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Topological entanglement stabilization in superconducting quantum circuits

Guliuxin Jin * and Eliska Greplova †

Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, the Netherlands

(Received 31 May 2022; accepted 16 March 2023; published 10 May 2023)

Topological properties of quantum systems are among the most intriguing emerging phenomena in condensed
matter physics. A crucial property of topological systems is the symmetry-protected robustness towards local
noise. Experiments have demonstrated topological phases of matter in various quantum systems. However, using
the robustness of such modes to stabilize quantum correlations is still a highly sought-after milestone. In this
work, we put forward a concept of using topological modes to stabilize fully entangled quantum states, and
we demonstrate the stability of the entanglement with respect to parameter fluctuations. Specifically, we see
that entanglement remains stable against parameter fluctuations in the topologically nontrivial regime, while
entanglement in the trivial regime is highly susceptible to local noise. We supplement our scheme with an
experimentally realistic and detailed proposal based on coupled superconducting resonators and qubits. Our
proposal sets an approach for generating long-lived quantum modes with robustness towards disorder in the
circuit parameters via a bottom-up experimental approach relying on easy-to-engineer building blocks.

DOI: 10.1103/PhysRevResearch.5.023088

I. INTRODUCTION

Topological quantum states have been object of great in-
terest to physicists over the last few decades due to their
curious properties [1–3]. Starting with the discovery of the
quantized conductivity in the quantum Hall effect [4], the
field has developed a series of exciting discoveries in modern
topics like topological insulators [5,6], Weyl semimetals [7,8],
and topological superconductors [9–12]. At the same time,
topological phenomena offer promising applications. For ex-
ample, noninteracting topological models, represented by the
band theory, give rise to the field of spintronics [13], while
certain interacting models are predicted to lead to ground-
breaking new applications such as topological quantum
computing [14].

A great success of modern condensed matter theory is the
discovery that topological phases of matters are generally sub-
ject to topological invariants related to the global symmetries
[15]. These invariants were originally connected to the phases
of quantum systems. Still, recent studies have shown that a
number of topological phenomena initially observed in nonin-
teracting quantum systems are reproducible in purely classical
systems [16–26]. Recently the straightforward engineering
principles discovered through the field of classical metama-
terials have been adopted to quantum systems, where such
metamaterials were then reproduced [25,26]. In this work,
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we put forward a concept of topology-stabilized quantum
entanglement, inspired by classical topological metamaterials,
and thus introduce a bottomup method to engineer topologi-
cal metamaterials inherently manifesting quantum properties.
Specifically, we propose a method to generate long-range en-
tangled states of topological modes in a one-dimensional (1D)
system and provide a detailed analysis of the noise robustness
such modes possess.

This paper is organized as follows: In Sec. II we give a
brief overview of the Su-Schrieffer-Heeger (SSH) model, a
basic building bloc of our proposal. In Sec. III we propose
a sequence to entangle two spatially separated topological
edge modes. In Sec. IV we statistically analyze the stability
of such topological entanglement in the presence of parameter
fluctuations. In Sec. V we discuss practical methods to address
topological entanglement in disordered systems. Finally, in
Sec. VI we give a conclusion of our study and discuss the
outlook.

II. SU-SCHRIEFFER-HEEGER MODEL

The Su-Schrieffer-Heeger (SSH) model [27] is a prominent
simple noninteracting model exhibiting topological proper-
ties. It was proposed to describe spinless fermions hopping
on a one-dimensional lattice with staggered hopping ampli-
tudes [27]; see Fig. 1(a). This model leads to topological edge
modes supported on the ends of a lattice in the topologically
nontrivial phase; see Fig. 1(c). While originally proposed for
fermions, the model can readily be implemented as an array
of superconducting resonators [26]; see Fig. 1(b).

The SSH Hamiltonian [27] is given by

H =
N∑

n=1

(vnc†
n,Acn,B + wnc†

n,Bcn+1,A + H.c.), (1)
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FIG. 1. (a) Schematic plot of the SSH model in a finite system.
The blue and green dots are type-A and -B sublattice sites. The thin
and thick lines represent the intracell coupling v and intercell cou-
pling w respectively. (b) Experimental realization with capacitively
coupled superconducting resonators. (c) Wave-function ψ amplitude
An of the two mid-gap zero-energy edge modes with v=0.1, w=1.0.
Upper panel: plot of the symmetric edge mode; lower panel: plot of
the antisymmetric edge mode.

