
counterparts of classical finite-impulse response (FIR) and 
infinite-impulse response (IIR) filters as ( ) bH S Sl

L
l

l
0
1

FIR R= =
-  

and ( ) ( ) ,aH S Sl
L

l
l

0
1 1

IIR R= =
- -  respectively, identifying such 

filters from input–output observations is feasible, even if only 
a subset (with cardinality larger than 2 L) of the signal values 
is observed [27]. Additionally, using the definitions in (2), it is 
not difficult to show that any cascade/parallel/feedback con-
nection of graph filters can also be written as a graph filter, 
opening the door to make and exploit connections between 
graph-network processes and classical tools in control.

A natural next step is to use (2) to model certain proper-
ties of classes of graph signals of interest. To be more specific, 
consider that we model a graph signal x RN!  from a class 
of interest as ( ) ,x H S z=  with z being a hidden seed signal 
and ( )H S  a generative graph filter that “transfers” some of the 
properties of S to x. Although mathematically simple, mod-
eling graph signals as ( )x H S z=  has proven to be fruitful. 
A typical approach is to assume some parsimonious struc-
ture on either z, the filter ( ),H S  or both, and then analyze the 
impact of those assumptions on the properties of x. Standard 
assumptions have included ( )H S  being a band-limited graph 
filter so that x is graph-band limited [28], ( )H S  being low pass 
so that x is smooth [2], [29], [30], z being a white signal so 
that x is graph stationary [31], [32], or z being sparse so that 
x is a diffused graph signal [33], as well as combinations of 
those. More importantly, the combination of the generative 
model ( )x H S z=  and one or more of the previous structural 
assumptions have been leveraged to successfully generalize a 
number of estimation and learning tasks to the graph domain. 
Early examples investigated in the literature included signal 
denoising, sampling and interpolation, input identification, 
blind deconvolution, dictionary design, SSL, classification, 
and the generalization of stationarity to graph domains (see, 
e.g., [24] for a detailed review). Although covering all of these 
tasks goes beyond the scope of this article, we next discuss 
three illustrative milestones: 1) sampling and interpolation, 2) 
source identification and blind deconvolution, and 3) statistical 
descriptions of random graph signals.

We start with a simple sampling and interpolation setup that, 
due to its practical relevance, received early attention from mul-
tiple research groups [34]. Consider the sampling set M V3  
with cardinality ,M N#  and define the selection matrix 

{ , }0 1 M N
M !U #  as the M rows of the N N#  identity matrix 

indexed by the set .M  The sampled signal x xMM| U=  collects 
the values of the graph signal x at the vertex set .M  The goal is 
to use ,xM  along with S, to recover x, leveraging the structure of 
the graph. As the problem is ill-posed, we need to assume and 
enforce some structure on x. Two widely adopted approaches 
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are to 1) assume that x is K-band-limited, i.e., it is in the span 
of the first K eigenvectors of S, for some ,K N1  or 2) assume 
that the signal x is smooth with respect to the underlying graph, 
which can be generically modeled as the norm of )(x H S x-  
being small, where ( )H S  is a low-pass filter tuned to promote 
a particular notion of smoothness. We denote the subspace of 
K-band-limited signals by ( ) { }.for allV V RX K K

K| !b b=  
The statement that ( )x VX K!  is equivalent to saying that x 
is generated via a graph filter with [ , ] .1 0h K N K= < <<

-
t  These 

two alternative assumptions lead to the following optimization 
problems for interpolation, respectively:

 
( ( ))

argmin

argmin

orx x x

x x x I H S x

( )
2
2

2
2

2
2

x

x

V

M

X
M M

M

K

a

U

U

= -

= - + -

)

)

!
 

