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Distributed Model-Free Adaptive Predictive Control
for Urban Traffic Networks

Dai Li and Bart De Schutter , Fellow, IEEE

Abstract— Data-driven control without using mathematical
models is a promising research direction for urban traffic control
due to the massive amounts of traffic data generated every day.
This article proposes a novel distributed model-free adaptive
predictive control (D-MFAPC) approach for multiregion urban
traffic networks. More specifically, the traffic dynamics of the
network regions are first transformed into MFAPC data models,
and then, the derived MFAPC data models instead of mathemati-
cal traffic models serve as the prediction models in the distributed
control design. The formulated control problem is finally solved
with an alternating direction method of multipliers (ADMM)-
based approach. The simulation results for the traffic network
of Linfen, Shanxi, China, show the feasibility and effectiveness
of the proposed method.

Index Terms— Data-driven control, distributed model predic-
tive control (DMPC), macroscopic fundamental diagram (MFD),
model-free adaptive predictive control (MFAPC), urban traffic
network control.

I. INTRODUCTION

TRAFFIC congestion is a severe problem in urban traffic
networks due to the rapid growth of vehicle numbers,

and how to deal with traffic congestion problems using the
existing traffic infrastructure is still a highly relevant topic.
Network-wide traffic control is an excellent way to deal with
urban traffic congestion.

Network-wide traffic control optimizes the signal settings of
all intersections simultaneously aiming to obtain the globally
optimal performance of the entire network. Several approaches
for network-wide urban traffic control have been proposed,
in which many control and optimization theories are uti-
lized. Some commercial traffic control systems, such as
MAXBAND [1] and TRANSYT [2], have been implemented
in many cities for a long time. For the traffic-responsive urban
control (TUC) strategy [3] and its extended versions [4], [5],
a linear quadratic regulator is utilized to balance the traffic
flows within the network. To better cope with the fluctuations
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of traffic flows and to avoid a myopic strategy in the control
process, model predictive control (MPC)-based urban traffic
control methods were designed utilizing different mathemat-
ical traffic models, such as the S model [6], [7] and the
store-and-forward model [8], [9]. Robust control was applied
in urban traffic control to cope with uncertainty of traffic
parameters in [10] and [11].

Although the global optimum can be obtained through
network-wide control approaches, computation speed and reli-
ability are always major problems. In this case, a hierarchical
or distributed control structure is more practical. A real-time
urban traffic control system with a three-level hierarchical
structure was proposed in [12]. In [13], a multiagent control
approach for urban traffic networks was designed, and conver-
gence of the algorithm was proved. Distributed MPC (DMPC)
was adopted to deal with the interactions and negotiations
among the network regions in [14]–[16]. However, for these
distributed traffic control strategies, detailed mathematical
models of the traffic network are needed, which makes them
hard to use and to implement in practice. Modeling the traffic
dynamics for a given network region is quite difficult, and
sometimes, it is impossible. Moreover, even if a mathematical
model is available, it is in general not an accurate one, and
lots of uncertainties exist, which will definitely deteriorate the
control performance when we use the model in practice.

In order to address the traffic congestion problem while
making use of the valuable traffic data generated in real-world
traffic systems instead of a model-based control method,
a novel model-free adaptive predictive control (MFAPC)
scheme can be utilized in urban traffic control. MFAPC is
extended from model-free adaptive control (MFAC), which is
a pure data-driven control approach. MFAC was originally
proposed in [17], and it has been developed to cope with
control problems for a class of unknown, nonlinear, non-
affine systems based on different dynamic linearization data
models using a novel concept of pseudopartial derivative,
which can be estimated directly from input–output data [18].
The applications of MFAC include wireless communication
systems [19], implantable heart pumps [20], nonlinear dis-
tillation columns [21], perimeter control for one-region [22]
and multiregion [23], [24] urban traffic networks, and so on.
MFAPC is a predictive control scheme derived by embedding
the MFAC scheme in a rolling horizon framework [18]. For
more detailed discussions on MFAC, we refer the interested
readers to [25] and [26].

In [23] and [24], MFAC-based perimeter control strategies
for multiregion urban traffic networks were proposed aiming to
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make the number of vehicles in each region track a set point by
metering the traffic inflows and outflows among the regions.
However, there are two deficiencies in these two methods.
First, only the macroscopic interactions among the regions
are considered, while the traffic dynamics in the intersection
and link level, and the detailed signal settings of the traffic
lights are not considered. Furthermore, there is no negotiation
mechanism for the interactions among the regions, which leads
to a nonglobal and noncooperative perspective in the control
process.

In order to deal with the interactions among the network
regions, the DMPC approach, which is a general control
methodology that can tackle the distributed control problem
of large-scale systems, can be utilized. The basic concept,
research results, and research directions of DMPC are dis-
cussed in, e.g., [27] and [28]. To solve DMPC problems,
the augmented Lagrangian relaxation (ALR) [29] and the alter-
nating direction method of multipliers (ADMM)-based [30]
approaches are widely used. DMPC has been applied in
power systems [31], wind farms [32], synchromodal freight
transport [33], and urban traffic control [14]–[16]. However,
note that all these approaches require a mathematical model
of the system as prediction model.

In this article, a distributed model-free adaptive predictive
control (D-MFAPC) strategy for multiregion urban traffic
networks is proposed. First, we derive the MFAPC data models
of the network regions by analyzing the traffic dynamics of
the network. Then, we design the D-MFAPC algorithm based
on the derived MFAPC data models in a distributed control
structure. To deal with traffic flow interactions and negotiations
among the regions, the formulated D-MFAPC problem is
solved with the ADMM-based DMPC approach.

The contributions of this article are summarized as follows.

1) Under the assumptions of congested traffic condition
and equalized cycle length among the intersections,
the MFAPC data models [18] of the multiregion urban
traffic networks are derived. By using the MFAPC data
models, the traffic controller can be designed only using
the measured data of the traffic networks without the
need of precise mathematical models.