where c†
n,α (cn,α) is the creation (annihilation) of a particle on

lattice site (n, α) with unit cell index n ∈ [1, N] and sublattice
index α ∈ A, B. The intracell to intercell hopping ratio, v/w,
controls the topological phase transition. The model is in the
topologically nontrivial phase at v/w < 1 where two mid-gap
states exist. Such states are exponentially localized at the edge
lattices, as shown in Fig. 1(c). The two edge modes are robust
towards arbitrary disorder as long as the disorder respects the
chiral symmetry of the Hamiltonian. The energy gap closes
at v/w = 1, which indicates the topological phase transition.
When v/w > 1, the model is in the trivial phase where two
mid-gap edge states merge into the bulk band, and the edge lo-
calization is no longer valid. In the context of superconducting
circuits, resonator transmission and reflection measurements
can readily confirm the appearance of the mid-gap modes
in the topological phase of the SSH model. We provide a
detailed discussion of the SSH model and its spectrum in
Appendix A.

III. ENTANGLING THE TOPOLOGICAL MODES

In the context of quantum entanglement, we propose a
scheme to entangle two spatially separated topological SSH
edge modes and investigate the robustness of such entangle-
ment against disorders. This task can be accomplished by
engineering a system consisting of a single qubit and two
1D SSH arrays; see Fig. 2(a). In Fig. 2(b) we show how
this architecture can be engineered with capacitively coupled
superconducting (SC) resonators arrays [28–31]. The specific
realization of the qubit is flexible and platform dependent. It
can be achieved, for example, by a transmon within a purely
superconducting setting [29,30,32] or by a quantum dot in the
case of hybrid devices [31,33–38].

FIG. 2. (a) Schematic plot of two SSH arrays coupled to one
qubit, each chain consisting of four unit cells of two sublattice sites.
Blue and green colors represent the A and B types of sublattice. The
orange-blue gradient circle represents the qubit. Arrows represent
dispersive coupling between the qubit and the edge lattice sites. (b).
Each sublattice site represents one superconducting LC resonator.
The varying capacitive coupling between resonators is indicated with
the capacitor distance.

When both SSH chains are in the topologically nontrivial
phase, i.e., intercell coupling w is larger than intracell cou-
pling v, we can observe two zero-energy modes localize at the
edges in each array. The system in Fig. 2(a) is described, in a
frame rotating at the resonator and qubit frequencies, by the
Hamiltonian

H =
∑

〈i, j〉
J1,i ja

†
1,ia1, j +

∑

〈i, j〉
J2,i ja

†
2,ia2, j

+ ξ1σza
†
1,N a1,N + ξ2σza

†
2,1a2,1, (2)

where a†
X,i(aX,i) are creation (annihilation) operators in the

SSH chains. X = 1, 2 represents the two SSH chains and
i is the unit cell within a chain. In this setting, the modes
excited by driving of the resonator array are bosons. The qubit
is described by the operator σz = |e〉〈e| − |g〉〈g|. We assume
that the qubit is coupled to the resonators in the dispersive
regime with ξ the qubit state-dependent dispersive frequency
shift of the resonators, given by ξX = g2/δX , where g is the
dipole coupling between the resonator and the qubit. This
assumption is valid when a large qubit-resonator detuning δX

with respect to the coupling strength g is present [28,29].
We start investigating the entanglement in the resonator-

qubit system based on Hamiltonian (2). A tripartite quantum
state is created by exciting this system to a state that couples
the qubit to the topological edge modes in both resonator
arrays. By three parties, we here refer to topological edge
modes in the first resonator array, the qubit, and the topologi-
cal edge modes in the second resonator array. Below we show
that the qubit projective measurement results in a maximally
entangled state among the topological modes on SSH arrays,
whose robustness we wish to analyze.

Numerical analysis of systems shown in Fig. 2 is done by
the exact diagonalization, where the single-particle basis of
each SSH chain is deployed to numerically diagonalize the
Hamiltonian (2). Note that the noninteracting nature of the
bosonic excitations does not restrict each SSH chain to only
hosting a single excitation, it merely means we are expressing
our wave function in the basis of single-particle excitations.

023088-2
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FIG. 3. Density matrix ρ of a chosen entangled states after the
projective qubit measurement. The chosen state is an eigenstate of
Eq. (2) projected to qubit |e〉. The chosen parameters are intercell
coupling w = 10, intracell coupling v = 0.5, and dispersive coupling
rate ξ1 = ξ2 = 0.001. The occupation basis |1〉 and |64〉 correspond
to single-particle excitation at the edges in both SSH1 and SSH2.

The exact diagonalization gives 128 eigenstates of the Hamil-
tonian (2).

