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Summary
We propose a new reinforcement learning method in the framework of Recur-
sive Least Squares-Temporal Difference (RLS-TD). Instead of using the standard
mechanism of eligibility traces (resulting in RLS-TD(𝜆)), we propose to use the
forgetting factor commonly used in gradient-based or least-square estimation,
and we show that it has a similar role as eligibility traces. An instrumental
variable perspective is adopted to formulate the new algorithm, referred to as
RLS-TD with forgetting factor (RLS-TD-f). An interesting aspect of the proposed
algorithm is that it has an interpretation of a minimizer of an appropriate cost
function. We test the effectiveness of the algorithm in a Policy Iteration setting,
meaning that we aim to improve the performance of an initially stabilizing con-
trol policy (over large portion of the state space). We take a cart-pole benchmark
and an adaptive cruise control benchmark as experimental platforms.

K E Y W O R D S

eligibility traces, instrumental variable method, least squares, reinforcement learning, temporal
difference

1 INTRODUCTION

Reinforcement learning has received increasing attention not only in the machine learning field,1 but also in the systems
and control field,2,3 and in the complex optimization and decision-making fields.4-6 Several reinforcement learning meth-
ods have been proposed in literature, with temporal difference (TD) learning being one of the most popular. TD dates
back to the 80’s, and was proposed by Sutton as a way to estimate the vale function of a Markov Decision Process (MDP).7
The original method was called TD(0): an extension of it was called TD(𝜆), where the parameter 0 < 𝜆 < 1 is associ-
ated to the mechanism of eligibility traces. The TD(𝜆) algorithm was originally proposed for Markov Decision Process,
which are problems with finite state and action spaces. However, motivated by the fact that many technological applica-
tions exhibit large state space, value function approximation methods have also been designed. The term ‘value function
approximation’ refer to the fact that instead of describing the value function as a table evaluated for different states, a
parametrized description of the value function is used via approximators such as linear regression or neural networks.
Depending on its structure, the function approximator can be linear-in-the-parameters or nonlinear-in-the-parameters:
when combined with nonlinear-in-the-parameters value function approximators (also called nonlinear value function
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approximation for brevity, or also nonlinear TD(𝜆)), TD(𝜆) cannot guarantee convergence in general.8 However, for TD(𝜆)
with linear-in-the-parameters function approximators (also called linear value function approximation for brevity, or also
linear TD(𝜆)), convergence was shown by Dayan.9

Few years after the TD algorithm, by using the theory of linear least-squares estimation, Bradtke and Barto pro-
posed two temporal difference algorithms, called Least-Squares TD(0) (LS-TD(0)) and Recursive Least-Squares TD(0)
(RLS-TD(0)), respectively.10 The main difference between LS-TD(0) and RLS-TD(0) is whether the parameter of the value
function approximator is computed from a batch of data, or updated every time a new data arrives.11 Later, Boyan pro-
posed a class of linear temporal difference learning algorithms called LS-TD(𝜆),12 where the mechanism of eligibility
traces was embedded in the least-squares estimation. Analogously, the mechanism of eligibility traces can be included in
RLS-TD(0), resulting in the RLS-TD(𝜆) algorithm, proposed and analyzed in Reference 13.

It is worth remarking that the TD error is the basic block of many reinforcement learning methods, including the
well-known Q-learning and SARSA.14,15 Many other examples of algorithms relying on the TD method have appeared in
literature. A not-exhaustive list is provided as follows: natural gradient descent applied to Bellman error formulation was
investigated in Reference 16; an algorithm named Complementary Temporal Difference Learning (CTDL) was described
in Reference 17, which is based on the combination of deep neural networks with self-organized mapping updated by the
TD error; a learning algorithm named graph Laplacian dual heuristic programming (GL-DHP) was proposed in Refer-
ence 18, which is based on the integration of manifold learning methods with adaptive critic networks; other methods can
also be found in References 19-21 and references therein. It is also worth mentioning that in the recent decade the connec-
tions between reinforcement learning and adaptive optimal control have been more extensively explored: the connection
amounts to formulating value iteration or policy iteration problems as estimation problems of some optimal parametrized
value function or some optimal parametrized policy function.22-28 While several methods exist, they all rely on some sort
of TD error in order to update the parameter estimators.