2) The D-MFAPC strategy for multiregion urban traffic
networks is designed based on the derived MFAPC
data models. Different from model-based distributed
urban traffic control [14]–[16], the derived MFAPC data
models instead of traffic mathematics models are utilized
in the control process, which can avoid model mismatch
and decrease the computational effort.

3) Compared with the existing MFAC-based traffic control
methods for multiregion networks [23], [24], besides the
macroscopic interactions among the regions, the detailed
traffic signal settings in the traffic network are also
considered. Furthermore, a negotiation mechanism using
the ADMM-based approach [30], [33] is designed to
enhance the globality and cooperativeness of the dis-
tributed controllers.

The rest of this article is organized as follows. In Section II,
notations on multiregion urban traffic networks are introduced,

and the traffic dynamics of the regions are analyzed. Then,
MFAPC data models of the traffic networks and the D-MFAPC
strategy are presented in Section III. Next, a case study is
carried out to verify the proposed control method in Section IV.
Finally, Section V concludes this article.

To facilitate the description of the proposed control
approach, the following notations are presented. First, X ∩ Y
and X ∪ Y stand for the intersection and the union of sets
X and Y , respectively, |x | is the absolute value of a scalar x ,
and �x�2 indicates the 2-norm of a vector x. Then, we denote
k as the time index of the traffic system and define x̃(k) =
[xT(k), xT(k − 1), . . . , xT(1)]T for a vector x(k) at time step k.
Furthermore, the variables that will be used in the remainder
of this article are summarized in Table I.

II. DYNAMICS OF URBAN TRAFFIC NETWORKS

A. Multiregion Urban Traffic Networks

Assume that a traffic network is decomposed into several
regions, for which many traffic network decomposition meth-
ods can be utilized (see [34]–[36]). An illustrative example of
a network composed of two regions is shown in Fig. 1, where
V = {V1, V2, V3, V4} is the set of vehicle inflow points of the
network from which the traffic demands are generated.

Next, some notations on intersections and links are intro-
duced. We denote I as the set of intersections in the network.
Two intersections are called neighbors if they are connected
through a link, e.g., for Fig. 1(b), I N

i = { j1, j2, j3, j4}, where
I N
i is the set of neighboring intersections of intersection i .

The pair ( j, i) represents the link on which vehicles travel
from intersection j to intersection i . Moreover, Ir is the set of
intersections in region r , r = 1, 2, I B

r is the set of intersections
in region r at the boundary of the network, and I B

r,r̄ is the set of
intersections in region r at the boundary with another region r̄ .
In Fig. 1(a), I1, I2, I B

1 , I B
2 , I B

1,2, and I B
2,1 are given by

I1 = {1, 2, 3, 4, 5, 6}, I B
1 = {1, 4}, I B

1,2 = {3, 6}
I2 = {7, 8, 9, 10}, I B

2 = {8, 10}, I B
2,1 = {7, 9}.

A signal phase of an intersection is a period of time during
which a specific set of traffic flows are allowed to cross the
intersection. We define gi(k) ∈ R pi as the vector of phase
green times of intersection i at time step k, which can be
described as

gi(k) = �
gi,1(k), . . . , gi,pi (k)

�T
(1)

where pi is the number of signal phases of intersection i .
Assume that all intersections in the network have the same

cycle length T , i.e.,

gi,1(k) + · · · + gi,pi (k) = T − Li (2)

where Li is the total lost time of intersection i within a
signal cycle which is imposed to avoid interference among
incompatible traffic flows of consecutive signal phases. This
assumption is introduced to facilitate the analysis of the traffic
dynamics in Section II-B.

Remark 1: In this article, we take the two-region urban
traffic network as an illustrative example just to simplify the
description of the proposed D-MFAPC approach. However,
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TABLE I

LIST OF VARIABLES

it should be emphasized that the D-MFAPC approach can be
easily extended to traffic networks composed of more than two
regions.

B. Analysis of Traffic Dynamics of Multiregion Networks

Let the sampling interval of the traffic system be equal to
the common cycle length T . Then, the dynamics of the number

Fig. 1. Illustrative example of a two-region urban traffic network. (a) Decom-
position of the traffic network. (b) Diagram of intersections and links.

of vehicles in the network, in region r , and on link ( j, i) can
be described as

n(k + 1) = n(k) + e(k) − l(k) (3)

nr (k + 1) = nr (k) + er (k) − lr (k) (4)

n( j,i)(k + 1) = n( j,i)(k) + e( j,i)(k) − l( j,i)(k) (5)

where e(k) and l(k) are the number of vehicles entering
and leaving the network, respectively, at time step k; er (k)
and lr (k) are the number of vehicles entering and leaving
region r , respectively, at time step k; and e( j,i)(k) and l( j,i)(k)
are the number of vehicles entering and leaving link ( j, i),
respectively, at time step k.

In this article, we adopt the S model [7], [37], which gives
a good balance between accuracy and computation speed,
to describe the dynamics of e( j,i)(k) and l( j,i)(k). However,
note that other mathematical traffic models, such as the store-
and-forward model [3], [38] and the BLX model [39], [40], can
also be utilized instead. In the S model, e( j,i)(k) is expressed
as the sum of number of vehicles leaving from upstream links
of link ( j, i), while l( j,i)(k) depends on the signal settings of
intersection i , the number of queuing vehicles, and vehicles
arriving at the tail of the queue on link ( j, i), and the remaining
capacity of the downstream links of link ( j, i) at time step k.
Interested readers are referred to [7] and [37] for a detailed
description of the S model.

Assumption 1: We assume that the traffic capacity outside
the network is large enough so that there is no backpropagation
of congestion from outside the network to inside the network,
and the external traffic inflow rates generated from the vehicle
inflow points are known or accurately predictable for all time
steps. Furthermore, we assume that the network is congested,
and the vehicles cannot cross two consecutive intersections
within one signal cycle.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 04,2022 at 09:44:59 UTC from IEEE Xplore.  Restrictions apply. 
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Remark 2: The above assumptions of unlimited capacity
outside the network and known traffic inflow are made to
help us rule out traffic interference from outside the network
and to focus on the traffic dynamics inside. While under the
assumption that the network is congested, we do not need
to consider the queuing vehicles and vehicles arriving at the
tail of the queue of link ( j, i) anymore. This can reduce the
number of traffic variables and simplify the analysis of
the S model and the derived MFAPC data model that will be
elaborated next; this assumption is also acceptable in practical
applications, as real-time traffic signal optimization is only
necessary when the traffic network is congested.