We proceed by performing projective measurement in the
σz basis of the qubit, thereby projecting the qubit state either
to the ground (|g〉) or excited (|e〉) state. The probabilities
of measuring the |e〉 and |g〉 states are equal. The details
of the calculation are in Appendix B. The qubit projec-
tion yields a number of possible entangled states between
the remaining two SSH arrays. When the desired eigenstate
of the system is excited followed by a projective measure-
ment yielding the state |e〉, the density matrix of the two
SSH arrays shows the appearance of maximal entanglement;
see Fig. 3.

IV. ENTANGLEMENT STABILITY ANALYSIS

Negativity is a measure of bipartite quantum entanglement.
It is derived from the positive partial transpose (PPT) criterion
for separability of quantum states [39–41] and is an entan-
glement monotone. Therefore it reaches its maximum on the
maximally entangled states. Zero negativity value indicates
no distillable entanglement, while nonzero value indicates
the existence of distillable entanglement. We use negativity
to characterize the entanglement generated in the two SSH
systems above.

Consider a general system with density matrix ρ composed
of two subsystems A and B. The partial transposition of ρ with
respect to subsystem B is given by [39–41]

ρTB :=(I ⊗ T )(ρ), (3)

which is the identity map applied to A and the transposition
map applied to B. Negativity can be calculated through the
absolute sum of the negative eigenvalues of ρTB [39–41], given
by

N (ρ) =
∣∣∣∣∣∣

∑

λi<0

λi

∣∣∣∣∣∣
=

∑

i

|λi| − λi

2
, (4)

where λi are all the eigenvalues of ρTB . Note that N ∈
[0, 0.5] for bipartite entanglement. Maximal entanglement
states, such as Bell states, reach the value N = 0.5. The re-
construction of the density matrix ρ from experimental data is

dependent on the specific implementation. The quantum state
tomography in the context of superconducting qubits was
shown in Refs. [42,43].

By inspecting all the eigenstates of Hamiltonian Eq. (2),
we find that the proposed system indeed hosts states that lead
to entanglement between two SSH chains. For example, in
Fig. 3 we show the density matrix ρ of a N = 0.5 state hosted
by the two SSH chains after the qubit has been measured and
projected onto the state |e〉 (here both SSH chains are in the
topological regime). From the structure of the density matrix
it is visible that the amplitudes are located at the edges of the
two arrays according to the definition of the occupational ba-
sis. We emphasize that in the two-SSH system each chain acts
as a subsystem defined in Eq. (3). Therefore, the entanglement
measured by the negativity is indeed between two subsystems,
i.e., two SSH chains.

However, selecting the exact eigenstate that leads to
maximal entanglement can be experimentally challenging
because of the complicated spectrum under disorders, let
alone that noise can lead to decoherence of the entangle-
ment itself. We will now analyze the selection feasibility
when many nearly degenerate eigenstates are present, partic-
ularly the existence of entanglement states when disorder is
present.

In our entanglement analysis, the first step is to inves-
tigate the robustness of the entanglement against parameter
fluctuation disorders δ. Now consider the case where the
hopping parameters v,w have certain degrees of uncertainty,
which we numerically simulate by the random distribu-
tions. The Hamiltonian (2) is prepared such that both SSH
arrays are in the topological phase with fluctuating v,w.
Specifically, the Hamiltonian hopping amplitudes, given by
value v (w), can fluctuate uniformly within the interval
[v − δ/2, v + δ/2] ([w − δ/2, w + δ/2]). The exact diago-
nalization of a randomly sampled Hamiltonian yields its 128
eigenstates. For each eigenstate, we project out the qubit
and evaluate the negativity N on the remaining two-SSH
system.

Next, we identify the state with the highest negativity
among all the eigenstates. In the topological regime, we find
out that such highly entangled states occupy the edges of each
chain, the wave function of which is schematically shown in
Fig. 4(a). In contrast, when a Hamiltonian is in the trivial
regime, the maximally entangled state is distributed across
the whole array, as shown in Fig. 4(b). Thus, we anticipate
that the entanglement in the topological regime will remain
stable against local parameter fluctuations since it has a pro-
file feature similar to the that of edge modes in the SSH
model. On the other hand, the maximally entangled modes
in the trivial regime are expected to be strongly susceptible to
fluctuations. We quantitatively assess the anticipated robust-
ness towards parameter fluctuations by calculating maximal
negativity generated from 100 random Hamiltonians for each
value of parameter fluctuation, δ. In each Hamiltonian, all
128 eigenstates are projected to |e〉 qubit state without loss of
generality, and the corresponding 128 negativities, {N }, are
calculated. We then evaluate the maximum negativity value.
While we are displaying the results of the |e〉 state projection,
it is worth noting that projecting onto the |g〉 state yields
similar results.
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FIG. 4. (a) Schematic visualization of entanglement between two
SSH chains in the topologically nontrivial regime. The state is chosen
from a random Hamiltonian of parameter fluctuation δ = 0.1% with
v = 0.1, w = 1. (b) Schematic visualization of entanglement in the
trivial regime. The state is chosen from a random Hamiltonian of
parameter fluctuation δ = 0.1% with v = 1, w = 0.1. (c) Maximal
negativity max({N }) as a function of parameter fluctuation strength δ