Therefore, it is crucial to provide possible extensions or new insights into the TD method. A well-recognized open
problem in TD concerns the mechanism of eligibility traces, since a clear interpretation to mechanism is still unclear,
and even the selection of the parameter of the eligibility trace is unclear.1 In this work, we show that the mechanism of
eligibility traces is analogous to the use of forgetting factor in parameter estimation methods (such as gradient-based or
least-squares estimation).

Considering the gradient structure of TD algorithm, we propose a new TD algorithm that we name RLS-TD with
forgetting factor (abbreviated as RLS-TD-f). This new algorithm comes from a new insight into TD, which is formulated as
an instrumental-variable method combined with an online optimization. An interesting aspect of the proposed algorithm
is that it has an interpretation of a minimizer of an appropriate cost function. A preliminary version of this work has been
presented for conference.29

The paper is organized as follows. In Section 2, we recall important concepts of reinforcement learning. Section 3
illustrates the following algorithms: TD(𝜆), LS-TD(𝜆), and RLS-TD(𝜆), all of them using linear function approxima-
tors. In Section 4, we introduce an instrumental variable method to the purpose of providing a new optimization-based
perspective of RLS-TD. In Section 5, we test the effectiveness of the proposed idea on some control benchmarks.

2 OVERVIEW OF REINFORCEMENT LEARNING

Reinforcement learning is traditionally formulated for Markov Decision Processes (MDPs), a framework to describe
stochastic optimal control with finite state space and finite action space.2 Let us recall some concepts from the rein-
forcement learning problem, that is, the closed-loop control problem of mapping states (feedback signals) into actions to
maximize a reward signal (cf. Figure 1).

F I G U R E 1 Interaction between agent and environment in
reinforcement learning
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At each time step t = 0, 1, 2, 3, … , let the agent (an ‘agent’ is nothing but a controller) receive some environmental
state st ∈  , where  is the set of possible states, and a reward signal rt+1 ∈ . With this information, the agent selects
an action at ∈ (st), where (st) is the set of actions available in state st and the situation evolves into a new state st + 1
and a new reward rt+1 ∈  (which are in part the consequence of the action at).

Four main ingredients are present in a reinforcement learning system: a policy, a reward, a value function (or an action
value function), and a model of the environment.

A policy defines the way an agent behaves, through a mapping from the state space to the action space.
A reward signal defines the goal, through a mapping from the agent’s current action space and the current state space

of the agent’s environment to the reward space. The agent’s goal is to maximize a cumulative reward

Gt = rt+1 + 𝛾rt+2 + 𝛾2rt+3 + … =
∞∑

k=0
𝛾krt+k+1 (1)

where 0 < 𝛾 ≤ 1, called the discount rate to give less importance to rewards far in the future. Note that the agent’s actions
have a direct effect on reward, and an indirect effect through changing the environment’s state.

The value function V𝜋(s) is a crucial function in reinforcement learning since it specifies, for a given state s and
following a certain policy 𝜋, the total amount of rewards an agent can expect to accumulate over the future

V𝜋(s) = E𝜋[Gt|St = s] = E𝜋[
∞∑

k=0
𝛾krt+k+1|St = s] (2)

where E𝜋[⋅] denotes the expected value given the policy 𝜋. The value function is defined with respect to a particular policy,
because the rewards the agent can expect to receive depend on what actions it will take. Similarly, we define the action
value function Q𝜋(s, a) as the value of taking action a in state s under a policy 𝜋

Q𝜋(s, a) = E𝜋[Gt|St = s,At = a]

= E𝜋[
∞∑

k=0
𝛾krt+k+1|St = s,At = a]. (3)

Finally, the model of the environment describes the evolution of the state as the consequence of taking a certain action,
through a mapping from the current space and current action to the next state.

