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A B S T R A C T

CO2 sequestration and storage in deep saline aquifers is a promising technology for mitigating the excessive
concentration of the greenhouse gas in the atmosphere. However, accurately predicting the migration of
CO2 plumes requires complex multi-physics-based numerical simulation approaches, which are prohibitively
expensive due to highly nonlinear coupled governing equations and uncertainties in heterogeneous spatial
parameter distributions. To address this challenge, we developed an end-to-end deep learning workflow
employing encoder–decoder architectures with residual network (ResNet) to efficiently predicts the spatial–
temporal evolution of the solution CO2-brine ratio (𝑅𝑠) and gas saturation (𝑆𝑔) – the two essential tasks
for quantifying the amount of trapped CO2 – given heterogeneous permeability fields as input. Specifically,
we introduce a general multi-task learning with consistency (MTLC) framework to simultaneously predict
𝑅𝑠 and 𝑆𝑔 . The MTLC model leverages related tasks with less computational expensive labeled datasets
to improve generalization ability. In our study, predictions for multiple tasks from the same permeability
realization are not independent but expected to be consistent, as the proposed framework utilizes data-driven
cross-task consistency constraints to augment learning of related tasks. Our deep learning model is trained
based on physical trapping mechanisms, which play a dominant role in the CO2 migration process. The
results demonstrate that the MTLC model with joint learning yields more accurate predictions and improved
generalization for predicting CO2 migration in several test cases. Furthermore, our workflow is 105 times
faster than a high-fidelity physics-based numerical simulator, making it a viable alternative for field-scale
applications.
1. Introduction

Carbon capture and storage (CCS) is a viable and effective strategy
for reducing anthropogenic CO2 emissions into the atmosphere, which
is beneficial to mitigate climate change (Kopp et al., 2010; Selma et al.,
2014; Liu et al., 2020; Krevor et al., 2023). In CCS, the captured CO2 is
compressed into the super-critical fluid status, and then injected into
the geological medium such as depleted oil and gas reservoirs and
deep saline aquifers for long-term sequestration (Celia et al., 2015).
Interest in CO2 storage in saline aquifers has grown recently due to the
large storage capacity under safe operational conditions (Wang et al.,
2022). For storing in saline aquifers, the CO2 migration process can
be described by the physics of multicomponent, multiphase flow and
transport in porous media. To date, high-fidelity numerical simulation
of fully physics-coupled flow is the primary tool to reliably monitor
the CO2 plume evolution and migration because of various trapping
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(H. Hajibeygi).

mechanisms for the sake of security (Ide et al., 2007). Despite some
success in numerical simulation strategies, the computational expense
of solving the highly nonlinear discretized mass conservation equations
of brine and CO2 is prohibitively high in practical applications of
uncertainty quantification and history matching, which require a large
number of forward simulation runs (Tang et al., 2022; Wang et al.,
2023). Due to the inherent uncertainty of the spatial distributions of
rock properties and the complexity and heterogeneties of the geo-
logical formation structures, improved dynamic migration forecasting
capability is important for effective CCS projects (Elenius et al., 2015).

In recent years, the significance of surrogate models has grown
with the expansion of the machine learning field, providing a more
computationally efficient alternative to physics-based numerical sim-
ulation (Guo and Reynolds, 2018; Zhao et al., 2020b; Kamrava et al.,
2021). While various machine learning techniques have been employed
vailable online 21 June 2023
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to construct surrogate models for multiphase flow, such as Gaussian
Process (Hamdi et al., 2017), and Radial Basis Function (RBF) (Chen
et al., 2020b; Babaei and Pan, 2016), their accuracy tends to be
limited by the curse of dimensionality (Chen et al., 2020a). For ex-
ample, GP is generally effective only for applications with up to 20
parameters (Zhao et al., 2020a). While combining GP with dimen-
sionality reduction methods has shown promise for certain prediction
tasks, such techniques can lead to a loss of information, potentially
affecting the overall performance of the surrogate model. Obviously,
some surrogate models with efficient strategies have been successfully
applied in specific contexts, such as the combination of a RBF model
and proper sampling strategy significantly reduce the computational
cost associated with coastal aquifer management while maintaining the
accuracy (Christelis et al., 2018). Nevertheless, the problem in our work
demands stronger capabilities from surrogate models, making deep
learning (DL) techniques an appropriate choice. DL techniques have
demonstrated their potential for handing high-dimensional regression
problems and are widely applied in computer vision (CV) tasks like
object detection and image segmentation with the rapid development
of graphics processing units (GPU) (Redmon et al., 2016; Ren et al.,
2015). Considering this, our goal in this paper is to develop a novel
deep learning-based surrogate model capable of effectively capturing
the spatio-temporal evolution of CO2 plume migration, thus facilitating
the management of CCS operations.

In the general context of the fluid flow and transport in porous
media, there has been some promising research using deep neural
networks to predict mappings from the reservoir properties (e.g. perme-
ability) to the state variables (e.g. pressure or saturation maps) (Wang
et al., 2021). Neural networks rely on the simulation data to train
a statistical model to approximate the input–output relationship of
interests and can theoretically estimate any complex function given
adequate setup and training. To be specific, a convolutional neural
network (CNN) is a powerful algorithm for image processing which
can capture spatial features while reducing the number of free pa-
rameters, based on the shared-weight architecture of the convolutional
layers or filters (Simonyan and Zisserman, 2014). Zhu and Zabaras
(2018) first employed a fully convolutional encoder–decoder network
to approximate the single-phase steady state flow in geological models
characterized by Gaussian permeability fields, and demonstrated that
their neural network, trained with a limited amount of data, was able
to predict high-dimensional pressure maps. Then, Tang et al. (2020)
developed a Recurrent residual U-Net for data assimilation in dynamic
subsurface flow problems, in which a residual U-Net and a recurrent
architecture Long short-term memory (LSTM) are combined to capture
both spatial and temporal information. Kadeethum et al. (2021) used
generative adversarial network (GAN) based deep learning model for
predicting the solution of steady state in heterogeneous porous me-
dia. Some similar network architectures are applied to CO2 storage
roblems. Wen et al. (2021a,b) extend the U-Net to translate perme-
bility and injection parameters to CO2 saturation maps. Zhong et al.
2019) incorporated U-Net with GAN to capture the time dependence.
esides, Yan et al. (2022) applied Fourier Neural Operators (FNO) to
redict the temporal–spatial evolution of CO2 plumes during injection
nd post-injection periods, respectively. Chu et al. (2023) presented
eep learning-based surrogate models with four different algorithms
nd a physics-framed two-phase flow problem involving displacement
f water by CO2. They compared the Multi-layer perception (MLP),
NN, LSTM cell, and gated recurrent unit (GRU) cell, and the MLP
emonstrated good performance with most trainable parameters.