Regarding Assumption 1, e( j,i)(k) and l( j,i)(k) in (5) are
expressed as follows according to the S model:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e( j,i)(k) =
�

m∈IN, j ,m �=i

min

	
μ(m, j,i)gi,p(m, j,i)(k)

T
,

β(m, j,i)



C( j,i) − n( j,i)(k)

�
T

�
for j ∈ I

e( j,i)(k) = min


v j (k),

C( j,i) − n( j,i)(k)

T

�
for j ∈ V

(6)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l( j,i)(k) =
�

m∈IN,i , j �=m

l( j,i,m)(k)

l( j,i,m)(k) = min

	
μ( j,i,m)gi,p( j,i,m)

(k)

T
,

β( j,i,m)



C(i,m) − n(i,m)(k)

�
T

�
for m ∈ I

l( j,i,m)(k) = μ( j,i)gi,p( j,i,m)
(k)

T
for m ∈ V

(7)

where l( j,i,m)(k) is the number of vehicles leaving link ( j, i)
toward link (i, m), β( j,i,m) is the ratio of vehicles going from
link ( j, i) toward link (i, m), μ( j,i,m) is the saturation flow
rate leaving link ( j, i) toward link (i, m), p( j,i,m) is the index
number of signal phase of intersection i for traffic flow from
link ( j, i) toward link (i, m), C( j,i) is the capacity of link ( j, i)
measured in number of vehicles, and v j (k) is the number of
vehicles generated by vehicle inflow point j ∈ V at time step
k which is known or accurately predictable as mentioned in
Assumption 1.

The expressions of e( j,i)(k) and l( j,i,m)(k) can be written
compactly as

�
e( j,i)(k) = f I

E,( j,i)



g j(k), n(i, j)(k)

�
, for j ∈ I

e( j,i)(k) = f B
E,( j,i)



n(i, j)(k)

�
, for j ∈ V

(8)�
l( j,i,m)(k) = f I

L,( j,i,m)



gi(k), n(i,m)(k)

�
, for m ∈ I

l( j,i,m)(k) = f B
L,( j,i,m)(gi(k)), for m ∈ V

(9)

for appropriately defined functions f I
E,( j,i)(·), f B

E,( j,i)(·),
f I
L,( j,i,m)(·), and f B

L,( j,i,m)(·).

Then er (k) can be expressed as follows based on (4)–(9):

er (k) =
�

j∈V,i∈I B
r

e( j,i)(k) +
�

j∈I B
r̄,r ,i∈I B

r,r̄

e( j,i)(k)

=
�

j∈V,i∈I B
r

f B
E,( j,i)



n( j,i)(k)

� + zr̄ ,r (k)

=
�

j∈V,i∈I B
r

f B
E,( j,i)



n( j,i)(k − 1), l( j,i)(k − 1)

e( j,i)(k − 1)
� + zr̄ ,r (k)

=
�
j∈V

i∈I B
r ,m∈I N

i

f B
E,( j,i)



n( j,i)(k − 1), gi(k − 1)

n(i,m)(k − 1)
� + zr̄,r (k) (10)

for r = 1, 2 with r̄ = 3−r , and where zr̄ ,r (k) is the interaction
input of region r caused by another region r̄ . The first term
of (10) is the number of vehicles generated from the vehicle
inflow points, and the second term is the number of vehicles
leaving from region r̄ for region r . Then, n(i,m)(k) in (10) can
be further expressed as follows according to (4)–(9):

n(i,m)(k)

= n(i,m)(k − 1) − l(i,m)(k − 1) + e(i,m)(k − 1)

= n(i,m)(k − 1) − f I
L,(i,m,o)



gm(k − 1), n(m,o)(k − 1)

�
+ f I

E,(i,m)



gi(k − 1), n(i,m)(k − 1)

�
for o ∈ I N

m ∩ Ir

= f(i,m)



n(i,m)(k−1), gi(k−1), n(m,o)(k−1), gm(k−1)

�
= f(i,m)



n(i,m)(k−1), gi(k−1), gm(k−1), n(m,o)(k−2)

= n(o,w)(k − 2), gm(k − 2), go(k − 2)
�

for w ∈ I N
o ∩ Ir

= f(i,m)



G̃r (k), Ñr (k)

�
(11)

where Gr (k) = [gi(k)]i∈Ir and Nr (k) = [n( j,i)(k)]i∈Ir , j∈I N
i

are the vector of green times of all intersections in region
r , and the vector of number of vehicles on all links in region
r respectively. Based on (10) and (11), we can get

er (k) = fenter


G̃r (k), Ñr (k), zr,r̄ (k)

�
. (12)

Similar to er (k), lr (k) can be divided into the vehicles
leaving the network and the vehicles leaving region r for
region r̄

lr (k) =
�

m∈I N
j

�
j∈I B

r ,i∈V

l(m, j,i)(k)

+
�
m∈I N

j

�
j∈I B

r,r̄ ,i∈I B
r̄ ,r

l(m, j,i)(k)

=
�

j∈I B
r,r̄ ,i∈I B

r̄ ,r

f I
L,(m, j,i)



n( j,i)(k), g j(k)

�
+

�
j∈I B

r

f B
L,(m, j,i)



g j(k)

�
= fleave



GB

r (k), GB
r,r̄ (k), Nr,r̄ (k)

�
(13)

where GB
r (k) = [gi(k)]i∈I B

r
is the vector of phase green

times of intersections in region r at the boundary of the
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network, GB
r,r̄ (k) = [gi(k)]i∈I B

r,r̄
is the vector of green times

of intersections in region r at the boundary with region r̄ , and
Nr,r̄ (k) = [n( j,i)(k)] j∈Ir ,i∈Ir̄ is the vector of number of vehicles
on links through which vehicles can travel from region r to
region r̄ .

