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ABSTRACT
For human-agent teams to be successful, agent explanations are
crucial. These explanations should ideally be personalized by adapt-
ing them to intended human users. So far, little work has been
conducted on personalized agent explanations during human-agent
teamwork. Therefore, an online experiment (n = 60) was conducted
to compare personalized agent explanations against a baseline of
non-personalized explanations. We implemented four agents who
adapted their explanations during a search and rescue task ran-
domly, or based on human workload, performance, or trust. Results
show that personalized explanations can increase explanation sat-
isfaction and trust in the agent, but also decrease performance.
Therefore, we conclude that personalized agent explanations can
be beneficial to human-agent teamwork, but that user modelling
and personalization techniques should be carefully considered.
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1 INTRODUCTION & BACKGROUND
Humans and autonomous intelligent agents are increasingly work-
ing together in human-agent teams [11, 13, 32]. Mutual understand-
ing is crucial within these teams, but the behavior of agents is
often hard to understand [1, 10, 11, 13, 17, 27, 33, 34]. Fortunately,
Explainable Artificial Intelligence (XAI) methods can make agents
understandable to humans, for example by accompanying decisions
with explanations [1, 5, 14, 15]. Three explanation phases can be
distinguished during human-agent collaboration: explanation gen-
eration, communication, and reception [22]. Various explanation
types can be generated, such as confidence explanations, feature
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attributions, and counterfactual explanations [17, 30, 31]. These
can be communicated in different forms like textually, verbally, or
combining both [17]. The reception of such explanations concerns
how well humans understand them, which requires user studies on
their effectiveness in realistic human-agent settings [18, 22].

One of the main goals within XAI community is the development
of user-aware agents able to adapt their explanations according to
intended user [1, 17]. This could be achieved by maintaining a user
model and using that model to personalize agent explanations by
adapting them to the specifics of the model [1, 17]. So far, little work
has been conducted on such personalized agent explanations during
human-agent teamwork [1]. However, several studies highlight the
importance of these explanations [2–4, 7, 12, 23, 25, 26, 31]. In
summary, these studies often include approaches for modelling a
human user and/or generating personalized explanations. However,
only fewworks include user studies validating such approaches, and
none of these involve user studies during human-agent teamwork.
Our study will fill this gap by implementing and comparing three
types of personalized agent explanations against non-personalized
explanations during human-agent teamwork.

2 METHOD
We conducted a one-way between subjects experiment (n = 60) to
compare three user-aware agents providing personalized explana-
tions against a baseline providing non-personalized explanations.
Using the MATRX software (https://matrx-software.com/), we built
a two-dimensional grid world consisting of 14 areas, 26 collectable
objects, 12 obstacles, and one drop zone (Figure 1). Next, we created
three victims (critically injured, mildly injured, and healthy) and
added obstacles in front of areas (boulder, tree, or stone). Finally,
we added a human and an artificial agent (called RescueBot) to our
world, which had to collaborate during a search and rescue task.
The objective of this task was to find the target victims and carry
them to the drop zone. We implemented several soft and hard inter-
dependencies between human and agent, such as carrying critically
injured victims jointly. Participants had eight minutes to complete
the task, received six points for rescuing critical victims, and three
points for rescuing mild victims. Finally, we objectively measured
task completeness and score, while subjectively measuring trust in
the agent [9], workload [8], and explanation satisfaction [9].

https://matrx-software.com/


Figure 1: Cropped image of the world used during our study.

Whenever RescueBot found an obstacle or victim, it provided de-
cision support using suggestions and explanations based on crowd
sourced data (Figure 1). More specifically, nine people were shown
our environment, confronted with task dilemmas, and asked to
make decisions and which features contributed most to these deci-
sions. We used this data to generate one suggestion and confidence
explanations, feature attributions, and counterfactual explanations.
Next, we manipulated communication of these explanations by im-
plementing non-user-aware, trust-aware, performance-aware, and
workload-aware agents. The non-user-aware agent did not model
the human user and for each decision randomly adapted its provided
reasoning information. The trust-aware agent modelled user trust
in the agent based on the number of followed and rejected agent
suggestions. This agent increased its provided reasoning informa-
tion when predicted trust decreased (and vice versa) [4, 16, 29].
Next, the performance-aware agent modelled user performance
based on the difference between the predicted and real-time score
of the task. This agent increased its provided reasoning information
when predicted performance decreased (and vice versa) [4, 16, 29].
Finally, the workload-aware agent modelled user workload dur-
ing the task based on cognitive and affective load [6, 19–21]. This
agent increased its provided reasoning information when predicted
workload decreased (and vice versa) [4, 24, 28].

3 RESULTS
Compared to the baseline, we expect the personalized explanations
to increase each of their respective user factors used for adapting the
explanations. Therefore, we conducted either independent samples
t-tests or Mann-Whitney U tests to compare personalized explana-
tions against the baseline. Here, we only report significant results,
everything not reported was not found statistically significant. Task
score was statistically significantly higher for participants receiving
non-user-aware explanations (M = 25.00, SD = 6.58) than partici-
pants receiving performance-aware explanations (M = 19.20, SD =
6.88), t(28) = 2.36, p = 0.025, d = .86 (Figure 2A). In addition, trust
scores of participants receiving trust-aware explanations (mean
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Figure 2: Boxplots of score (A), trust (B), and explanation
satisfaction (C), *p<0.05. **p<0.01.

rank = 36.47) were statistically significantly higher than trust scores
of participants receiving non-user-aware explanations (mean rank
= 21.93), W = 63.00, p = 0.041 (Figure 2B). Trust was also statisti-
cally significantly higher for participants receiving workload-aware
explanations (M = 3.77, SD = 0.38) than participants receiving non-
user-aware explanations (M = 3.43, SD = 0.43), t(28) = -2.31, p =
0.028, d = 0.84 (Figure 2B). Finally, explanation satisfaction was sta-
tistically significantly higher for performance-aware explanations
(M = 4.23, SD = 0.36) than non-user-aware agent explanations (M =
3.74, SD = 0.54), t(28) = -2.95, p = 0.0063, d = 1.08 (Figure 2C).

4 DISCUSSION AND CONCLUSION
As expected, our results show that people receiving explanations
adapted to their trust in the agent, have significantly higher trust in
the agent than people receiving non-personalized explanations. The
results demonstrate how people receiving explanations adapted to
their workload, also have significantly higher trust in the agent than
people receiving non-personalized explanations. Combining these
results, it seems that providing personalized agent explanations
is particularly beneficial to trust in the agent, irrespective of the
user factor used for adapting. Our results further show that people
receiving personalized explanations based on their performance,
perform worse as a team than people receiving non-personalized
agent explanations. On the other hand, people receiving these per-
sonalized explanations are still more satisfiedwith them than people
receiving non-personalized explanations. The worse performance
is actually the opposite of the goal of the performance-aware agent
explanations. However, since the worst performing participants
received the explanations with most reasoning information, reading
these took more time and likely resulted in the worse performance.

All in all, our study shows that personalized agent explanations
can result in a higher explanation satisfaction and trust in the agent
than non-personalized explanations. This highlights the benefits
of personalized agent explanations for human-agent teamwork.
However, our findings also show that personalized agent expla-
nations using a sub-optimal adaptation strategy can result in a
worse team performance than non-personalized explanations. This
demonstrates the importance of carefully considering and compar-
ing different user modelling and explanation adaptation strategies.
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