A fundamental property of value functions is to satisfy the Bellman dynamic programming recursions

V𝜋(s) = E𝜋[
∞∑

k=0
𝛾krt+k+1|St = s]

=
∑

a
𝜋(a|s)∑

s′

∑
r

p(s′, r|s, a)[r + 𝛾E𝜋[
∞∑

k=0
𝛾krt+k+2|St+1 = s′]]

=
∑

a
𝜋(a|s)∑

s′,r
p(s′, r|s, a)[r + 𝛾V𝜋(s′)] (4)

where

p(s′, r|s, a) = Pr{St+1 = s′, rt+1 = r|St = s,At = a}.

Solving a reinforcement learning problem amounts to finding the policy 𝜋∗ giving the best cumulative reward, that is,

V∗(s) = max
𝜋

V𝜋(s), ∀s ∈  . (5)

or equivalently

Q∗(s, a) = max
𝜋

Q𝜋(s, a) (6)
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BALDI et al. 337

for all s ∈  and a ∈ (∫ ). For the state–action pair (s, a), the function Q*(s, a) gives the expected return for taking action
a in state s and thereafter following the optimal policy. Thus, we can write Q* in terms of V *

Q∗(s, a) = E[rt + 𝛾V∗(St+1)|St = s,At = a]. (7)

Researchers are interested in optimal value functions (or optimal action value functions) rather than optimal policies
because an optimal policy can be calculated from V * via

V∗(s) = max
a

E[rt+1 + 𝛾V∗(St+1)|St = s,At = a]

= max
a∈(s)

∑
s′,r

p(s′, r|s, a)[r + 𝛾V∗(s′)]. (8)

or equivalently by finding any action that maximizes Q*(s, a).

3 OVERVIEW OF TEMPORAL DIFFERENCE

The temporal difference (TD) was originally proposed in Reference 7 as a method to estimate a value function. TD
calculates the value of the state through the value of the next state in an iterative way, the so-called TD(0) formula

V(st) ← V(st) + 𝛼𝛿t

𝛿t = rt+1 + 𝛾V(st+1) − V(st) (9)

where 𝛿t is called TD error, 𝛼 is a positive learning step, 𝛾 is the aforementioned discount rate of the cumulative reward.
For MDPs, the value function V(st) is essentially stored as a table of the state. Unfortunately, MDPs stop being very

effective when the dimension of the state space becomes larger and larger, since in this case the table becomes large and
larger. When the state space is large (which is often the case in practical optimal control problems), function approx-
imators can be used to approximate the value function (a typical type of function approximators are linear function
approximators).13,30 This implies that, instead of storing the value function as a table of the state, the value function has
a parametrized form

Vt(s) = 𝜙t(s)T𝜃t (10)

where 𝜃t = (𝜃1, 𝜃2, … , 𝜃K)T is the weight vector and𝜙(s) = (𝜙1(s), 𝜙2(s), … 𝜙K(s))T is the basis function space of the linear
function approximator (with dimension K). When adopting linear function approximators, the TD(0) learning rule (9)
becomes

𝜃t+1 = 𝜃t + 𝛼(rt+1 + 𝛾𝜙T
t+1𝜃t − 𝜙T

t 𝜃t)𝜙t. (11)

A standard interpretation of TD methods is via the gradient descent method (or steepest descent method) in the space of
the weights 𝜃.7 In other words, TD can be seen as a minimizer for the error measure J(𝜃)

J(𝜃t) =
t∑

k=1
[rk − (𝜙T

k − 𝛾𝜙T
k+1)𝜃]

2. (12)

The weight vector 𝜃t is iteratively updated along the direction in which J(𝜃) decreases most steeply, so the error measure
can be eventually minimized: (11) can be written as

𝜃t+1 = 𝜃t + 𝛼Δ𝜃t, Δ𝜃t = −𝛼▽𝜃J(𝜃t) (13)

where ▽𝜃J(𝜃) is the gradient of J(𝜃) with respect to theta, which is indeed a steepest descent method.
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338 BALDI et al.