However, previous studies on CO2 storage primarily adopted the
ingle-task learning approaches, focusing on one of the state variables
ithout considering the consistency among the variables, i.e., per-

orm either pressure or saturation exclusively. While these studies also
chieved the good performance through deep learning techniques, they
ay not capture the complex interrelationships between difference
2

spects of the CO2 storage process, since most variables are connected
by the underlying physics observed. Furthermore, single-task learning
methods often require a large amount of labeled data. When the reser-
voir realization and well control parameters are given, the dynamic
systems are determined by the forward simulation using a finite volume
method. Suppose a CO2 plume migration process is simulated, the
prediction of the amount of CO2 in the liquid phase and in the gas
phase are dependent, and consequently should enforce consistency con-
straints on each other (Zamir et al., 2020). Therefore, in contrast to the
single-task methods, joint-task learning methods have shown promise
in improving predictions by utilizing task-correlative information and
sharing informative features between related tasks (Liu et al., 2019;
Zhang et al., 2019). Additionally, a single model performing multiple
tasks jointly can be more efficient than using separate and independent
models for each task. This type of deep learning is named Multi-task
Leaning (MTL).

Inspired by the preceding ideas, we present a novel deep learning
surrogate framework for CO2 storage in deep saline aquifers which
integrates multi-task learning with consistency constraints (MTLC). In
this work, the workflow is based on encoder–decoder architectures
consisting of ResNet blocks, and is designed to simultaneously predict
CO2-brine ratio (𝑅𝑠) and gas saturation (𝑆𝑔), the two essential tasks
for quantifying trapped CO2, given heterogeneous permeability fields
as input. Then we demonstrate the performance in training surrogate
model for predicting the dynamic 𝑅𝑠 and 𝑆𝑔 maps simultaneously in
layered formations. The MTLC model leverages related tasks with fewer
computationally expensive labeled datasets to improve generalization
ability and utilizes data-driven cross-task consistency constraints to
augment learning of related tasks. It offers a more efficient and accurate
approach to understanding and managing geological CO2 sequestration.
The rest of this paper is organized as follows. In Section 2, we introduce
a general underlying physics and define the problem of interests. Then,
the framework of MTLC for CO2 storage is described and used to predict
in Sections 3 and 4. Finally, conclusions are provided in the last section.

2. Problem definition

2.1. Governing equations

For the CO2 and brine multi-component multi-phase flow problem,
the general form of mass conservation equation is described as (Wang
et al., 2022):
𝜕
𝜕𝑡
(𝜙

∑

𝛼
𝑥𝑐 ,𝛼 𝜌𝛼𝑆𝛼) + ∇ ⋅ (

∑

𝛼
𝑥𝑐 ,𝛼 𝜌𝛼𝒖𝛼) −

∑

𝛼
𝑥𝑐 ,𝛼 𝑞𝛼 = 0, (2.1)

where, the first term is the fluid accumulation, the second is the
advective term, and the third is the source or sink term. Subscript 𝛼
and 𝑐 indicate phases (𝑙: liquid and 𝑔: gas) and components (CO2 and
brine), respectively. 𝜙 is the rock porosity; 𝑡 is time; 𝑆𝛼 , 𝜌𝛼 and 𝑞𝛼
are saturation, density and source term of phase 𝛼; 𝑥𝑐 ,𝛼 represents the
molar fraction of component 𝑐 in phase 𝛼; 𝒖𝛼 is the Darcy velocity given
by:

𝒖𝛼 = −
𝑘𝑘𝑟𝛼
𝜇𝛼

∇ ⋅ (𝑃𝛼 − 𝜌𝛼𝑔ℎ), (2.2)

here, 𝑘 is the absolute permeability of the rock, 𝑘𝑟𝛼 , 𝜇𝛼 and 𝑃𝛼 denote
elative permeability, viscosity and pressure of phase 𝛼, respectively. 𝑔
s the gravitational acceleration, ℎ is the depth with respect to a set
eference. The phase pressures are related to each other through the
apillary pressure 𝑃𝑐 .

According to the overall composition variable set, the Eq. (2.1) can
e expressed as:
𝜕
𝜕𝑡
(𝜙𝜌𝑇 𝑧𝑐 ) + ∇ ⋅ (

∑

𝛼
𝑥𝑐 ,𝛼 𝜌𝛼𝒖𝛼) −

∑

𝛼
𝑥𝑐 ,𝛼 𝜌𝛼𝑞𝛼 = 0, (2.3)

where, 𝜌𝑇 is the total density and 𝑧𝑐 is the mole fraction. Finally,
the system is closed by enforcing 𝑆𝑔 + 𝑆𝑙 = 1. In a fully-physics-
based reservoir simulator, these equations are solved iteratively with a
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fully implicit scheme to calculate the primary variables of liquid phase
pressure (𝑃𝑙) and CO2 mole fraction (𝑧CO2