(3)

with the weight a  controlling the trade-off between minimiz-
ing the smoothness of x)  and how similar x)  and x are for the 
nodes in .M  For band-limited signals, if M K$  and ( )VKMU  
is full rank, the signal x can be identified from its samples xM  via 

( )x V V xK K MMU= @  [28]. Although this is also true for time sig-
nals, other popular results in classical SP, such as ideal low-pass fil-
ters being the optimal interpolators or regularly spaced sampling 
being optimal, do not hold true for the graph domain due to the lack of 
regularity in .G  Regarding the second optimization problem in (3), 
the solution is ( ( ( ) ( )) .H S H Sx I x1

M M MM aU U U= + -) < < <-  
In this case, we can interpret xMMU

<  as a zero-padded 
graph signal that is smoothly diffused through the graph by 
( ( ( ) ( )) .H S H SI 1

MM aU U + -< < -

Using the model ,( )x H S z=  source identification and 
blind deconvolution have also been generalized to the graph 
setting [33]. In both, the signal z is assumed to be sparse. For 
source identification, given a sampled version of x, the goal is 
to identify the locations and nonzero values of z, which can 
be viewed as source nodes whose inputs are diffused through-
out the network represented by S. For blind deconvolution, the 
goal is to use x to identify both the sparse input z and the gen-
erating filter ,( )H S  with a classical assumption being that the 
coefficients h are sparse, or that the filter has a parsimonious 
FIR/IIR structure. Inspired by those works, generalizations 
were also investigated for demixing setups where the aggrega-
tion of multiple signals is observed (e.g., the sum of several 
network processes, each with different sources and dynamics).

Our last example to illustrate the benefits of a common 
GSP framework is the statistical description of random graph 
signals. Characterizing random processes is a challenging task 
even for regular time-varying signals, with stationarity models 
excelling at finding a sweet spot between practical relevance 
and analytical tractability. With this in mind, multiple efforts 
were carried out to generalize the definition of stationarity to 
graph signals [31], [32]. The key step was to say that a zero-
mean random graph signal x is stationary in a normal GSO S 
if it can be modeled as ( ) ,x H S z=  with z being white. This is 
equivalent to saying that the covariance matrix C xxEx = <6 @ 
can be written as a polynomial of the GSO S, illustrating the 
relationship between the underlying graph and the statisti-

cal properties of the graph signal, and establishing meaning-
ful links with Gaussian–Markov random fields that assume 

.S C 1
x= -  With this definition, counterparts to concepts and 

tools such as the power spectral density, periodogram, Wiener 
filter, and autoregressive moving average models were devel-
oped [31]. These developments provide new ways to design 
graph-based covariance estimators and denoise graph signals 
as well as a rigorous framework to better model, understand, 
and control random processes residing on a graph.

We close this section by highlighting that, although some 
instances of the problems discussed had been investigated 
well before the GSP framework was put forth (e.g., denois-
ing based on smooth priors given by powers of the Laplacian, 
or source identification based on graph-diffusion processes), 
those early works were mostly disconnected and focused on 
particular setups. The advent of GSP and use of a common 
language and theoretical framework served a number of pur-
poses: 1) facilitating the identification of connections between 
and differences among existing works, 2) bringing differ-
ent research communities together, 3) enabling the design of 
more complex processing architectures that use early works 
as building blocks, 4) providing a new set of tools for graph 
signals based on the generalization of classical SP schemes 
to the graph domain, and 5) aiding the development of novel, 
theoretically grounded solutions to graph-based problems that 
had been solved in a heuristic manner.

The impact of GSP on data science
GSP has transformed how the SP community deals with irreg-
ular geometric data; however, it has also contributed to areas 
that go beyond SP, having a significant impact on data science-
related disciplines. To illustrate this, we next review several of 
the data science problems where GSP-based approaches have 
made significant contributions.

Graph learning
The field of GSP was originally conceived with a given graph 
(G  or S) in mind. Such a graph could originate from a physi-
cal network, such as transportation, communication, social, or 
structural brain networks. However, in many applications, the 
graph is an implicit object that describes relationships or levels 
of association among the variables. In some cases, the links 
of those graphs can be based on expert domain knowledge 
(e.g., activation properties in protein-to-protein networks), 
but in many other cases, the graph must be inferred from the 
data themselves. Examples include graphs for image process-
ing where the edges are defined based on both pixel distance 
and intensity differences, a k-nearest neighbor graph for SSL 
where edges connect data points with similar sets of features, 
or correlation graphs for functional brain networks. In those 
cases, the problem to solve can be formulated as “given a col-
lection of M graph signals [ , , ] ,X x x RM