in both topological and trivial regimes. At each parameter fluctuation
strength δ, the maximal negativities for each random Hamiltonian are
shown. One-hundred Hamiltonians are sampled at each δ. The color
gradient indicates the number of occurrences per specific value of
negativity. The upper panel shows the SSH chains in the topological
regime with v = 0.1, w = 1, while the lower panel is in the trivial
regime with v = 1, w = 0.1. The mean negativity over all random
Hamiltonians is indicated with the orange line.

In the topological regime [upper panel of Fig. 4(c)]
the maximal negativity max({N }) distribution is centered
around N = 0.5. Additionally, this value remains robust with
respect to increased parameter fluctuation δ. In the trivial
regime [lower panel of Fig. 4(c)] we observe that the max-
imal negativity max({N }) distribution changes rapidly with
the parameter fluctuation and eventually decreases to zero.
More importantly, the maximal negativity max({N }) shows
a large spread over the sampled Hamiltonians, for exam-
ple, the max({N }) distribution at δ = 0.25% in the lower
panel of Fig. 4(c). In the trivial regime of fixed parameter
fluctuation, the fact that the maximal negativity varies for
different samples indicates that, after performing the mea-
surement, the states collapse to random states in the Hilbert
space, and the structure of their correlations does not remain
fixed. The resulting entanglement structure is discussed in Ap-
pendix D. We have also observed that the maximal negativities
max({N }) in the trivial regime exceed the N = 0.5 limit. This
behavior indicates that such entanglement likely goes beyond
the bipartite entanglement. We discuss this phenomenon in
detail in Appendix D.

In summary, we observe that the existence of a maximally
entangled state is highly robust when the two SSH chains
are in the topological regime, while the entangled states have
random negativity value and are prone to disorder in the trivial
regime. From now on, we consider the N = 0.5 states in the
topological regime as the target state.

FIG. 5. (a) Eigenenergy spectrum with δ = 1%. (b) Eigenenergy
spectrum with δ=10%. Both are in the topological regime (v=0.1,

w = 1.0). The two green upward and downward triangles represent
the two maximally entangled states when the qubit is projected to
|e〉 or |g〉, respectively. The middle near-zero-energy section in the
spectrum (highlighted in orange) is enlarged in the right panel.

V. TARGETING THE MAXIMUM ENTANGLEMENT

In order to properly address the target state, such as that in
Fig. 4(a), we first study the energy spectrum of the proposed
system and the spectrum change as a function of hopping
parameter fluctuations. We show two eigenenergy spectra of
Eq. (2) with parameter fluctuation δ = 1.0% and δ = 10.0%
in the topological regime (v = 0. 1,w = 1.0) in Fig. 5. The
eigenstates are sorted by their energies and we refer to the
sorted eigenstates by their eigenstate index (x axes in Fig. 5).
From our previous study where we calculate the negativity N
of each eigenstate after qubit projection, we find out that the
target states with maximal entanglement N = 0.5 exist in the
near zero energy section (see triangles in Fig. 5). Our study
also finds that the increased parameter fluctuation δ yields a
broader splitting between each eigenstate in energy spectrum;
see the right panels in Figs. 5(a) and 5(b). This means that a
certain amount of parameter fluctuation lifts the degeneracy
and makes it easier to address certain states in the frequency
space. This fact indicates the experimental applicability of our
scheme.

Our simulations show that the two states yielding maxi-
mum bipartite entanglement (green triangles) appear at the
fixed eigenstate index of the non-disordered Hamiltonian.
Thus we now investigate the eigenstate index stability to
address the target maximum entanglement state. For in-
stance, the nondisordered topological Hamiltonian of δ =
0.0% shows maximal entanglement at eigenstate index 73 in
the spectrum.