).
Trapping mechanisms for retraining CO2 in deep saline aquifers

have been categorized into four types (Rubin and De Coninck, 2005):
(a) Structural and stratigraphic trapping. This refers to the upward
migration is inhibited by the overlying low-permeable cap rock. (b)
Residual trapping. This occurs because CO2 is typically the non-wetting
phase in many sedimentary rocks. As a result, brine, the wetting
phase, tends to imbibe into the trailing edge of the CO2 plume. (c)
Dissolution trapping. This takes place when CO2 comes into contact
with undersaturated brine, dissolving into it. (d) Mineral trapping. This
happens when dissolved CO2 reacts with the reservoir rock’s minerals.
aline aquifers are often found in sandstone, a siliciclastic rock with
high quartz content. This mineral has an insignificant contribution

o geochemical reactions during the trapping process (Gunter et al.,
000). As a result, our subsequent analysis will focus on the first
hree physical trapping mechanisms, which are collectively referred
o as hydrodynamic trapping. Besides, to simplify the problem set-
ing, our simulation does not explicitly include molecular diffusion
nd hydrodynamic dispersion, which is a common assumption in CO2
torage simulation. Besides, we assume that CO2 from the gas phase can
issolve in the liquid phase, but dissolution of brine in the gas phase is
eglected (i.e. the gas phase contains only one component).

.2. Surrogate modeling for CCS

The above governing equations are numerically solved by the fully-
hysics simulator, DARSim. DARSim uses the finite volume method
FVM) with fully implicit scheme for simulation (Cusini et al., 2016).
e are concerned with the dynamics of interaction between CO2 and

rine, which is a challenging problem due to the complex interplay
etween viscous, capillary, and gravitational forces.

Moreover, in order to quantify the impact of different trapping
echanisms and uncertain reservoir properties, we design heteroge-
eous permeability realizations, and then calculate the amount of CO2
rapped by dissolution and residual trapping, which are considered to
e secure in hydrodynamic trapping. They are calculated based on
he solution CO2-brine ratio 𝑅𝑠 and gas phase saturation maps 𝑆𝑔 ,
espectively. In particular, 𝑅𝑠 is described as:

𝑠 =
𝜌STC

brine𝑥CO2 ,𝑙

𝜌STC
CO2

(1 − 𝑥CO2 ,𝑙)
, (2.4)

where, the superscript ‘STC’ represents the property at standard condi-
tions.

However, we need to solve the discretized versions of Eq. (2.3)
hundreds or thousands of times for uncertainty quantification. Suppose
the computation simulation is considered as a black-box mapping, a
single simulation run can be described as:

𝐲 = 𝑓 (𝐱), (2.5)

where, 𝐱 ∈ R𝑛𝑠 denotes the high-dimensional realization of random
field, 𝑛𝑠 is the total number of grid blocks, 𝑓 indicates the simulation-
induced function, 𝐲 ∈ R2𝑛𝑠𝑛𝑡 is the dynamic response maps (𝑅𝑠 and 𝑆𝑔)
at 𝑛𝑡 time steps.

In order to resemble an inexpensive replacement of the numerical
simulator, deep learning models with the 𝐲 ≈ �̂� =  (𝐱, 𝜃) are trained
with a limited simulation dataset

{

(𝐱𝑖, 𝐲𝑖)
}𝑁
𝑖=1 to approximate the rela-

tionship between the input properties 𝐱 and the corresponding multiple
ynamic responses 𝐲, where 𝜃 are the deep neural network parameters,
nd 𝑁 is the number of training simulation-based data. Therefore,
he main task is transformed to an image-to-image regression problem
hich requires pixel-wise predictions as  ∶ R𝑛𝑠 → R2𝑛𝑠𝑛𝑡 . Therefore,
ur goal in this work is to develop a surrogate model to provide the
ime-dependent states �̂� given a permeability map 𝐱.
3

w

. Methodology

.1. Single-task Leaning (STL)

.1.1. Deep encoder–decoder architecture for image-to-image regression
Given the input database (𝐱, 𝐲), typical deep neural networks ap-

proximate the input–output relationship 𝑓 ∶ 𝐱 → 𝐲 through a number
of fully connected layers which is described as:

𝐚𝑙 = ℎ𝑙(𝐚𝑙−1) = 𝜎𝑙(𝐖𝑙𝐚𝑙−1 + 𝐛𝑙), (3.1)

where, 𝐖𝑙 and 𝐛𝑙 are the weights and biases for the 𝑙th layer with input
𝐚𝑙−1 and output 𝐚𝑙, respectively. 𝜎𝑙 denote the nonlinear activation
function. Therefore, the approximate function is 𝑓 = ℎ𝐿 ⋅ ℎ𝐿−1 ⋯ℎ1,
where 𝐿 is the depth of the network.

However, a fully connected neural network leads to an extremely
large number of trainable parameters when dealing with the high-
dimensional problems. CNNs are commonly applied to reduce the
number of parameters greatly due to the parameter sharing scheme.
Therefore, they are widely used for image processing and are able to
extract the feature of inputs (Albawi et al., 2017). A convolutional layer
consists of a series of convolution kernels which are used to compute
the feature maps that are essentially matrices. Suppose that we have
some 𝑆 × 𝑆 square neuron layer which is followed by convolutional
layer. If we use an 𝑚×𝑚 filter 𝝎, the output will be of size (𝑆 −𝑚+1)×
𝑆 −𝑚+1), and the feature value ℎ𝑖,𝑗 (𝑥𝑖,𝑗 ) at location (𝑖, 𝑗) is the sum of
ontributions (weighted by the filter components):