N M
1 f != #  find an 

N N#  sparse graph matrix S describing the relations among 
the nodes of the graph.” Clearly, such a problem is severely 
ill-posed, and models used to relate the properties of the graph 
and the signals are key to address it in a meaningful way.
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Learning a graph from data is a topic on its own, with roots 
in statistics, network science, and ML (see [11] and references 
therein). Initial approaches focused on the information associ-
ated with each node separately, so that the existence of the 
link (i, j) in the graph was decided based only on the ith and 
jth row of X. Contemporary (more advanced) approaches 
look at the problem as finding a mapping from X to S, with 
graphical lasso (GL) being the most prominent example. GL 
is tailored for Gaussian–Markov random fields and sets the 
graph to a sparsified version of the precision matrix so that 

( )( / )M1S XX 1. < -  [11]. The contribution of GSP to the prob-
lem of graph learning [30], [35] falls into this second class 
of approaches, where the more sophisticated (spectral and/
or polynomial) relationships between the signals and the 
graph can be fully leveraged. One cluster of early GSP works 
focused on learning a graph S that made the signals in X 
smooth with respect to the learned graph [29]. If smoothness is 
promoted using a Laplacian-based total-variation regularizer 

,x Lxm
M

m m1R <
=  the formulation leads to a kernel-ridge regres-

sion problem with the pseudoinverse of L as the kernel, and 
meaningful links with GL can be established [35]. A second 
set of GSP-based topology inference methods model the data 
X as resulting from a diffusion process over the sought graph 
S through a graph filter. The key questions when modeling 
the observations as )(x H S zm m=  are then the assumptions 
(if any) about the diffusing filter ( )H S  and the input signals 

.zm  Assuming the inputs zm  to be white, which is tantamount 
to assuming that the signals xm  are stationary in S, leads to a 
model where the covariance (precision) matrix of the observa-
tions is a polynomial of the sought GSO S, all having the same 
eigenvectors. This not only provides a common umbrella to 
several existing graph-learning methods but also a new (spec-
tral and/or polynomial) way to address graph estimation [36], 
[37]. Indeed, the fact that GSP offers a well-understood frame-
work for modeling graph signals has propelled the inves-
tigation of multiple generalizations of the aforementioned 
methods, tackling, e.g., directed graphs, causal structure iden-
tification, presence of hidden nodes whose signals are never 
observed, dynamic networks, multilayer graphs, and nonlin-
ear models of interaction. The interested reader is referred to 
[30] and the references therein for more details.

Network science
As discussed in the previous section, advancements in network 
science informed subsequent developments in GSP. It is now 
also the case that GSP techniques have been used to address 
network science problems such as clustering and community 
mining. We mention three examples here. First, in [38], spec-
tral graph wavelets are utilized to develop a new, fast, multi-
scale community mining protocol. Second, by graph-spectral 
filtering random graph signals, feature vectors can be effi-
ciently constructed for each vertex in a manner such that the 
distances between vertices based on these feature vectors re-
semble the distances based on standard spectral clustering fea-
ture vectors. In [39], a detailed account is provided of how that 
approach and other new sampling and interpolation methods 

developed for GSP can be used to accelerate spectral clustering 
by avoiding k-means. Third, [40] uses spectral graph wavelets 
to learn structural embeddings that help identify vertices that 
have similar structural roles in the network, even though they 
may be distant in the graph.

SSL
The goal of SSL is to utilize a combination of labeled and unla-
beled data to predict the labels of the unlabeled data points. The 
labels may be discrete (semisupervised classification) or con-
tinuous (semisupervised regression). Many of the graph-based 
SSL methods (e.g., [14]) investigated by the ML community in 
the early 2000s constructed an undirected, weighted-similarity 
graph, with each vertex representing one data point (either la-
beled or unlabeled), and then diffused the known labels across 
the graph to infer the labels at the unlabeled vertices. This ap-
proach can also be thought of as compelling the vector of la-
bels to be smooth with respect to the underlying graph. Math-
ematically, this results in optimization problems with at least 
two terms: a fitting term that ensures that the vector of labels 
exactly or approximately matches the known labels on the ver-
tices corresponding to the labeled data points, and a regulariza-
tion term of the form ( )x H S x<  for some (symmetric) GSO S  
and (low-pass) graph filter ( )H S  that enforces global smooth-
ness of the signal [41] (as discussed in the “Graph Neural Net-
works” section).