023088-4
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FIG. 6. Tracking the state |73〉 across the parameter fluctuation
δ. (a) Negativity of state |73〉 projected to |e〉. (b) Fidelity between
the disordered |73〉 with respect to state |73〉δ=0. (c) Logarithm of
energy difference between disordered |73〉 and state |73〉δ=0. Each
dot represents a random Hamiltonian. At each parameter fluctua-
tion δ, 200 random Hamiltonians are generated. The color gradient
shows the occurrence of negativity/fidelity at each value, i.e., the
overlapping Hamiltonians. The Hamiltonians are in the topological
regime with v = 0.1, w = 1. The vertical dashed lines indicate that
the system undergoes a crossover at a parameter fluctuation around
δt = 0.125%.

To keep the notation concise, we now refer to the eigenstate
with index 73 as |73〉. Without loss of generality, we choose
|73〉 to represent the N = 1/2 topological entanglement state
and analyze the stability of a specific eigenstate against pa-
rameter fluctuation. We trace this state starting from zero δ

(δ = 0.0%) towards large δ and calculate three quantities: the
negativity, the fidelity between |73〉 at disorder (δ > 0) and
|73〉δ=0, and the energy difference between |73〉 at disorder
(δ > 0) and |73〉δ=0; see Fig. 6. Generally, the fidelity between
two quantum states, |ψa〉 and |ψb〉, is evaluated as

F (a, b) = |〈ψa|ψb〉|2. (5)

Since an eigenstate can be referred to and therefore ad-
dressed by its eigenstate index, we statistically analyze the
eigenstate index stability; we choose a parameter fluctuation
δ grid evenly from [0.0%, 2.0%]. For each δ, we initialize
100 random Hamiltonians in the topological regime: v=0.1,

w = 1.0. As shown in Fig. 6, when parameter fluctuation δ

grows beyond a certain threshold value (dashed vertical lines),
the negativity distribution of |73〉 is no longer consistently at
0.5 and the mean value N decreases. Similarly the fidelity F
between |73〉 and |73〉δ=0 deviates from F = 1 when passing
the threshold δ. Moreover we also see a drastic change in the
ln(	E ) value at the same threshold δ. Note that the exact
value of dashed vertical lines (≈0.125%) is only to show the
instability of the target state eigenindex. We can conclude
from these studies that, although the existence of a state that
leads to a negativity N = 0.5 is validated by Fig. 4, such
states cannot be excited by simply addressing the specific
eigenstate index from the eigenspectra.

TABLE I. Energy window width and center at different v/w ratios.

v/w Center, |e〉 Center, |g〉 Width

0.1 9.9×10−4 −9.9×10−4 1.08×10−6

0.2 9.6×10−4 −9.6×10−4 4.50×10−6

0.3 9.1×10−4 −9.1×10−4 2.87×10−6

Despite the fact that the target topological entanglement
state cannot be directly identified by the eigenindex, we ob-
serve that the state is generally located within a certain energy
window. Moreover, when a random disordered topological
Hamiltonian has an eigenstate that leads to N = 0.5 states,
there will only be one such state. When parameter fluctu-
ation δ changes, the energy of this target state is stable in
comparison to the scale of the energy window width. Thus
it is possible to locate the target state within such energy
windows. The details of energy window preparation can be
found in Appendix E. In the case of v = 0.1, w = 1.0, the
energy window has size 	E = 1.08×10−6 and centers around
the target energy E0,|e〉 = 9.9×10−4 or symmetrically E0,|g〉 =
−9.9×10−4. The energy window parameters will change for
different qubit projections as well as for different v/w ratios.
The complete parameters are given in Table I.

Let us illustrate what these results would correspond to in
the physical units in a typical superconducting experiment.
Setting w/2π = 100 MHz will result in the difference be-
tween E0,|e〉 and its adjacent state of 40 kHz and 	E of ca.
50 Hz. Assuming typical resonator frequency of 5 GHz and
Q factor of 5×105 we obtain a linewidth of 10 kHz. The
mid-gap states are thus individually addressable and the fluc-
tuation of the energy window also does not pose an issue for
this addressability. Additionally, the linewidth could be much

FIG. 7. Mean negativity N as a function of parameter fluctua-
tion strength δ under different v/w ratios. The mean negativity is
calculated from all states with eigenenergy in the energy window.
Each point represents the mean negativity value with the standard
deviation indicated by the error bar. Each data point is calculated
from 100 randomly sampled Hamiltonians under the specific δ.

023088-5
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FIG. 8. The probability of the v/w dependent energy window
being nonempty in a Hamiltonian, at different parameter fluctuations
δ. The v/w chosen are consistent with Fig. 7. Each data point
is calculated from 100 randomly sampled Hamiltonians under the
specific δ.

smaller by increasing the Q factor, which is routinely brought
up to several times 106 in the current experiments.