𝑖,𝑗 (𝑥𝑖,𝑗 ) = 𝜎(
𝑚−1
∑

𝑘𝑖=0

𝑚−1
∑

𝑘𝑗=0
𝜔𝑘𝑖 ,𝑘𝑗𝑥𝑖+𝑘𝑖 ,𝑗+𝑘𝑗 ), (3.2)

herefore, the feature maps of a convolutional layer consisting of 𝑁𝑘
ilters are

{

𝒉𝑙 , 𝑙 = 1,… , 𝑁𝑘
}

.
In contrast to traditional CNNs, which consist of a series of convolu-

ional layers followed by fully connected layers, a popular model design
attern for pixel-wise predictions is the encoder–decoder architecture.
t replaces the last fully-connected layers with upsampling or deconvo-
ution layers to recover resolution, exhibiting promising performance in
andling mappings between high-dimensional inputs and outputs (Mo
t al., 2019). The encoder–decoder neural network employs a coarse-
efine process, where the encoder reduces spatial dimensions in every
ayer and increases channels to extract higher-level features at lower
patial resolution, while the decoder increases spatial dimensions and
educes channels to refine the image representation and construct the
utput. Ultimately, the spatial dimensions are restored to make pre-
ictions for each input image pixel (Badrinarayanan et al., 2017). This
ype of model has been successfully utilized in various fields, including
omputer vision for image segmentation (Ronneberger et al., 2015).
oreover, there are also successful applications in the general context

f multiphase flow (Zhu and Zabaras, 2018; Zhu et al., 2019). There-
ore, a fully convolutional encoder–decoder architecture is employed to
ormulate our approach.

.2. Residual Neural Network (ResNet)

When dealing with deep CNNs to solve a complicated task, the
eneral operation is to engage in stacking more layers. These additional
ayers help solve complex problems more efficiently as the different
ayers could be trained for varying tasks to get highly accurate results.

hile the number of stacked layers can enrich the feature of the model,
deeper network can show the issue of degradation. In other words,

s the number of layers of the neural network increases, the accuracy
evels may get saturated and slowly degrade after some points. As a
esult, the performance of the model deterioates both on the training
nd testing datasets. This degradation is the results of the problem of
anishing or exploding gradients (He et al., 2016a).

In order to solve this problem, the ResNet architecture is introduced

ith the concept of Residual Blocks. In this network, a technique called
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Fig. 1. Illustration of a single residual block with a shortcut connection used to
maintain feature information from previous layers.

shortcut connection is developed. As shown in Fig. 1, the shortcut
connection connects activations of a layer to further layers by skipping
some layers in between. This forms a residual block. ResNets are made
by stacking these residual blocks together. The idea behind this is
to learn the residual mapping (the difference between the input and
output of a layer) instead of the actual mapping, making it easier for
the network to learn the identity function and thereby mitigating the
vanishing gradient problem in deep networks. Therefore, instead of say
ℎ(𝑥), initial mapping, let the network fit:

 (𝑥) ∶= ℎ(𝑥) − 𝑥, (3.3)

The advantage of adding this type of shortcut connection is that
if any layer hampers the performance of the architecture, it will be
skipped by regularization. So, this results in training a very deep neural
network without the problems caused by vanishing/exploding gradi-
ent. Therefore, the ResNet-V2 structure is employed as the network
backbone. The approximated relationship is described as:

𝐱𝑙+1 = 𝐱𝑙 +  (𝜎(𝐱𝑙), 𝜃𝐥), (3.4)

where 𝜎 denotes the pre-activation, 𝐱𝑙 and 𝜃𝑙 are the input feature and
hyperparameters to the 𝑙th Residual Unit, respectively. In this way, the
optimization is further eased and meantime, the pre-activation scheme
can improve the regularization in order to reduce overfitting (He et al.,
2016b).

An illustration of the ResNet-V2 block is illustrated in Fig. 2. The
residual block has two convolutional layers with the same number
of output channels. Each convolutional layer is preceded by a batch
normalization layer and a ReLU activation function. Then, we skip
these two convolution operations and add the input directly. This
implies that the output of the two convolutional layers has to be of the
same shape as the input, so that they can be added together. If we want
to change the number of channels, we need to introduce an additional
1 × 1 convolutional layer to transform the input into the desired shape
for the addition operation.

The typical single task learning process of a neural network is
described as follows: suppose 𝐱 represents the input domain (i.e., per-
meability fields) and 𝐲 =

{

𝐲1, 𝐲2
}

is the set of desired prediction
domains (i.e., 𝑅𝑠 and 𝑆𝑔 maps). The aim is to learn the approximate
relationship between input and prediction domains:

𝐱 =
{

𝑓𝐱𝐲1 , 𝑓𝐱𝐲2
}

, (3.5)

where, 𝑓𝐱𝐲1 and 𝑓𝐱𝐲2 outputs 𝐲1 and 𝐲2 given 𝐱, respectively. The way of
training 𝑓𝐱𝐲1 (𝑥) is to find parameters that minimize the loss function,
e.g., mean absolute error (MAE). As for 𝑓𝐱𝐲2 (𝑥), the procedure is the
same.

As shown in Fig. 3, ResNet is served as the network backbone and
combines Encoder–Decoder architecture to form the single task learn-
ing framework in this paper, and the multi-task framework described
later is also developed based on this framework. In particular, in order
to capture temporal dynamics, we apply a three dimensional variation
of Encoder–Decoder architecture which means the convolutional ker-
nels are 3-D that can extract information in both the temporal and
spatial dimensions (Maturana and Scherer, 2015).
4

3.3. Multi-task Learning (MTL)

Currently, most methods for multiphase flow are focused on only
one of these tasks (i.e., saturation or pressure maps), and they also
achieve the state-of-the-art performance through the technique of deep
learning. However, there may be instances when learning from many
related tasks at the same time would lead to better modeling perfor-
mance (Brüggemann et al., 2021). This is addressed in the domain of
multi-task learning, a subfield of machine learning in which multiple
objectives are trained within the same model simultaneously. Com-
pared to the single-task methods where each individual task is solved
separately by its own network, recently, several multi-task learning
methods in computer vision have shown a promising direction to
improve the predictions by jointly tackling multiple tasks to boost for
each other (Misra et al., 2016).