Rather than enforcing global smoothness of the labels with 
respect to the underlying graph, another GSP approach to SSL 
is to encourage the labels to be piecewise smooth with respect 
to the graph by modeling them as a sparse linear combination 
of graph wavelet atoms [42]. Regularization problems resulting 
from this approach feature the same fitting term as mentioned 
previously, but the additional term in the objective function 
captures the sparsity prior through the norm (or mixed norm) 
of the coefficients used to synthesize the labels as a linear com-
bination of the graph wavelets. Finally, in GSP parlance, SSL is 
intimately related to graph signal interpolation so that most of 
the results regarding the sampling and reconstruction of (band-
limited) graph signals, can be (and have been) applied to SSL.

Graph neural networks
Neural networks (NNs) are nonlinear data processing archi-
tectures composed of multiple layers, each of which combines 
(mixes) the inputs linearly via matrix multiplication and then 
applies a scalar nonlinear function to each of the entries of the 
output. The values of the mixing matrices { } L

1H, ,=  are consid-
ered the parameters of the architecture. To avoid an excess of 
parameters, a standard approach is to impose some parsimoni-
ous structure on the mixing matrices (e.g., Toeplitz, low-rank, 
and sparse), giving rise to different families of NNs. Given the 
success of NNs—and convolutional NNs in particular—in 
processing regular data such as speech and images, a natural 
question is how best to generalize these architectures to data 
defined over irregular graph domains. In this context, the ML 
learning community investigated graph NNs that incorporate 
the graph (G  or S) into NN architectures in different ways [6], 
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[43]. GSP offers a principled way to address this question, pos-
tulating that the matrices { } L

1H, ,=  have the form of a graph fil-
ter { ( )} .H S L

1, ,=  This offers both a flexible way to incorporate 
the graph (with the selection of the GSO S being application 
dependent) and also provides a range of options for parame-
terizing the graph filter (e.g., polynomial, rational, and diffu-
sion filters). Similarly, a number of generalizations and novel 
architectures that leverage GSP have been proposed, includ-
ing pooling schemes based on sampling over graphs, graph-
recurrent NNs, architectures defined over product graphs, and 
NNs based on graphon filters [44]. GSP has not only provided 
a common framework to better understand the contributions of 
and links between many of the existing works but has also fa-
cilitated novel contributions on subjects such as transferability, 
robustness, or sensitivity with respect to the graph [45].

Graph-time processing
In many applications, a time series, as opposed to a scalar 
value, is observed at each node of the graph .G  If the length 
of each time series is T, the data at hand can be arranged in 
the form of a matrix [ , , ] ,X x x RT

N T
1 f != #  which can be 

viewed as a collection of N time series (one per node of the 
graph), a collection of T graph signals, or as a single signal 

( )vec X RNT!  that varies across both time and the nodes of 
the graph .G  The first approaches to handle time-varying graph 
signals were based on product graphs that combine a graph of 
the vertices with a graph for the time domain (e.g., a directed 
cycle graph Gdc ) to obtain a single larger graph G Gdc#  with 
NT nodes [46], [47]. This interpretation allows for the use of 
standard GSP tools such as the GFT transform and graph fil-
ters, with the joint GFT being the Kronecker product of the 
original GFT V 1-  and the DFT matrix ,FH  and the joint GSO 
some chosen product (e.g., Kronecker, Cartesian, and strong) 
of the respective GSOs. Indeed, the joint spectrum of the time-
varying graph signal ( )vec X  can be analyzed this way, and 
joint, graph-time filters can be adopted for their denoising or 
interpolation. In their most general form, those filters need not 
be separable over the graph and time domains, thereby increas-
ing their modeling and processing potential.

Later, vector autoregressive (VAR) processes were consid-
ered for graph-time processing. A VAR models a vector process 
by expressing the current vector as a matrix-weighted version of 
past vectors plus some innovation, i.e., .x A x et p

P
p t p t1R= += -  

Considering that the vectors we are handling are graph sig-
nals, the underlying graph structure can be incorporated in 
such VAR models in different ways, leading to different GSP 
extensions. One direction is to replace the matrix weights by 
graph filters, i.e., ( ),A H Sp p=  leading to graph VAR process-
es [48]. In such models, the graph filter can be implemented 
in the graph frequency domain or as a polynomial of the GSO 
in the vertex domain. Furthermore, causal models have been 
assumed where the polynomial order of the graph filter cannot 
be larger than the time delay on which the filter operates [49]. 
Another extension of VAR models also considers the inter-
action between the different nodes of the current vector, i.e., 

,x A x A x et t p
P

p t p t0 1R= + += -  where A0  has a zero diago-

nal. It further enforces sparsity on all of the matrix weights. 
In such structural VAR processes [50], the matrix weights can 
be viewed as graph-adjacency matrices that link the current 
data on a node with past data on the same node as well as with 
current and past data on neighboring nodes. Extensions to non-
linear versions have also been considered.