Algorithm 1. TD(𝜆):

Given: (1) MDP or simulation model with policy 𝜋 defined in  ;
(2) a featurizer Φ ∶  → ℜK mapping states
to feature vectors, Φ(END)

def
= 0;

(3) a parameter 𝜆 ∈ [0, 1];
(4) learning step size: 𝛼;

Output: vector 𝜃 so that V𝜋(s) ≈ 𝜙T(s)𝜃.
Set initial estimate 𝜃 for t ∶= 0.for n:=1,2,… do

Set 𝛿:=0.
Starting state st ∈  .
Set et ∶= 𝜙(st).
while st ≠ END, do

Simulate MDP for one step, obtain reward rt and next state st+1.
Set 𝛿 ∶= 𝛿 + (rt + (𝛾𝜙(st+1) − 𝜙(st))T𝜃).
Set et+1 ∶= 𝛾𝜆et + 𝜙(st+1).
Update t ∶= t + 1.

Update 𝜃 ∶= 𝜃 + 𝛼𝛿e

3.1 The eligibility trace mechanism

Eligibility traces are a basic mechanism of reinforcement learning.31 Although there is no formal interpretation of this
mechanism, a popular interpretation1 is that the eligibility trace records of the occurrence of an event. According to this
interpretation, the trace makes the parameters associated with the event as eligible for being updated, according to the
TD error.

The standard temporal difference algorithm TD(0), when combined with eligibility trace, results in the TD(𝜆)
algorithm:

𝜃t+1 = 𝜃t + 𝛼(rt+1 + 𝛾𝜙T
t+1𝜃t − 𝜙T

t 𝜃t)et,

et = 𝛾𝜆et−1 + 𝜙t (14)

where 𝜆 ∈ [0, 1] is the eligibility trace parameter. When 𝜆 = 1, the change of each state in the past has a complete impact
on updating 𝜃t+1, as in Monte Carlo method; when 𝜆 = 0, the change of each state in the past has no impact on updating
𝜃t+1, as in TD(0); when 𝜆 ∈ (0, 1), each state in the past has an impact on updating 𝜃t+1 in a declining trend.

Algorithm 1 shows TD(𝜆) with linear function approximator.8

The TD(𝜆) algorithm can be roughly illustrated as follows: on each iteration, the TD(𝜆) algorithm computes the
one-step TD error rt + (𝛾𝜙(st+1) − 𝜙(st))T𝜃t, and uses this error for updating all state features according to their respective
eligibility trace et.

3.2 Least squares combined with eligibility traces

Motivated by some shortcomings of TD(𝜆), Boyan12 proposed an improved method, namely Least-Squares TD(𝜆)
(LS-TD(𝜆)): its main feature is to make use of an experience matrix A (of dimension K ×K, where K is the dimension of
the basis function space) and builds a vector b (of dimension K). These are built as

b =
L∑

i=0
eiri A =

L∑
i=0

ei(𝛾𝜙(si+1) − 𝜙(si))T . (15)

After K collecting independent regressors (so that A is invertible), then, 𝜃 is estimated as A−1b (cf. Algorithm 2).
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Algorithm 2. LS-TD(𝜆):

Given: (1) MDP or simulation model with policy 𝜋 defined in  ;
(2) a featurizer Φ ∶  → ℜK mapping states
to feature vectors, Φ(END)

def
= 0;

(3) a parameter 𝜆 ∈ [0, 1];
Output: vector 𝜃 so that V𝜋(s) ≈ 𝜙T(s)𝜃.
Set A ∶= 0, b ∶= 0, t ∶= 0.
for n:=1,2,… do

Starting state st ∈  .
Set et ∶= 𝜙(st).

while st ≠ END, do
Simulate MDP for one step, obtain reward rt and next state st+1.
Set A ∶= A + et(𝜙(st) − 𝛾𝜙(st+1))T .
b ∶= b + etrt.
Set et+1 ∶= 𝛾𝜆et + 𝜙(st+1).
Update t ∶= t + 1.