Compared to single-task learning, the loss function of typical multi-
task learning is described by:

 = |

|

|

𝑓𝐱𝐲1 (𝑥) − 𝑦1
|

|

|

+ |

|

|

𝑓𝐱𝐲2 (𝑥) − 𝑦2
|

|

|

, (3.6)

where |⋅| denote the MAE value which is also referred to as 𝐿1 norm.
Moreover, the first and the last terms are the standard losses for training
𝑓𝐱𝐲2 and 𝑓𝐱𝐲2 , respectively.

MTL is used in many fields and joint learning is considered to
give an improved representation than other STL since this method
can capture the intrinsic association features between tasks (Vanden-
hende et al., 2021). In the context of deep learning, MTL is performed
by learning shared representations from multiple supervisory tasks.
Classical deep multi-task architectures were hard parameter sharing
techniques which the parameter set is divided into shared and task-
specific parameters, as shown in Fig. 4. MTL models typically consist of
a shared encoder that branches out into task-specific heads. Multi-task
learning takes care to fit all tasks, which is equivalent to regularization,
thus avoiding overfitting a single task learning.

3.4. Multi-task Learning with Consistency (MTLC)

The predictions of 𝑅𝑠 and 𝑆𝑔 maps are important and challeng-
ing for CO2 trapping in deep saline aquifers. The general objective
of multi-task learning is to improve generalization by leveraging the
domain-specific information contained in the training signals of related
tasks. Common multi-task learning approaches are a shared feature
extractor component (encoder) with multiple ‘‘heads’’ (decoder) that
perform separate tasks. The fusion and sharing ways may utilize the
correlative information between tasks, but there exist some drawbacks.
For example, the integration of different features might result into
ambiguity of information; the fusion does not explicitly model the
task-level interaction where we do not know what information is
transmitted (Zhang et al., 2019).

As we know, the learning tasks of 𝑅𝑠 and 𝑆𝑔 are predictions of dif-
ferent aspects of one underlying permeability field. Hence inconsistency
among predictions implies contradiction and is inherently undesirable.
Furthermore, these two parameters has the similarity pattern due to the
same CO2 trajectory. This similarity pattern between the related tasks
are informative and can be used to better fit the data. The dynamic
processes of 𝑅𝑠 and 𝑆𝑔 are connected by the underlying physics and
consequently enforce some constrains on each other, referred to as
consistency constraints (Zamir et al., 2020). In this work, the con-
sistency constraints are learned form the data rather than an a prior
given relationship, which makes the method applicable to any pairs
of tasks that are not independent, particularly when their analytical
relationship is unknown or difficult to formulate.

The independent single-task learning satisfies various ideal proper-
ties, if given infinite amount of labeled data. However, there is only
limited amount of expensive labeled data in practice. Thus, a label
efficient multi-task learning method is presented which introduces the
concept of cross-task consistency. The difference between single task
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Fig. 2. Illustration of the basic residual blocks of ResNet-V2 without (left) and with (right) 1 × 1 convolution. The 1 × 1 convolution operation is used to transform the input
into the desired size for the addition operation.
Fig. 3. The architecture for Single Task Learning (STL) network designed to predict gas saturation.
Fig. 4. Schematic of the general Multi-Task Learning (MTL) framework using deep
neural networks for simultaneously learning multiple tasks. The shared encoder
branches out to distinct decoders for each task, leveraging shared knowledge while
allowing task-specific learning.

network, common MTL network and MTL with consistency (MTLC)
is shown in Fig. 5. The MTLC consists of one shared encoder, two
task-specific decoders, and an additional encoder–decoder pair for the
transformation between 𝑅𝑠 and 𝑆𝑔 . The shared encoder is responsible
for processing the permeability fields and generating a shared repre-
sentation for both tasks. Then, the encoder branches out two decoders,
one for each task. These decoders receive the shared representation
and transform it into a task-specific output. Each decoder is specialized
in generating output for its respective task. Finally, an additional
encoder–decoder pair is designed to enforce consistency between tasks.
The encoder in this pair takes the output 𝑆𝑔 and generates a rep-
resentation, which is then transformed into 𝑅𝑠 by the corresponding
decoder. This additional encoder–decoder pair helps in ensuring that
the learned representations for 𝑆𝑔 and 𝑅𝑠 are consistent with each
other. The detailed architecture of the encoder and decoder architec-
ture is shown in Table 1. It is worth noting that the number of encoders
and decoders varies between the single-task learning (STL), multi-
task learning (MTL), and multi-task learning with consistency (MTLC)
models. However, the layers within the encoder and decoder remain
the same across all three models. This ensures that the architectural
differences between the models are primarily related to the handling
of tasks, while maintaining consistency in the internal structure of the
encoders and decoders.
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Therefore, an additional constrains to guide the training toward
cross-task consistency is introduced. In addition to 𝑓𝐱𝐲1 and 𝑓𝐱𝐲2 , the
function 𝐲 =

{

𝑓𝐲1𝐲2
}

is also defined which is the set of cross-task
functions that map the prediction domains onto each other. The loss
function for training the MTLC is defined as:

𝐱𝐲1𝐲2 = |

|

|

𝑓𝐱𝐲1 (𝑥) − 𝑦1
|

|

|

+ |

|

|

𝑓𝐲1𝐲2◦𝑓𝐱𝐲1 (𝑥) − 𝑓𝐱𝐲2 (𝑥)
|

|

|

+ |

|

|

𝑓𝐱𝐲2 (𝑥) − 𝑦2
|

|

|

, (3.7)

where, the middle term is the consistency term which enforces that
predicting 𝐲2 out of the predicted 𝐲1 yields the same result as directly
predicting 𝐲2 out of 𝐱. This part of the network is aim to discover
the similar patterns from the data. This consistency constraint helps
the model generalize better by focusing on the common aspects of the
tasks rather than learning task-specific features. It also helps regularize
the model, preventing overfitting, and allowing it to exploit comple-
mentary information provided by both tasks. Therefore, the learning
of predicting 𝐲1 and 𝐲2 are not independent anymore and a single deep
learning framework involves simultaneous training of two tasks. In this
work, the 𝑆𝑔 and 𝑅𝑠 maps are considered as 𝐲1 and 𝐲2, respectively.