When we address all the eigenstates within the prescribed
energy window, Fig. 7 shows the mean negativity N and the
corresponding standard deviation. If the energy window is
empty, we will not enter the calculation of mean negativity.
Each data point is calculated from 100 random Hamiltoni-
ans and averaged from both qubit projections. We find that
the mean negativity N is stable at small v/w ratios as in
the upper panel of Fig. 7. The negativity instability rises
as the v/w increases. The increased δ does not increase the
instability. Thus, the nontrivial topology of the SSH model
is critical in stabilizing the entanglement in the presence of
disorders.

Besides the mean negativity N , we are also interested in
the number of states within the energy window since the
negativity is ill defined in Fig. 7 if the energy window contains
zero state. Specifically, we study the probability of having
an energy window being nonempty, i.e., the energy window
addresses at least one state of arbitrary N , at various δ and
v/w. In Fig. 8, each data point is averaged over 100 random
Hamiltonians. We find that, deep in the topological regime
(v/w = 0.1), the prescribed energy window will always hit a
specific state, the negativity of which is shown in Fig. 7. In
contrast, we find that the number of states within the target
window decreases when the system moves away from the
deep topological regime, as shown in the case of v/w =
0.2 and 0.3. The probability of having a nonempty window
also decreases with δ in the latter two cases. Overall, the
topological entanglement can be systematically achieved by
addressing the specific energy window for a random Hamil-
tonian deep in the topological regime (v/w = 0.1). In this
setup, the parameter fluctuation will not hinder the desired
topological entanglement.

VI. CONCLUSION AND OUTLOOK

In this work, we proposed a protocol for realizing
robust topological entanglement in superconducting cir-
cuits. Specifically, we theoretically construct an architecture

containing SSH arrays and a single qubit. We showed that
the Bell-like entanglement between topological edge modes
could be achieved by projecting out the qubit. Such entan-
glement is robust against parameter fluctuations in the SSH
resonator arrays. Additionally, we provided a detailed analysis
of addressing the entanglement modes in the frequency space.
We formulated a prescription on the rendered topologically
stabilized entanglement as a function of parameter fluctuation.
We conclude that there is always a unique way to prepare a
maximally bipartite entanglement of topologically protected
edge modes by targeting a specific frequency window.

By proposing an experimentally accessible scheme for the
proof of the principle of topology stabilized entanglement,
we put forward the concept of classical metamaterial-inspired
topological quantum devices engineering on firm quantum
setups. This work can be used as a stepping stone for further
topology stabilized quantum information processing and com-
munication. The potential applications include more robust
quantum communications links and robust on-chip entangle-
ment.

The code needed to reproduce the results presented in this
paper can be found in [44].
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APPENDIX A: SSH MODEL SPECTRUM

The SSH model describes the noninteracting particle hop-
ping on a one-dimensional lattice composed of N unit cells of
sublattices A and B. The lattice has staggered hopping ampli-
tudes v and w. Depending on the ratio of the two hoppings,
v/w, the SSH model has a topological phase transition.

Given the SSH Hamiltonian Eq. (1), we analyze the spec-
trum of this model in a topologically nontrivial case with
hoppings v = 0.5, w = 1.0. In a lattice of 16 lattice sites with
open boundary condition, the energy spectrum is given in left
panel of Fig. 9. The two edge states are shown in the middle
of the gap. The two topological edge modes are degenerate in
the periodic boundary condition, while the degeneracy is lifted
in the finite systems with open boundary condition. We find
that the energy difference between two mid-gap edge states
increases when we move away from the deep topological
nontrivial regime, i.e., small v/w values. Thus the degener-
acy between two edge states is lifted when increasing v/w

in finite systems. The energy difference grows exponentially
with respect to the v/w ratio, as shown in the right panel
of Fig. 9. This also indicates that the gap begins to close
exponentially.

Although originally proposed to describe fermions on a
one dimensional lattice with staggered hopping, the exper-
imental implementations of the SSH model can go beyond
fermionic systems. The photonic analog is realized in systems
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FIG. 9. Left: SSH energy spectrum with v/w = 0.5 in the lattice
of 16 lattice sites. Right: Energy difference between two mid-gap
edge modes, fitted with an exponential function.

where superconducting qubits are coupled to a metamaterial
waveguide [26]. The phononic analog is demonstrated in me-
chanical metamaterials [20]. More complicated 2D models
with topological phases are also implemented using metama-
terials [16,45].