Desired coefficients are: Set 𝜃 ∶= A−1b

When 𝜆 = 0, LS-TD(𝜆) reduces to LS-TD(0), derived by Bradtke and Barto using the theory of regression with instru-
mental variables.10 As pointed out by Bradtke and Barto in Reference 10, least-squares methods offer several advantages:
• Least squares extract more information from each sample and typically converge with fewer samples.
• The convergence of TD(𝜆) can be slow if the step size 𝛼 is chosen poorly. LS-TD(𝜆) eliminates the need to choose an

appropriate 𝛼.
• The performance of TD(𝜆) is sensitive to the initial 𝜃.

3.3 Recursive least squares combined with eligibility traces

LS-TD(𝜆) requires inverting a matrix at each time step, which has computational complexity O(K3), assuming that the
space of basis functions has dimension K. Recursive Least-Squares (RLS) have been used to derive RLS-TD(𝜆),10 that has
computational complexity of O(K2).

𝜃t = 𝜃t−1 +
Pt−1

1 + (𝜙t − 𝛾𝜙t+1)TPt−1et
𝛿tet (16)

Pt = Pt−1 −
Pt−1et(𝜙t − 𝛾𝜙t+1)TPt−1

1 + (𝜙t − 𝛾𝜙t+1)TPt−1et
(17)

𝛿t = rt − (𝜙t − 𝛾𝜙t+1)T𝜃t−1 (18)

where

et+1 = 𝛾𝜆et + 𝜙t+1. (19)

It is recognized that there are no formal rules (except from trial-and-error) for selecting the eligibility trace parameter 𝜆.32

Two views (a forward view and a backward view) have been proposed for the eligibility trace mechanism: in the forward
view, the mechanism can be understood as a way of averaging n-step backups (i.e., a way in between a TD(0) method and
a Monte Carlo method); in the backward view, the eligibility traces decay by 𝜆𝛾 for all states, and is incremented by 1 for
the one visited state (as a result, the TD error generates proportional updates to all recently visited states). The following
section will show that the backward view of the eligibility trace mechanism can be formulated in terms of forgetting factor
inside an appropriately designed online optimization problem.
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4 AN INSTRUMENTAL VARIABLE PERSPECTIVE OF RECURSIVE TD

4.1 Gradient structure of TD update

Going back to the standard TD method (11) for a while, we have seen that the TD(0) can be written as a gradient update
(13): interestingly,7 showed that the learning rule for TD(𝜆) (i.e., with eligibility trace mechanism) can also be written as
a gradient update

𝜃t+1 = 𝜃t + 𝛼[rt + 𝛾Vt(st+1) − Vt(st)]
t∑

k=1
𝜆t−k▽𝜃t Vt(sk)

= 𝜃t + 𝛼 △ 𝜃t (20)

where

△𝜃t = [rt + 𝛾Vt(st+1) − Vt(st)]
t∑

k=1
𝜆t−k▽𝜃t Vt(sk). (21)

Note that the summation in (21) keeps △𝜃t fixed, while spanning the recently visited states sk. The literature suggest
to do this to decouple the effect of changing the parameters from the effect of moving in state space.10 Here comes or
observation: interestingly, (20) exhibits a similar structure as the LS cost (12): in fact, in this cost the parameter 𝜃t is fixed
while spanning the past data �̂�k.33 A natural question is therefore to find the corresponding version of (12) for the update
(20)–(21).