The value of GSP in science and  
engineering applications
Not surprisingly, GSP methods have been applied to engineer-
ing networks where a clear definition of the graph follows from a 
physical network. These include communication networks (e.g., 
developing distributed schemes to estimate the channels), smart 
grids, power networks, (e.g., designing distributed resource al-
location algorithms for power flow), water networks, and trans-
portation networks (e.g., developing graph-based architectures 
to predict traffic delay). Similarly, GSP has also contributed to 
applications where the network is not explicitly observable but 
can be inferred from additional information, such as social net-
works, meteorological prediction, genetics, and financial engi-
neering. Although all of the previous examples are meaningful 
and relevant, here we briefly highlight the two areas with the 
largest and most consistent GSP activity over the past decade: 
neuroscience and image and video processing.

Applications to neuroscience
Graphs have a long history in neuroscience because they can 
be used to represent different relationships and pairwise con-
nections between regions of the brain, taking each region to 
be a vertex [15]. An anatomical brain graph captures struc-
tural connections between the regions, as measured, e.g., via 
fiber tracts in white matter captured through diffusion mag-
netic resonance imaging (MRI). A functional brain graph, on 
the other hand, aims to capture pairwise interdependencies 
between activity that is measured in the different brain re-
gions. Identifying the functional brain graph has been studied 
extensively for different reasons and with different modali-
ties, the most common of which is functional MRI (fMRI). 
Often, such studies also involve the estimation of dynamic 
graphs [51], [52]. During a sequence of task and rest periods, 
it has, for instance, been shown that on- and off-task func-
tional brain graphs differ substantially [51]. Recent work also 
demonstrates that dynamics in the functional brain graph 
even exist during resting-state fMRI, with meaningful cor-
relations with electroencephalograph, demographic, and be-
havioral data [52].

Interestingly, most of the graph-based approaches in neu-
roscience consist of first identifying a brain graph and then 
using graph-theoretical and network science tools to analyze 
its properties. From this point of view, GSP tools can be (and 
have been) leveraged for learning brain graphs [53]. However, 
GSP really shines when it comes to analyzing how the mea-
sured activity pattern—the brain signal—behaves in rela-
tion to a brain graph (either anatomical or functional, related 
to one or multiple subjects). In other words, GSP provides 
a technology to merge the brain function, contained in the 
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brain signal, with the brain graph (see [53] and references 
therein). Specifically, the GFT has been used to analyze cog-
nitive behavior. For example, [54] shows that that there is a 
relationship between the energy of the high-frequency con-
tent of an fMRI signal and the attention-switching ability of 
an individual. There is further research from the same group 
that states that, when learning a task, the correlations between 
the learning rate and the energies of the low-/high-frequency 
content of an fMRI signal change with the exposure time, i.e., 
they depend on how familiar we are with the task. In addi-
tion to the GFT, graph wavelets and Slepians have been used 
to reveal localized frequency content in the brain [53], and 
graph filters have been used as diffusion operators to model 
disease progression in dementia. Although these results dem-
onstrate the potential GSP has for neuroscience, we believe 
this pairing is still in its infancy, and that there is plenty of 
room for exploration.

Applications to image and video processing
As noted earlier, widely used techniques in image and video 
processing, including transforms such as the DCT and the 
KLT, segmentation methods, and image filtering can be in-
terpreted from a GSP perspective [55]. In recent years, the 
emergence of a broader understanding of GSP has led to a 
further evolution of how graph-based approaches are used for 
image processing. As an example, although the DCT or asym-
metric discrete sine transform are formed by the eigenvectors 
of path graphs with equal edge weights, extensions have been 
proposed where graph edges with lower weights can be in-
troduced in between pixels corresponding to image contours 
[56]. In these approaches, as in input-dependent image filter-
ing [57], the image structure is first analyzed (e.g., contours 
detected), and then transforms adapted to the image charac-
teristics are selected, with the choice of transform sent as side 
information.