Similarly, e(k) and l(k) can be expressed, respectively, as

e(k) =
�

j∈V,i∈I B
r

e( j,i)(k)

= f̄enter


G̃r (k), Ñr (k)

�
(14)

l(k) =
�

m∈I N
j

�
j∈I B

r ,i∈V

l(m, j,i)(k)

= f̄leave


GB

r (k)
�
. (15)

Based on (9), the interaction output of region r on another
region r̄ (number of vehicles leaving region r for region r̄ ) at
time step k is calculated as

yr,r̄ (k) =
�

m∈I N
j

�
j∈I B

r,r̄ ,i∈I B
r̄ ,r

l(m, j,i)(k)

=
�

j∈I B
r,r̄ ,i∈I B

r̄ ,r

f I
L,(m, j,i)



n( j,i)(k), g j(k)

�
= fy



GB

r,r̄ (k), Nr,r̄ (k)
�
. (16)

It is important to note that the traffic dynamics for nr (k)
and yr,r̄ (k) presented in (4), (10)–(13), and (16) are just
utilized to present the basic traffic dynamics and that they
are not involved in the controller design. This is because they
are highly nonlinear, and an online optimization-based traffic
controller designed based on these dynamics would be very
complex and time-consuming. Moreover, there are still lots of
unmodeled traffic dynamics and uncertainties not reflected in
the model. In this case, we can represent the traffic dynamics
of nr (k) and yr,r̄ (k) as MFAPC data models and resort to
the MFPAC scheme to design the traffic controller as will be
explained next.

III. D-MFAPC STRATEGY FOR URBAN

TRAFFIC NETWORKS

A. Control Problem Formulation

The objective of the D-MFAPC strategy is to regulate the
number of vehicles in the network nr (k) tracking the set point
nset

r by optimizing Gr (k), the interaction input zr̄ ,r (k), and the
interaction output yr,r̄ (k) of each region r ; thus, the traffic flow
efficiency in the network can be improved.

To deal with the problems of model mismatch and complex
computation which always exist in model-based control meth-
ods, the MFAPC scheme is adopted. Specifically, the dynamics
of nr (k) and yr,r̄ (k) described in (4), (10)–(13), and (16) can
be represented by the equivalent dynamic linearized MFAPC
data models with the help of the pseudogradients in a rolling
horizon framework. The pseudogradients in the linearized
dynamic data models are updated by the real-time measured
data of the traffic system at each time step k without using
any information of the mathematical model. Then, the derived
MFAPC data models can be utilized to design the D-MFAPC
algorithm.

There are three features of the proposed control method.
First, all the nonlinear properties and unmodeled dynamics
of original traffic model are fused into the pseudogradients,
and thus, no mathematical traffic model is required in the
controller design. Second, the MFAPC data model is an
equivalent dynamic linearization data model instead of a static
approximation model, and no high-order term of the original
model is lost. Finally, the MFAPC data model is linear with
a very simple structure, which can dramatically decrease the
computational burden when we use it in the control process.

B. MFAPC Data Models of the Regions

Considering the two-region urban traffic network
in Fig. 1(a), the dynamics of the number of vehicles in
region r, r = 1, 2 can be represented by a more general form
for the MFAPC application based on (4), (12), and (13)

nr (k + 1)= fn(nr (k),. . ., nr (k−γn), ur (k),. . ., ur (k−γu))

(17)

where ur (k) = [GT
r (k), NT

r (k), NT
r,r̄ (k), zr̄ ,r (k)]T, r̄ = 3 − r ,

and γn and γu are the memory lengths of the traffic system
for the number of vehicles and the system inputs, respectively.

There are three forms of the MFAC data models: compact
form, partial form, and full form dynamic linearized data
model [18], [26]. The main difference between these three
forms consists in how many past input and output increments
are used to model the next output increment.

Without loss of generality and for simplicity, the compact
form dynamic linearized (CFDL) data model will be used
in this article. Before the CFDL method is elaborated, some
assumptions [18], [25], [26] are made on system (17).

Assumption 2: The partial derivatives of fn(·) in (17) with
respect to every entry of the variable ur (k) are continuous.

Assumption 3: The above system satisfies the generalized
Lipschitz condition.

There exists a positive constant cr such that

|nr (k1 + 1) − nr (k2 + 1)| ≤ cr�ur (k1) − ur (k2)�2

for ur (k1) �= ur (k2) for any k1, k2 > 0 with k1 �= k2.
Remark 3: As regards Assumption 2, it should be noted

that the partial derivatives of fn(·) with respect to the entries
of Gr (k) are not always continuous at some specific points
because e( j,i)(k) and l( j,i)(k) are min functions of gi(k) [see (6)
and (7)]; however, we can smooth these min functions utilizing
some smoothening methods to make the partial derivatives
continuous [41]. Moreover, Assumption 3 is a physical con-
straint of the inherent nature of urban traffic systems, i.e., finite
changes of signal settings and interacted input flow would not
lead to infinite change in the number of vehicles in a region.

Then system (17) can be transformed into the following
MISO CFDL-MFAC data model [18], [25], [26]:

nr (k + 1) = nr (k) + φT
r (k)�ur (k)

φr (k) = �
φ1(k), . . . , φqr (k), φqr +1(k), . . . , φqr +hr +1(k)

�T

(18)

where φr (k) ∈ qr +hr +1 is the pseudogradient of the system,
qr is the total number of signal phases in region r , hr is
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the sum of the number of elements in Nr (k) and Nr,r̄ (k),
and �ur (k)=ur (k) − ur (k − 1). Then, by embedding the
derived MFAC data model in an M-step ahead rolling horizon
framework, the MFAC data model of the traffic system (18)
can be further transformed into the following MFAPC data
model [18] for the traffic system:

�r (k + 1)=Enr (k) + Ar (k)�Ur (k) (19)

where

�r (k + 1) = [nr (k + 1), . . . , nr (k + M)]T

�Ur (k) = �
�uT

r (k), . . . ,�uT
r (k + M − 1)

�T

E =
⎡
⎣1, 1, . . . , 1� �� �

M

⎤
⎦T

Ar (k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

φT
r (k) 0T · · · 0T

φT
r (k) φT

r (k + 1) · · · 0T

...
...