4. Numerical experiments and results

4.1. Experiment setting

4.1.1. Datasets generation
In order to illustrate the performance of our method for predicting

the CO2 migration in deep saline aquifers, a 2-D CCS simulation system
is considered. From a geological perspective, saline aquifers often have
a dominant length in the longitudinal direction compared to their cross-
sectional width. Since gravity plays an essential role in CO2 trapping
process, the 2D 𝑥𝑧 representation is preferred to 𝑥𝑦 representation in
order to retain important vertical heterogeneity and fluid migration
behavior. The model simulates the migration of CO2 within a 2-D
vertical cross-section aquifer domain. The dimensions are 200 m ×
96 m, with a grid block size of 1 m × 1 m. The initial pressure is set to
be 2.5×107 Pa with a constant temperature of 300 K. No flow boundary
conditions are imposed on all sides of the aquifer. CO2 is injected
through the bottom 48 m of the domain on the left side with a constant
rate (2 × 10−4 pore volumes per day). A production well is placed on
the entire right side. The total simulation time and injection time is 600
days. The nonlinear relative permeability curves and capillary pressure
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Fig. 5. Illustration of the differences between STL, MTL and MTLC. MTLC incorporates an additional encoder–decoder architecture to enforce cross-task consistency, enabling the
learning process to better capture and utilize the shared underlying structures between tasks.
Table 1
Encoder–Decoder architecture details. k denotes the kernel size; s denotes the stride, c denotes the number of kernels;
Conv denotes convolutional layer; Residual block is described in Fig. 2.

Net Layer Output size

Input (96,200,6,1)
Conv, k = (3 × 3 × 3), s = (2 × 2 × 1), c = 16 (48,100,6,16)
Residual block, k = (3 × 3 × 3), s = (1 × 1 × 2), c = 32 (48,100,3,32)
Residual block, k = (3 × 3 × 3), s = (2 × 2 × 1), c = 64 (24,50,3,64)
Residual block, k = (3 × 3 × 3), s = (1 × 1 × 2), c = 128 (24,50,2,128)
Residual block, k = (3 × 3 × 3), s = (2 × 2 × 1), c = 256 (12,25,2,256)

Encoder

Residual block, k = (3 × 3 × 3), s = (1 × 1 × 1), c = 256 (12,25,2,256)

Upsampling/Residual block, k = (3 × 3 × 3), s = (2 × 2 × 1), c = 128 (24,50,2,128)
Upsampling/Residual block, k = (3 × 3 × 3), s = (1 × 1 × 2), c = 64 (24,50,3,64)
Upsampling/Residual block, k = (3 × 3 × 3), s = (2 × 2 × 1), c = 32 (48,100,3,32)
Upsampling/Residual block, k = (3 × 3 × 3), s = (1 × 1 × 2), c = 16 (48,100,6,16)
Upsampling/Residual block, k = (3 × 3 × 3), s = (2 × 2 × 1), c = 8 (96,200,6,8)

Decoder

Conv, k = (3 × 3 × 3), s = (1 × 1 × 1), c = 1 (96,200,6,1)
.

Table 2
Physical parameters and simulation setup utilized in the DARSim numerical simulation

Parameter Value Unit

Aquifer length 200 m
Aquifer height 96 m
Porosity 0.2 –
CO2 injection rate 2 × 10−4 Pore volumes per day
Initial pressure 2.5 × 107 Pa
Bottom hole pressure 2.5 × 107 Pa
Temperature (isothermal) 300 K
CO2 density at STC 1.98 kg/m3

Brine density at STC 1060 kg/m3

Brine salinity 1 × 105 Parts per million

curves are shown in Fig. 6. Physical parameters and simulation settings
are presented in Table 2.

To mimic the geological formations used for CO2 sequestration, a
total of 1400 permeability fields are generated using the open-source
package Stanford Geostatistical Modeling Software (SGeMS) (Remy
et al., 2009) with laterally correlated heterogeneity. The distribution
of log-transformed permeability and one random realization of the
permeability field are shown in Fig. 7. The forward simulation is
performed using DARSim and we collect the output state maps (𝑅𝑠 and
𝑆𝑔 maps) at prescribed time steps respectively. Each simulation takes
4800 s on an Intel Core i7-12700K.

We are interested in the spatial–temporal evolution of the 𝑅𝑠 and
𝑆 maps during CO injection period. Thus, we collect the output state
6

𝑔 2
maps at six uniform time instances to train the networks. The goal is to
train networks with the simulation data that yield reliable predictions
of 𝑅𝑠 and 𝑆𝑔 on the hitherto unseen permeability fields in the test set.

4.1.2. Training procedures
The loss function used for the training models is the Mean Absolute

Error (MAE), defined as:

MAE = arg min
𝜃

1
𝑁

𝑁
∑

𝑖=1

‖

‖

�̂�𝑖 − 𝐲𝑖‖‖1 , (4.1)

where 𝑁 is the total number of geo-models in the training set. In the
training process, the loss function is minimized by tuning the network
parameters 𝜃. The gradient of the loss function with respect to 𝜃 is
automatically computed by back-propagation (Hecht-Nielsen, 1992).
In this work, the batch size is set to 16, and the adaptive moment
estimation (Adam) optimization algorithm (Kingma and Ba, 2014) is
used with the initial learning rate and learning rate decay set to 0.001
and 0.1, respectively. This has been found to be an effective procedure
for the training of many deep neural network architectures. Moreover,
we utilize varying sizes of training datasets with 300, 600, 900, and
1200 permeability realizations to train the models. A separate, fixed
set of 200 permeability realizations, not included in the training data,
is used for testing the performance of all trained models. Due to the
limited size of the dataset, we have not employed a separate validation
dataset.