APPENDIX B: CALCULATIONS
ON EXACT DIAGONALIZATION

AND ENTANGLEMENT NEGATIVITY

In order to numerically analyze the Hamiltonian (2) of
the two SSH chains with a qubit, as shown in Fig. 2, we
exact diagonalize the Hamiltonian in the single-particle basis
of each SSH chain with the coupled two-level qubit system.
The full multiparticle Hilbert space is given by the tensor
product space of two groups of SSH single-particle basis and
the two-level qubit system:

{|bfull〉} = {|bSSH1〉 ⊗ |bqubit〉 ⊗ |bSSH2〉}. (B1)

The single-particle basis of each SSH chain (4 unit cells with
2 sublattice sites on each) is given by

{|bSSHX 〉} = {|1, 0, 0, 0, 0, 0, 0, 0〉, |0, 1, 0, 0, 0, 0, 0, 0〉,
|0, 0, 1, 0, 0, 0, 0, 0〉, |0, 0, 0, 1, 0, 0, 0, 0〉,
|0, 0, 0, 0, 1, 0, 0, 0〉, |0, 0, 0, 0, 0, 1, 0, 0〉,
|0, 0, 0, 0, 0, 0, 1, 0〉, |0, 0, 0, 0, 0, 0, 0, 1〉},

(B2)

where each digit represents a lattice site among the eight
sublattice sites. The qubit basis is given by

{|bqubit〉} = {|e〉, |g〉}. (B3)

Therefore the Hilbert space size considered is 8×8×2 = 128.
Note that the single-particle picture is deployed to describe
the noninteracting particles in each SSH chain separately. In
experimental implementation, we do not intend to restrict the
entire circuit to have only single excitation.

The bipartite entanglement between two SSH chains is
achieved via the qubit projection, after preparing the en-
tire coupled system in an eigenstate. The qubit projection

operators are given by

P̂|e〉 =
∑

|bqubit〉=|e〉
|bfull〉〈bfull|,

P̂|g〉 =
∑

|bqubit〉=|g〉
|bfull〉〈bfull|. (B4)

Each eigenstate can be projected to one of the two qubit
states. The projection of 128 eigenstates onto both qubit states
respectively yields 256 two-SSH states with some states being
identical to others. The resulting Hilbert space of the two-SSH
system has size 64. Here, the probability to measure the qubit
state |e〉 is 50%, and similarly for |g〉 the probability is also
50%.

After the qubit projection, the entanglement need to be
measured by negativity. Here we elaborate the details of the
negativity calculation. Consider a general system composed
of two subsystems A and B with a total density matrix ρ. The
total Hilbert space is HA ⊗ HB. The density matrix ρ is given
by

ρ =
∑

i jkl

pi j
kl |i〉〈 j| ⊗ |k〉〈l|. (B5)

ρTB is the partial transpose of density matrix ρ with respect to
subsystem B, given by [39–41]

ρTB := (I ⊗ T )(ρ) =
∑

i jkl

pi j
kl |i〉〈 j| ⊗ (|k〉〈l|)T

=
∑

i jkl

pi j
kl |i〉〈 j| ⊗ |l〉〈k| =

∑

i jkl

pi j
lk|i〉〈 j| ⊗ |k〉〈l|, (B6)

where (I ⊗ T )(ρ) is the identity map applied to the A party
and the transposition map applied to the B party.

Negativity can be computed through the absolute sum of
the negative eigenvalues of ρTB [39–41], defined as

N (ρ) =
∣∣∣∣∣∣

∑

λi<0

λi

∣∣∣∣∣∣
=

∑

i

|λi| − λi

2
, (B7)

where λi are all the eigenvalues of ρTB . Negativity is a
monotone and N ∈ [0, 0.5] for bipartite entanglement. Max-
imal entanglement states, such as Bell states, reach the
value N = 0.5. Note that the negativity is independent of
which subsystem was partially transposed in Eq. (B6) since
ρTA = (ρTB )T .

APPENDIX C: ANALYSIS OF THE ENTANGLEMENT
AT DIFFERENT v/w RATIOS

In the presence of parameter fluctuation, the topological
phase transition might happen at a different v/w parameter
value compared to fully ordered systems. Note the clear pat-
tern difference between maximal negativity distributions in
the topologically nontrivial and trivial regimes, as shown in
Fig. 4. The broadening of the distribution and decrease of
the mean value characterize the trivial phase. From the three
panels in Fig. 10 with an increasing v/w ratio, we find that
although the systems are still in the topological regime, the
negativity distribution patterns show a similarity to the trivial
phase. This crossover behavior characterizes the change in the
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FIG. 10. The maximal negativity max(N ) vs parameter fluc-
tuation δ under different v/w ratios. The three panels are in the
topological regimes.

topological properties in the presence of disorders. The detail
of this crossover behavior is not the focus in this work. We
emphasize that in order to address the target entanglement
between topological modes, it is advised to stay deep in the
topological regime.