. . .
...

φT
r (k) φT

r (k + 1) · · · φT
r (k + M − 1)� �� �

M×[(qr +hr +1)M]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It should be noted that Ar (k) contains the unknown system
pseudogradients, as seen in (19), and therefore, estimation and
forecasting algorithms are needed. Considering the following
cost function of φr (k) [18], [25], [26]:

J


φr (k)

� = ��nr (k) − nr (k − 1) − φT
r (k)�ur (k − 1)

��2

+μr

��φr (k) − φ̂r (k − 1)
��2

2 (20)

where μr > 0 is used to restrict the change of pseudogradient,
and φ̂r (k) is the estimation of φr (k). The first term of (20) is
the difference between the true measured number of vehicles in
region r and the CFDL data model output, whereas the second
term penalizes large variations of the pseudogradient, which
intends to enhance the robustness of the estimation algorithm
to disturbances and outliers. The pseudogradient φr (k) can be
estimated by minimizing (20) with respect to φr (k)

φ̂r (k) = φ̂r (k − 1) + ηr�ur (k − 1)

μr + ��ur (k − 1)�2
2�

nr (k) − nr (k − 1) − φ̂
T
r (k − 1)�ur (k − 1)

�
(21)

where ηr ∈ (0, 1]. However, the estimates of φr (k + 1), . . .,
φr (k + M − 1) cannot be directly obtained utilizing the input
and output data at time step k. Therefore, we adopt a multilayer
hierarchical forecasting method [18], [42] to forecast these
pseudogradients, which is given as

φ̂r (k + i) = θ1(k)φ̂r (k + i − 1) + θ2(k)φ̂r (k + i − 2)

+ · · · + θm(k)φ̂r (k + i − m)

i = 1, . . . , M − 1 (22)

where m is a properly selected order whose value is normally
set as 2 − 7 [18], [42].

Define θ(k) = [θ1(k), . . . , θm(k)]T. This vector can be
determined using the following equation [18], [42]:

θ(k)=θ(k−1) + 	̂T(k−1)

δ+��	̂(k−1)
��

2

�
φ̂r (k)−	̂(k−1)θ(k−1)

�
(23)

where 	̂(k − 1) = [φ̂r (k − 1), . . . , φ̂r (k − m)], and δ ∈ (0, 1]
is introduced to avoid the case that the denominator is zero.

Remark 4: For the control variable Ur (k), it should be noted
that Gr (k +i) and zr̄ ,r (k +i), i = 0, . . . , M −1 will be derived
by solving an optimization problem, as will be explained in the
next step, while Nr (k) and Nr,r̄ (k) can be directly measured by
the traffic detectors at time step k without the need of solving
an optimization problem. On the other hand, it is noted that
Nr (k + i) and Nr,r̄ (k + i) for i = 1, . . . , M − 1 cannot be
obtained by the traffic detectors at each time step k directly.
In this case, we can use the same forecasting method as in
(22) and (23) to forecast these values.

Remark 5: By virtue of the traffic detectors, the real-time
traffic data and past system information can be directly utilized
to estimate the pseudogradient φr (k+i), i = 1, . . . , M without
using any information of a mathematical traffic model, as seen
in (21)–(23). Furthermore, by representing the urban traffic
dynamics of nr (k) shown by (4), (12), and (13) into the
MFAPC data model (19), some imprecise problems in existing
linearization methods, such as the dropout of high-order terms
in Taylor’s linearization [43] and the requirement of model
information in piecewise linearization [44], can be avoided.

On the other hand, the dynamics of yr,r̄ (k) for r = 1, 2, r̄ =
3 − r can also be transformed into a form similar to (17) as
follows based on (16):

yr,r̄ (k + 1) = fy


yr,r̄ (k), . . . , yr,r̄ (k − γy),

ur,r̄ (k), . . . , ur,r̄ (k − γb)
�

(24)

where ur,r̄ (k) = [(GB
r,r̄ (k))

T
, NT

r,r̄ (k)]T, and γy and γb are the
memory lengths of system (24).

Afterward, the CFDL data model for (24) can be derived.
First, the following two assumptions are made on fy(·).

Assumption 4: The partial derivatives of fy(·) with respect
to every entry of the variable ur,r̄ (k) are continuous.

Assumption 5: The above system satisfies the generalized
Lipschitz condition given in the following:

There exists a positive constant cr,r̄ such that��yr,r̄ (k1 + 1) − yr,r̄ (k2 + 1)
�� ≤ cr,r̄

��ur,r̄ (k1) − ur,r̄ (k2)
��

2

for ur,r̄ (k1) �= ur,r̄ (k2) for any k1, k2 > 0 with k1 �= k2.
These two assumptions are similar to Assumptions 2 and 3.

Then, the expression (24) can be transformed into the follow-
ing MISO-CFDL data model:
yr,r̄ (k + 1) = yr,r̄ (k) + ϕr,r̄ (k)�ur,r̄ (k)

ϕr,r̄ (k) = �
ϕ1(k),. . .,ϕqr,r̄

(k),ϕqr,r̄ +1(k),. . .,ϕqr,r̄ +hr,r̄
(k)

�T

(25)

where qr,r̄ is the total number of signal phases of intersections
in region r at the boundary with region r̄ and hr,r̄ is the total
number of links on which vehicles travel from region r to r̄ .
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In a similar way as (19), (25) can be further rewritten as the
following prediction equation:

Yr,r̄ (k + 1) = Eyr,r̄ (k) + Ar,r̄ (k)�Ur,r̄ (k) (26)

where

Yr,r̄ (k + 1) = �
yr,r̄ (k + 1), . . . , yr,r̄ (k + M)

�T

�Ur,r̄ (k) = �
�uT

r,r̄ (k), . . . ,�uT
r,r̄ (k + M − 1)

�T

Ar,r̄ (k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕT
r,r̄ (k) 0T · · · 0T

ϕT
r,r̄ (k) ϕT

r,r̄ (k + 1) · · · 0T

...
...