During the training process, the MAE metric is used to monitor
the convergence of both the training and test errors. Additionally,
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Fig. 6. (a) Primary drainage and imbibition curves for liquid and gas phases, where the superscripts d and i represent drainage and imbibition, respectively. A single-headed arrow
indicates that the process along a given curve is irreversible, while a double-headed arrow signifies that the process is reversible. (b) Illustration of drainage/imbibition capillary
pressure curves.
Fig. 7. (a) The histogram of the 1400 log-permeability fields used in both training and test datasets. (b) Schematic of well configurations and boundary conditions for a layered
heterogeneous system.
to evaluate the quality of the trained models, we also consider two
commonly used metrics, the root mean square error (RMSE) metric and
the coefficient of determination (𝑅2) evaluated on 200 prefixed test
samples. The RMSE is calculated by:

RMSE =

√

√

√

√
1

𝑁test

𝑁test
∑

𝑖=1

‖

‖

�̂�𝑖 − 𝐲𝑖‖‖
2
2, (4.2)

The 𝑅2 is defined as:

𝑅2 = 1 −
∑𝑁test

𝑖=1
‖

‖

�̂�𝑖 − 𝐲𝑖‖‖
2
2

∑𝑁test
𝑖=1

‖

‖

𝐲𝑖 − 𝐲𝑖‖‖
2
2

, (4.3)

In particular, smaller MAE and RMSE values represent better per-
formance, and an 𝑅2 value closer to 1 indicates better prediction
quality.

4.2. Performance evaluation

4.2.1. Training and testing results
Fig. 8 shows the MAE value of MTLC training and testing loss with

the number of epochs and for training ensemble sizes of 300, 600, 900,
and 1200 realizations. The models are trained on a NVIDIA GeForce
GTX 3080 GPU which requires around 2000–7000 s for training 300
epochs when the training sample size varies from 300 to 1200. The
training data generation and training times for the deep learning mod-
els are part of the initial setup process and need only be considered
once. After training, given a new realization, the MTLC can provide
predictions for the state maps, at 6 time steps, in an elapsed time of
about 19 ms. This speed-up is 5 orders of magnitude faster than the nu-
merical simulator, which is attributed to the benefits of using a GPU for
7

the deep learning model’s execution. The GPU’s highly parallelizable
nature and the extensive support provided by modern deep learning
frameworks significantly contribute to the efficiency advantage of the
MTLC model over the traditional numerical simulator. Therefore, MTLC
model becomes more beneficial when a large number of realizations for
uncertainty quantification or optimization. It is observed that the MAE
starts to stabilize after 200 epochs for both 𝑅𝑠 and 𝑆𝑔 . For the testing
dataset, the MAE for 𝑅𝑠 is approximately 0.02 and for 𝑆𝑔 is 0.005.
The error for 𝑅𝑠 is relatively large due to the presence of response
discontinuity, which is a well-known challenge for other surrogate
models, and this error can be considered acceptable in the context of
CCS.

The performance of our MTLC model in approximating the time-
dependent multi-output is further demonstrated in Figs. 9 and 10,
which depict a comparison of the 𝑅𝑠 and 𝑆𝑔 fields at various time
instances (100, 200, 300, 400, 500 and 600 days) predicted by DARSim
and our MTLC model using 1200 training samples. As expected, the
model achieves high approximation accuracy for both 𝑅𝑠 and 𝑆𝑔 fields
over time.

4.2.2. Performance comparison
To demonstrate the efficiency and effectiveness of the MTLC frame-

work, we compare the performance of MTLC, MTL and STL. Each
model is trained using different numbers of training samples, 300,
600, 900, 1200 realizations, respectively. After training, the prediction
times for STL, MTL, MTLC are 14 ms, 17 ms and 19 ms, respectively,
with negligible differences. It is worth noting that for STL, the model
evaluation needs to be performed separately for 𝑅𝑠 and 𝑆𝑔 , while MTL
and MTLC only need to be done once. The 𝑅2 scores for the test dataset
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Fig. 8. (a) Evolution of Mean Absolute Error (MAE) with the number of epochs in both the training and test sets for the task 𝑆𝑔 , using different training sample sizes (𝑁 = 300,
600, 900 and 1200). (b) Evolution of MAE with the number of epochs in both the training and test sets for the task 𝑅𝑠, using different training sample sizes.

Fig. 9. Example 1: Snapshots of the 𝑅𝑠 and 𝑆𝑔 fields at several time instances obtained from DARSim and the corresponding �̂�𝑠 and 𝑆𝑔 predicted by the MTLC model trained on
1200 samples, demonstrating the high accuracy of the MTLC model in approximating the dynamic states of these fields.

Fig. 10. Example 2: Another set of snapshots of the 𝑅𝑠 and 𝑆𝑔 fields at several time instances obtained from DARSim and the corresponding �̂�𝑠 and 𝑆𝑔 predicted by the MTLC
model using 1200 training samples, further validating the effectiveness of the MTLC model.
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Fig. 11. Comparison of 𝑅2 scores for 𝑆𝑔 from networks trained using different methods (STL, MTL, MTLC), evaluated on 200 test samples with varying numbers of training
samples. (b) Comparison of 𝑅2 scores for 𝑅𝑠 from networks trained using different methods (STL, MTL, MTLC), evaluated on 200 test samples with varying numbers of training
samples.
Fig. 12. (a) Illustration of RMSE decay with the number of epochs for STL, MTL, and MTLC on the task of predicting 𝑆𝑔 using 1200 training samples. (b) Illustration of RMSE
decay with the number of epochs for STL, MTL, and MTLC on the task of predicting 𝑅𝑠 using 1200 training samples.
for each model with different training data set sizes are shown in
Fig. 11. The figure shows that the model achieves a relatively high 𝑅2