A particularly promising application of GSP methods is to 
point cloud processing and compression. Each point in a point 
cloud is defined by its coordinates in 3D space and has associ-
ated with it an attribute (e.g., color or reflectance). Although 
points are in a Euclidean domain, their positions, on the sur-
faces of the objects in the scene, are irregular and make it natu-
ral to develop a graph-based processing approach. Transforms 
have been proposed that leverage or are closely related to the 
GFT of a point cloud graph [58]. These methods are funda-
mental algorithms for geometry-based point cloud compres-
sion. Additionally, point cloud processing has become a major 
application domain for graph ML, with applications in areas 
such as denoising [59].

The future ahead
The focus of this article has been on reviewing the early results 
and growth of GSP, with an eye not only on the SP commu-
nity but also the applications and data science problems that 
have benefited from GSP. We close by discussing some of the 
emerging directions and open problems that we believe will 
shape the future of the field.

One emerging area in the field of GSP is dynamic graphs; 
more specially, how to estimate them, and how to process 
time-varying graph signals residing on them. Graphs are rarely 
static; think, for instance, about social networks with new users 
or changing connections, or functional brain networks deter-
mined by a specific task that is carried out at a particular time 
instant. As a result, GSP tools, theory, and algorithms need 
to be extended to such scenarios. There is already quite some 
work on graph topology identification for dynamic graphs, 
but most of these methods link consecutive graphs in the cost 
function, making the problems computationally challenging 
[30], [50]. Adaptive methods (of the correction-only or pre-
diction-correction type) try to tackle this issue, but tracking 
rates are still low. Processing signals residing on time-varying 
graphs have not been studied in depth, and this is clearly an 
area where many opportunities arise.

Extending GSP to higher-order graphs is another important 
future direction. Some applications are characterized by a graph 
domain where more than two nodes can interact; think, for 
instance, about a coauthorship network where groups of coau-
thors who collaborated on a paper are linked together, or about 
movie graphs in recommender systems, where movies starring 
the same actor form a group. Such graphs where an edge can 
join more than two nodes are called higher-order graphs. Popu-
lar abstractions of higher-order graphs are simplicial complexes 
and cell complexes. A simplicial/cell complex is a collection 
of subsets of the set of nodes satisfying certain properties. 
Whereas in a simplicial complex, the subsets satisfy the subset 
inclusion property (e.g., there needs to be links among each pair 
of the three coauthors of a paper), in a cell complex, they do 
not. However, both types of complexes share a similar recur-
sive relationship between the higher-order Laplacians, leading 
to a hierarchical processing architecture that can process node 
signals over edges, edge signals over triangles/polygons (for a 
simplicial/cell complex), and so on. A less restrictive represen-
tation of a higher-order graph is a hypergraph ( , , ),H V E ~=  
where ~ is a function that assigns a weight to each hyperedge 
in .E  Hyperedges can connect more than two vertices in .V  
Some recent overviews on higher-order networks, with focuses 
on GSP and network science, respectively, can be found in [60] 
and [61]. There are still many open issues in higher-order GSP, 
including the exploration of connections to adjacent fields such 
as topological data analysis and computational geometry.

Many other open problems—extending GSP to include 
uncertainty in the signals and graphs, design of exact and 
approximate Bayesian (recursive) estimators able to track 
variations across nodes and time, developing GSP models for 
categorical data, generalizing GSP results to continuous mani-
fold (geometric) data, incorporating GSP tools into reinforce-
ment learning and spatiotemporal control, and so on—are also 
expected to play important roles in the future of the discipline. 
If the first years of GSP combined theoretical developments 
with practical applications by placing a stronger focus on the 
former, we expect that the coming years will see an increased 
emphasis on applications, along with important efforts on 
learning and statistical schemes.
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[5] L. Stanković et al., Data Analytics on Graphs, Boston, MA, USA: Now 
Publishers, 2021. 

[6] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst, 
“Geometric deep learning: Going beyond Euclidean data,” IEEE Signal Process. 
Mag., vol. 34, no. 4, pp. 18–42, Jul. 2017, doi: 10.1109/MSP.2017.2693418.

[7] C. Godsil and G. Royle, Algebraic Graph Theory. Berlin, Germany: Springer-
Verlag, 2001.
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