. . .
...

ϕT
r,r̄ (k) ϕT

r,r̄ (k + 1) · · · ϕT
r,r̄ (k + M − 1)� �� �

M×[(qr,r̄ +hr,r̄ )M]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Similar to (21), ϕr,r̄ (k) in (26) can be determined by

ϕ̂r,r̄ (k) = ϕ̂r,r̄ (k − 1) + ηr,r̄�ur,r̄ (k − 1)

μr,r̄ + ���ur,r̄ (k − 1)
��2

2

yr,r̄ (k) − yr,r̄ (k − 1) − ϕ̂T

r,r̄ (k − 1)�ur,r̄ (k − 1)
�

(27)

where μr,r̄ > 0, ηr,r̄ ∈ (0, 1]. Then, the estimates of
ϕr,r̄ (k + 1), . . ., ϕr,r̄ (k + M − 1) are given as

ϕ̂r,r̄ (k + i) = ϑ1(k)ϕ̂r,r̄ (k + i − 1) + ϑ2(k)ϕ̂r,r̄ (k + i − 2)

+ · · · + ϑm(k)ϕ̂r,r̄ (k + i − m)

i = 1, . . . , M − 1 (28)

where ϑ(k) = [ϑ1(k), . . . , ϑm(k)]T can be derived by utilizing
the same algorithm as in (23).

C. Controller Design of D-MFAPC

The purpose of the D-MFAPC strategy is to reduce the
total time spent by vehicles, as well as to improve the traffic
efficiency in the network. In this case, the following cost
function can be adopted for a two-region urban traffic network:
min J

=
2�

r=1

	
M�

i=1

nr (k+i) · T +α

M�
i=1

max


0, nr (k+i)−nset

r

�2

�
(29)

or equivalently

min J =
2�

r=1

	
M�

i=1

nr (k + i) · T + α

M�
i=1

(�r (k + i))2

�

with �r (k + i) ≥ nr (k + i) − nset
r

�r (k + i) ≥ 0 (30)

where 0 < α < 1. The first term of (29) aims to minimize
the total time spent in the network. The second term aims to
reduce congestion imposing a penalty of the number of vehi-
cles in a region exceeds the predefined set point nset

r ; appropri-
ate values for the set points can be determined off-line based
on the macroscopic fundamental diagram (MFD) [45], [46].

Then, the control problem of (30) could be decomposed into
two individual optimization problems expressed as follows:

min
Gr (k),...,Gr (k+M−1)

Zr̄,r (k),Yr,r̄ (k)

Jr =
M�

i=1

nr (k+i) · T + α

M�
i=1

(�r (k+i))2

(31)

s.t. �r (k + 1)=Enr (k) + Ar (k)�Ur(k) (32)

Yr,r̄ (k + 1)=Eyr,r̄ (k) + Ar,r̄ (k)�Ur,r̄ (k) (33)

(21) − (23), (27) − (28)

Zr̄,r (k) = Yr̄,r (k) (34)

(Gr (k + i)) = 0 (35)

Gr,min ≤ Gr (k + i) ≤ Gr,max (36)

�r (k + i) ≥ nr (k + i) − nset
r (37)

�r (k + i) ≥ 0 (38)

for r = 1, 2, r̄ = 3 − r, i = 1, . . . , M

where Zr̄ ,r (k) = �
zr̄ ,r (k), . . . , zr̄ ,r (k + M − 1)

�T
. Constraints

(32) and (33) are the MFAPC data models of nr (k) and
yr,r̄ (k) that have been elaborated in Section III-B. Constraints
(21)–(23), (27), and (28) are utilized to determine the pseudo-
gradients of the traffic system. Constraint (34) is the interaction
constraint, which ensures that the interaction input of region r
caused by region r̄ equals the interaction output of region r̄ on
region r . Moreover, (·) represents the cycle time constraints
for all intersections in region r ; Gr,min and Gr,max are the
vectors of minimum and maximum values for all signal phases
in region r , respectively. After deriving the optimal control
inputs at time step k, only Gr (k) should be implemented by
the traffic lights.

It is easy to verify that optimization problem (31)–(38) is
a convex quadratic programming (QP) problem, which can
be solved efficiently by QP solvers. Furthermore, one can
see from (31)–(38) that all the information used to compute
�r (k + 1), Yr,r̄ (k + 1), Ar (k), and Ar,r̄ (k) can be directly
measured by the traffic detectors without the need of any
mathematical traffic model.

However, it should be noted that Yr̄,r (k) in (34) of the
control problem of region r is the interaction output variable
of another region r̄ . Thus, the constraint (34) cannot be
added directly into the individual optimization problem of
region r . Therefore, a negotiation process is needed to satisfy
the interaction constraint (34), and this process can be dealt
with by the ADMM-based DMPC approach [33]. The detailed
procedure of the D-MFAPC strategy at each time step k is
summarized in Algorithm 1.

According to Algorithm 1, the two regions solve their
own local optimization problems in a distributed and iterative
manner at each time step k. At each iteration s, region 1 solves
its local problem (39) and sends the derived values of its
interaction inputs zs

2,1(k+i) and outputs ys
1,2(k+i) to region 2,

and at the same time, it receives zs
1,2(k+i) and ys

2,1(k+i) from
region 2. Simultaneously, region 2 performs the same actions
for region 1 in a similar manner. Then, the two regions update
the values of their associated Lagrangian multipliers λs

in,r̄ ,r (k)
and λs

out,r,r̄ (k) based on (40) for use at the next iteration.
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Algorithm 1 D-MFAPC Strategy for a Two-Region Urban Traffic Network Based on the ADMM-Based DMPC Approach

The two regions repeat the same procedure iteratively until
the stopping criterion is triggered.

IV. CASE STUDY

A. Traffic Network and Evaluation Criteria for the
Case Study

To assess the proposed D-MFAPC strategy, the traffic net-
work from Linfen, Shanxi, China, is considered. The network
is represented in Fig. 2, and it is composed of 23 intersections,
102 links, and 16 vehicle inflow points V1 − V16. In Fig. 2,
the length of each link has been indicated besides the link
(in meters). Each crossroad has four signal phases, and each
T-intersection has three signal phases, with in total 86 sig-
nal phases in the whole network. The network is simulated
using VISSIM [47] with control algorithms programmed in
MATLAB.