value of 0.9394 for the 𝑆𝑔 problem and 0.8807 for 𝑅𝑠 with only 300
training samples, even with high input dimensions and the presence of
response discontinuity. These values are much higher than those of the
STL (0.9140 and 0.8366). When increasing the samples size to 1200,
the model achieves 𝑅2 values of 0.9762 and 0.9335 for 𝑆𝑔 and 𝑅𝑠,
respectively. We also performed the 𝑅2 score test only for the plume
grid cells which have non-zero values in the reference maps from the
numerical simulator, to demonstrate the significance of the difference.
The 𝑅2 scores for the plume area corresponding to 𝑅𝑠 are 0.8616,
0.8226, and 0.7876 for MTLC, MTL, and STL, respectively. Meanwhile,
the 𝑅2 scores for 𝑆𝑔 are 0.9574, 0.9401, and 0.9488, respectively. It
is also observed that the performance of MTL for 𝑅𝑠 is better than
STL, while that for 𝑆𝑔 is worse than STL. This phenomenon proves
that common hard parameters sharing scheme could compromise the
performance of any task. In contrast, the MTLC framework improves
the performance of both tasks due to the consistency constraints.

The evolutions of testing RMSE for three networks trained with
1200 training samples are shown in Fig. 12. It is evident that the MTLC
has a higher convergence speed for 𝑅𝑠. We also observe that the results
of MTLC outperform those of the other models for both tasks.

In Fig. 13, we present an example of the predictions in the test
dataset at 600 days. The MTLC framework not only achieves the
best performance compared to STL and MTL, but it also provides the
more accurate positions of the 𝑅𝑠 and 𝑆𝑔 fronts, making it a more
reliable model for predicting CO saturation and CO -brine ratio in
9
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the context of CCS projects. The accuracy of the MTLC framework
is further quantified by calculating the quantities of injected CO2
trapped by dissolution trapping and residual trapping for the test case
shown in Fig. 13. As depicted in Fig. 14, it is evident that the MTLC
framework provides the most consistent predictions for both dissolution
and residual trapped CO2 quantities when compared to the results from
the numerical simulator. This highlights the effectiveness of the MTLC
framework for predicting CO2 trapping in CCS projects.

4.2.3. Uncertainty modeling
In this study, we compared the performance of three different

network structures – STL, MTL, and MTLC – in an uncertainty quan-
tification task focused on estimating 𝑅𝑠 and 𝑆𝑔 . Fig. 15 displays the
estimated distributions of 200 test permeability realizations for each
method at location (48 m, 100 m) after 600 days. The probability den-
sity functions (PDFs) of 𝑆𝑔 and 𝑅𝑠 obtained using the MTLC framework
were nearly indistinguishable from those obtained using the numerical
simulator. This result highlights the effectiveness of the MTLC model
in handling uncertainty quantification tasks within the CCS domain,
demonstrating its potential for practical application in similar contexts.

The results presented in this study demonstrate that the proposed
MTLC method can provide accurate solutions for dynamic CCS sim-
ulation in heterogeneous saline aquifers. Therefore, it is able to be
regarded as a data augmentation technique, being able to improve the
accuracy of predictions with limited data.
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Fig. 13. Test results for the three models (STL, MTL, and MTLC) at 600 days. The top and bottom rows present the absolute error with respect to the reference, demonstrating
the high accuracy of the MTLC model.

Fig. 14. Comparison of the predicted amount of trapping by the numerical simulator (reference – green lines) and three models – MTLC (red lines), MTL (blue lines), and STL
(yellow lines). (a) Dissolution trapping. (b) Residual trapping. (c) Overall trapping.
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Fig. 15. (a) Probability density functions (PDF) of 𝑆𝑔 at the specific location (48 m, 100 m) at 600 days, estimated by numerical simulator and the three model variations (STL,
MTL, MTLC). (b) PDFs of 𝑅𝑠 at the same location and time point.
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5. Discussions and conclusions

In this study, we presented a novel multi-task learning with consis-
tency (MTLC) framework for augmenting learning the CO2 gas satura-
tion 𝑆𝑔 and CO2-brine ratio 𝑅𝑠 during the storage dynamic process in
aline aquifers. Our approach leverages the encoder–decoder architec-
ures to achieve cross-task consistency, which enforces constraints on
ach task and facilitates the simultaneous prediction of these two re-
ated tasks. Therefore, it can serve as a field-scale applicable alternative
o conventional simulators for CO2 storage management.

We compared our MTLC framework to traditional deep learning
ethods in dynamic CCS simulations in deep saline aquifers with
eterogeneous formations, demonstrating its effectiveness. Our evalua-
ions revealed that incorporating cross-task consistency led to improved
ata fitting, more accurate predictions and better generalization in the
odels.

However, CO2 plume migration in deep saline aquifers is a complex
ulticomponent multiphase problem controlled by the interplay of

arious mechanisms. Despite the excellent results, there are limitations
hat need to addressed in future work: (1) Our work simplifies cer-
ain aspects for numerical simulations in order to reduce complexity,
uch as neglecting molecular diffusion–dispersion. While these choices
educe complexity and computational time, accounting for more com-
lex physics allows for a more comprehensive representation of the
eservoir. (2) The deep learning model is trained based on physical
rapping mechanisms, which do not capture the full complexity of
hermo-hydro-mechanical–chemical processes involved in geological
O2 sequestration. This limitation should be considered when applying
he model to real-world scenarios. (3) Future work could explore the
xtension to incorporate full 3D models to enhance the applicability in
arious scenarios potentially. (4) It is also critical to note that as the
odel’s complexity increases, the size of the training dataset needed

or accurate predictions could also increase. As a result, future work
ould explore ways to optimize training dataset size in the context of
ore complex real-world applications.
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