We will investigate this question in the framework of instrumental variable regression, whose goal is to obtain a
least-squares approximation of some function R :ℜn →ℜ, given samples of 𝜔t ∈ ℜn and outputs rt ∈ℜn. In the standard
least-square regression, only the observations rt are corrupted by noise

rt = 𝜔T
t 𝜃

∗ + 𝜂t (22)

where 𝜃∗ is the vector of true but unknown parameters and 𝜂t is the noise. It is well known that, in this case, the standard
least-square regression comes from the minimization of (12) (define 𝜔t = 𝜙t − 𝛾𝜙t+1), and has the following closed-form
solution

𝜃t =

[ t∑
k=1

𝜔k𝜔
T
k

]−1 [ t∑
k=1

𝜔krk

]
(23)

obtained by setting the gradient of Jt with respect to 𝜃t equal to zero.
However, in instrumental variable regression, the input observations 𝜔t are also noisy, resulting in the following

errors-in-variables situation11

rt = �̂�t𝜃
∗ − 𝜁T

t 𝜃
∗ + 𝜂t (24)

where 𝜁t is another observation noise. Substituting �̂�t directly for 𝜔t in (23) introduces a bias, which unfortunately pre-
vents 𝜃t from converging to 𝜃∗.10,11 To solve this problem, it was proposed to introduce an instrumental variables 𝜙t, which
is a vector correlated with 𝜔t, but uncorrelated with 𝜁t. Then, (23) gets modified into

𝜃t =

[ t∑
k=1

𝜙k�̂�
T
k

]−1 [ t∑
k=1

𝜙krk

]
. (25)

It was shown in Reference 10 that LS-TD(0) can be interpreted using the instrumental variable method with �̂�k =
𝜙k − 𝛾𝜙k+1. As the next step, we will use the instrumental variable method to provide a new optimization perspective into
LS-TD(0) and LS-TD(𝜆).
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BALDI et al. 341

4.2 The minimizer corresponding to instrumental variable method

In this section we want to derive RLS-TD(0) according to the instrumental variable method. This new perspective leads
to an optimization cost for the RLS-TD(0) which has not appeared before in the TD literature.

Theorem 1. The following online algorithm

Pk = Pk−1 −
Pk−1𝜙k�̂�

T
k Pk−1

m2
k + �̂�T

k Pk−1𝜙k
(26)

𝜃k = 𝜃k−1 + Pk𝜙k

[
rk − 𝜃T

k−1�̂�k

m2
k

]
. (27)

gives the optimal solution to the cost function

J(𝜃) = 1
2
(rk − Φk𝜃)T(rk − Φk𝜃) −

1
2
(Φk𝜃)T[(Φk − Ω̂k)𝜃] +

1
2
(𝜃 − 𝜃0)TP−1

0 (𝜃 − 𝜃0). (28)

which has an interpretation in terms of the instrumental variables method (see proof).

Proof. We consider the following minimizer, which is motivated by LS-TD(0) in Reference 10

𝜃 = (ΦT
k Ω̂k + P−1

0 )−1(P−1
0 𝜃0 + ΦT

k rk) (29)

where Ω̂k = [�̂�1, �̂�2, … , �̂�k] is the regressor vector, Φk = [𝜙1, 𝜙2, … , 𝜙k] is the instrumental variable vector, �̂�k = 𝜙k −
𝛾𝜙k, rk = [r1, r2, … , rk] is the reward vector. The matrix P0 and the vector 𝜃0 will be defined later.