The sampling interval, control interval, and common cycle
length of all intersections are set as T = 120 s, and the
total simulation time period is 12 000 s, which corresponds
to 100 control intervals. The simulation period corresponds
to the evening rush hour of Linfen, Shanxi, China. The

Fig. 2. Traffic network of Linfen, Shanxi, China.

detailed traffic demand of the network provided by the
Linfen Traffic Management Bureau is listed in Table II.
The origin–destination matrix and paths of the vehicles are
predefined and fixed in the case study based on the traffic
data provided by the traffic management bureau, regardless of
the real-time traffic condition of the network and the control
strategy being used.
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TABLE II

TRAFFIC DEMAND OF THE NETWORK (IN VEH/H)

In order to compare the control performance under different
strategies, the following evaluation criteria are considered.

1) The total traffic throughput TTT(k) is the total number
of vehicles completing the trip and leaving the network
from the start of the simulation to time step k, which
can be expressed as

TTT(k) =
k�

m=1

nleave(m) (41)

where nleave(m) is the number of vehicles leaving the
network during time interval [mT, (m + 1)T ].

2) The total time spent TTS(k) is the cumulative time that
all vehicles spent in the traffic network from the start of
the simulation to time step k, which is described as

TTS(k) =
k�

m=1

T · n(m). (42)

3) The average flow rate AFRr (k) is defined as the average
flow in region r during time interval [kT, (k + 1)T ],
which is expressed as

AFRr (k) =
�

i∈Ir

�
j∈IN,i

e( j,i)(k)

T · Lr
(43)

where Lr is the total number of links in region r .
4) The total number of vehicles TNVr (k) in region r at

time step k, which has been defined in (4).

B. Control Strategies and Solver Settings

The performance of the following four control strategies is
compared in the case study.

1) Fixed-Time (FT) Control: The actual FT signal settings
in the peak hours of Linfen city are applied, which is
tuned based on off-line traffic data using the well-known
Webster method [48].

2) A Centralized MPC Controller (C-MPC) to Control the
Whole Network: In this strategy, the traffic network
is controlled by a single centralized MPC controller

that optimizes the signal settings of the entire network
dynamically at each time step k. The S model (6)–(9) is
utilized as the prediction model of the MPC controller.

3) A Model-Based DMPC (M-DMPC) Strategy: The whole
urban traffic network is decomposed into two regions
1 and 2 (see Fig. 2). Each region is assigned an
MPC controller that solves an independent optimiza-
tion problem using the S model. Information exchange
and negotiations among the regions are solved by the
ADMM-based DMPC approach [33].

4) A Centralized MFAPC (C-MFAPC) Strategy: In this
strategy, the dynamics of shown by (3), (14), and (15)
can be represented by an MFAPC data model similar to
(19) and (21)–(23). Compared with the C-MPC strategy,
the derived MFAPC data model instead of S model is
utilized as the prediction model.

5) The D-MFAPC Strategy Proposed in This Article: Com-
pared with the M-DMPC strategy, MFAPC data models
representing traffic dynamics of the regions instead of
a mathematical model are utilized as the prediction
models. Specifically, Algorithm 1 is performed at each
time step k.

Under all control strategies, the initial traffic condition (i.e.,
vehicle distribution and signal settings) of the network is the
same to ensure the fairness of the simulation. Then, for all
nonlinear control approaches (i.e., C-MPC and M-DMPC),
we perform a multistart optimization with five different ran-
dom starting points1 at each time step k, and we select the
best result and use it as control input for time step k.

Based on trial-and-error experiments carried out for this
particular problem settings, the prediction and control horizons
are set as M = 8, and the weighting factor in (31) is set as
α = 0.5. For the parameters of the ADMM-based DMPC
approach shown in Algorithm 1, we have selected Tmax =
30 min, ρ = 0.8, and εstop = 5 × 10−2. For the parameters
of the MFAPC data models, we have selected ηr = 0.31,
ηr,r̄ = 0.15, μr = 0.008, μr,r̄ = 0.005, and δ = 0.1 for
r = 1, 2 which are used in (20), (21), (23), and (27).

To obtain the values of nset
1 and nset

2 off-line, the MFDs of
the regions are needed. In this case study, we use a fifth-order
polynomial function to obtain the unimodal MFDs of the
regions

AFRr (k) = ar,1n5
r (k) + ar,2n4

r (k) + ar,3n3
r (k)

+ar,4n2
r (k) + ar,5nr (k) + ar,6 (44)

where ar,1, . . . ,ar,6, r = 1, 2 are the parameters to be
estimated.

The MFDs of the two regions are shown in Fig. 3,
which are obtained under FT control tuned using Webster’s
method. Based on the “polyfit” function in MATLAB, we get
the parameters as follows: a1,1 = 2.044 × 10−19, a1,2 =
−5.811 ×10−15, a1,3 = 5.953 ×10−11, a1,4 = −2.756×10−7,
a1,5 = 5.578×10−4, a1,6 = 0.044 a2,1 = 2.210×10−19, a2,2 =
−6.079×10−15, a2,3 = 6.255×10−11, a2,4 = −3.032×10−11,

1In our experiments, this number gave a balanced tradeoff between the
computation time and the possibility of ending up in a local minimum.
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Fig. 3. MFDs of the regions. (a) Region 1. (b) Region 2.

Fig. 4. Comparison of (a) TTS and (b) TTT of the entire network under different control strategies.

TABLE III

TTT(100) AND TTS(100) OF THE ENTIRE TRAFFIC NETWORK

UNDER DIFFERENT CONTROL STRATEGIES

a2,5 = 6.521 × 10−11, a2,6 = −0.083, nset
1 = 2000 veh, and

nset
2 = 2127 veh.