APPENDIX D: ENTANGLEMENT
IN THE TOPOLOGICAL REGIME

Apart from the bipartite entanglement analyzed in the main
text, there exist other types of entanglement in the topological
regime where the negativity exceeds 0.5, e.g., in the upper
panel of Fig. 4(c). These states are in the minority, which can
be seen from the small amount of Hamiltonian population at
these values. The fact that N > 0.5 indicates that something
goes beyond the bipartite entanglement. When N > 0.5, it
is only considered as an indicator of outlier entanglement,
instead of the entanglement measure. We do not aim to fully
understand such entanglement in this work. However, we can
provide some insights into them.

In such outlier entanglement states, the bulk of the SSH
also contributes to the entanglement. As in Eq. (B2), when the
single excitation is at the edge sites, the basis is considered
as the edge components, and vice versa. The basis of the two
SSH systems can be written as the tensor product of the two:

|b〉 = |b〉SSH1 ⊗ |b〉SSH2. (D1)

We can split the density matrix ρ elements into four types
according to their basis components of SSH1 and SSH2: edge-
edge, edge-bulk, bulk-edge, and bulk-bulk. We illustrate this
component analysis by starting from a state in the topological
regime with N = 0.707. The upper panel of Fig. 11 is the
reduced density matrix with edge-edge components set to
zero. It has negativity equal to 0.671. The lower panel of
Fig. 11 has bulk-bulk components set to zero with negativity
= 0.658. The results show that the contributions from both
the edge and bulk parts of the SSH are significant in the

FIG. 11. Reduced density matrix. In the upper panel, we show
the case with eliminated edge-edge component; in the lower panel,
we show the case with eliminated bulk-bulk components. The edge-
edge components are highlighted in light blue color.

outlier entanglement states. These types of entanglement are
complicated and are beyond the scope of this work.

APPENDIX E: THE ADDRESSABLE ENERGY WINDOW

In order to target the N = 0.5 topological entanglement
properly in the frequency space, we prepare an energy window
in the following steps:

Step 1: Find out the target energies E0,|qubit〉. This target
energy varies for |e〉 and |g〉 qubit projection.

Step 2: Find a trial energy window width 	E .
Step 3: Prepare an energy window centered at E0, |qubit〉

with width 	E for both qubit projection states.
Step 4: Calculate N for states in this window at both qubit

projections.
Step 5: Note the target energy E0, |qubit〉 shift with re-

spect to v/w ratio.
In step 1, we locate the target eigenenergies, i.e., cen-

ter of the energy windows. We sample 100 Hamiltonians at
each δ value in the grid of parameter fluctuation. For each
Hamiltonian, at each qubit projection, we filter out the state
with N = 0.5 (rounded to three digits) and their energies.
We collect the one specific energy with minimal absolute
value Esamplei,abs,min. We average the energy Esamplei,abs,min over
100 Hamiltonian samples. Thus each δ grid has an energy
value. We then choose the most representative energy accord-
ing to the occurrence across the fluctuation grid. The most
common energy is the target energy, denoted as E0, |qubit〉.
E0, |qubit〉 represents the mean energy of states with N = 0.5
(N rounded to three digits) at qubit state |qubit〉.

In steps 2 and 3, we prepare an energy window centered
at E0, |qubit〉 corresponding to a practical experimental setup.
The trial width is chosen to be the minimum energy difference
between any two states lying on the middle spectrum sector in
Fig. 5, i.e., the orange middle sector. The challenge here is
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that if the energy window is too narrow we might miss the
target state. If the energy window is too broad we will also
excite unwanted states. The choice of energy window width is
empirical and can be decided from numeric studies.

In step 4, we sample 100 Hamiltonians at each δ value in
the δ grid. We calculate N for all states lying in the energy
window. The statistics on N will characterize the probability

of finding entangled topological states within this energy win-
dow, as shown in Figs. 7 and 8.

The energy window we have used for the analysis in Figs. 7
and 8 is given in Table I. Note that the center of an energy
window is relatively fixed for a specific v/w ratio; the width
can be adjusted to half size or double the size without losing
the high targeting probability.
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