C. Performance Evaluations of the Control Strategies

In this section, the control performance of the different con-
trol strategies is compared. More specifically, the simulation
results of TTS(k) and TTT(k) of the entire traffic network
under different strategies are shown in Fig. 4 and Table III,
and the evolution of AFRr (k) and TNVr (k) of the two regions
under different strategies is shown in Fig. 5.

From Fig. 4 and Table III, we can see that the C-MPC
strategy has a better performance than M-DMPC because
the global optimum can be obtained more easily by utilizing
a centralized control structure. Compared with C-MPC, the
C-MFAPC strategy can further improve the control perfor-
mance by directly utilizing the real-time measured traffic data
instead of mathematical traffic models, which can avoid the
problem of model mismatch and traffic uncertainties in the
optimization process. Finally, it can be seen from Fig. 4 and
Table III that D-MFAPC and C-MFAPC have exactly the

same control performance. This is because the optimal solution
of a centralized control problem can be found iteratively by
the distributed control scheme with negotiations among the
subsystems, under the convexity assumptions on the objective
functions and constraints of the problem [29], [49].

Meanwhile, in Fig. 5, it can be seen that during the
40th–80th cycles, i.e., the most congested period, the average
flow rates of both regions under the C-MFAPC and the
D-MFAPC strategies are larger than under the other three
strategies. Furthermore, the number of vehicles in the two
regions under the C-MFAPC and the D-MFAPC strategies
can better track the set points of nset

1 and nset
2 compared with

the other three strategies, because of the data-driven control
characteristics of C-MFAPC and D-MFAPC. We can see from
Figs. 4 and 5 and Table III that the simulation results of the
individual regions are consistent with the simulation results of
the entire network.

D. Illustration of Interaction Process

Now, we present the evolution of the differences between
the interaction inputs and the outputs and the evolution of
the associated Lagrangian multipliers (introduced in Algo-
rithm 1) of the two regions under the D-MFAPC strategy.
In this case study, we take the time step k = 6 as an
illustrative example. Fig. 6 shows the evolution of the dif-
ferences of the two sets of interaction variables z2,1(k + i) and
y2,1(k + i), z1,2(k + i) and y1,2(k + i) for i = 0, . . . , M − 1
for time step k = 6, whereas Fig. 7 shows the variation
of the Lagrangian multipliers λin,2,1(k + i), λout,1,2(k + i),
λin,1,2(k + i), and λout,2,1(k + i) for i = 0, . . . , M − 1 for time
step k = 6.

It can be seen from Fig. 6 that the differences between
the interaction variables of the regions are very large in the
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Fig. 5. Comparison of AFR and TNV of the two regions under different control strategies. (a) AFR of region 1. (b) AFR of region 2. (c) TNV of region 1.
(d) TNV of region 2.

Fig. 6. Evolution of (a) difference of z2,1(k + i) and y2,1(k + i) and (b) difference of z1,2(k + i) and y1,2(k + i) for i = 0, . . . , M − 1 for time step k = 6
over the prediction period with M = 8.

Fig. 7. Evolution of (a) λin,2,1(k + i), (b) λout,1,2(k + i), (c) λin,1,2(k + i), and (d) λout,2,1(k + i) for i = 0, . . . , M − 1 for time step k = 6 over the prediction
period with M = 8.

first iteration, but the differences gradually decrease with the
increase of the iteration index. At the same time, the values
of the Lagrangian multipliers of the two regions are updated

according to the differences between the interaction variables,
as shown in Fig. 7. The negotiation process between the two
regions terminates when the absolute differences between the
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TABLE IV

COMPUTATION TIME UNDER DIFFERENT CONTROL STRATEGIES

Fig. 8. Evolution of the computation time for the consecutive time steps
under different control strategies.

values of their associated Lagrangian multipliers at successive
iterations are smaller than the threshold value εstop.

E. Comparison of Computation Time

The computation times under different control strategies
within the simulation period are presented in Table IV and
Fig. 8. These computation times take a distributed imple-
mentation into account for M-DMPC and D-MFAPC and are
obtained using the “etime” function of MATLAB. The opti-
mization problems are solved in the MATLAB R2016 environ-
ment using the “fmincon” function with the “sqp” algorithm
for C-MPC and M-DMPC, and the “linprog” function for
D-MFAPC on a computer with a 3.50-GHz Intel Xeon CPU
E5-1620 v3 and 32-GB RAM.

From Table IV and Fig. 8, we can see that the C-MPC
strategy has the largest computation time because a cen-
tralized optimization problem with many constraints, involv-
ing 86 links, 23 intersections, and 86 signal phases in
the entire network, needs to be solved in each time step.
On the other hand, M-DMPC can reduce the computation
time by half compared with C-MPC by decomposing the
whole optimization problem into two smaller and independent
problems. The C-MFAPC and the D-MFAPC strategies can
further significantly decrease the computation time compared
with M-DMPC by utilizing linear MFAPC data models in
the control process instead of nonlinear mathematical traffic
models. Finally, due to the distributed control characteristics,
D-MFAPC requires less computation time compared with the
C-MFAPC method.

V. CONCLUSION AND FUTURE WORK

In this article, a novel D-MFAPC strategy for multiregion
urban traffic networks is proposed. First, the dynamics of
the two-region traffic networks are analyzed, and the MFAPC

data models of the regions are derived. Then, the D-MFAPC
algorithm is designed using the derived MFAPC data models
instead of mathematical traffic models in the control process,
which can avoid the problem of model mismatch and dramat-
ically decrease the computational burden.

Simulation results of the traffic network of Linfen, Shanxi,
China, show that the proposed D-MFAPC strategy yields a
better performance than the FT, the C-MPC, and the M-DMPC
strategies. Moreover, the proposed D-MFAPC strategy needs
much less computation time than the C-MPC, the M-DMPC,
and the centralized MFAPC strategies.

There are still some open problems that can be further
explored. First, a more general MFAPC data model suitable
for the unsaturated traffic network needs to be established.
In addition, more comprehensive objective functions represent-
ing the interests of the individual links, the regions, and the
whole network, should be designed. Finally, it is worthy to
theoretically investigate the stability of the proposed control
strategy, e.g., by Lyapunov function-based methods.
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