We want to find the cost corresponding to the minimizer (29), that is, we want to find a cost function J such that the
minimizer makes its gradient equal to 0

▽J(𝜃) = −ΦT
k (rk − Ω̂k𝜃) + P−1

0 (𝜃 − 𝜃0)

= −ΦT
k rk + ΦT

k Ω̂k𝜃 + P−1
0 (𝜃 − 𝜃0) = 0. (30)

From reverse calculation, we can get the following cost function

J(𝜃) = 1
2
(rk − Φk𝜃)T(rk − Φk𝜃) −

1
2
(Φk𝜃)T[(Φk − Ω̂k)𝜃] +

1
2
(𝜃 − 𝜃0)TP−1

0 (𝜃 − 𝜃0). (31)

The next step is as follows: we want to avoid using (30) to calculate the minimizer, and we replace it with a recursive
method that updates the minimizer when new data arrive.

Define P−1 = ΦT
k Ω̂k + P−1

0 , then

P−1
k − P−1

k−1 = ΦT
k Ω̂k − ΦT

k−1Ω̂k−1 =
𝜙T

k �̂�k

m2
k

(32)

where m2
k ≥ 1 is a normalizing signal to bound 𝜙k from above.

P−1
k = P−1

k−1 +
𝜙T

k �̂�k

m2
k

(33)

Using the matrix inversion lemma11

(A + BC)−1 = A−1 + A−1B(I + CA−1B)−1CA−1,
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342 BALDI et al.

with

A = P−1
k−1,B = 𝜙k

mk
,C =

�̂�T
k

mk

we get

Pk = Pk−1 −
Pk−1𝜙k�̂�

T
k Pk−1

m2
k + �̂�T

k Pk−1𝜙k
(34)

𝜃k = Pk(P−1
0 𝜃0 + ΦT

k rk)

= Pk(P−1
0 𝜃0 + ΦT

k−1rk−1 +
𝜙krk

m2
k

), (35)

note that (ΦT
k−1Ω̂k−1 + P−1

0 )𝜃 = P−1
0 𝜃0 + ΦT

k−1rk, which gives us the recursive formulas

𝜃k = Pk

(
P−1

k 𝜃k−1 −
𝜙k�̂�k𝜃k−1

m2
k

+ 𝜙krk

m2
k

)
(36)

𝜃k = 𝜃k−1 + Pk𝜙k

[
rk − 𝜃T

k−1�̂�k

m2
k

]
. (37)

▪

4.3 Proposed method

Let us now follow a similar approach as in Theorem 1, but using a different cost.

Theorem 2. The following online algorithm

Pk = 1
𝛽

[
Pk−1 −

akPk−1𝜙k�̂�
T
k Pk−1

m2
k𝛽 + ak�̂�

T
k Pk−1𝜙k

]
(38)

𝜃k = 𝜃k−1 +
√

akPk𝜙k

[
rk − 𝜃T

k−1�̂�k

m2
k

]
. (39)

gives the optimal solution to the cost function

J(𝜃) = 1
2

t∑
k=1

ak𝛽
t−k

[rk − 𝜃T
k 𝜙k]2

m2
k

− 1
2

t∑
k=1

ak𝛽
t−k

(𝜙k𝜃
T
k )

T[(𝜙k − �̂�k)𝜃T
k ]

m2
k

+ 1
2
𝛽 t(𝜃k − 𝜃0)TP−1

0 (𝜃k − 𝜃0) (40)

where ak are non-negative weighting coefficients, and 𝛽 ∈ (0, 1).

Proof. Vector 𝜃k, the estimate of 𝜃∗, is obtained by solving

▽J(𝜃) = 𝛽 tP−1
0 (𝜃k − 𝜃0) −

t∑
k=1

ak𝛽
t−k

rk − 𝜃T
k 𝜙k

m2
k

𝜙k −
1
2

t∑
k=1

ak𝛽
t−k

𝜙T
k (𝜙k − �̂�k𝜃

T
k ) + (𝜙k𝜃

T
k )

T(𝜙k − �̂�k)

m2
k

= 0. (41)

Similar to the derivation process of RLS-TD(0), we can get that

𝜃k = Pk(𝛽 tP−1
0 𝜃0 + ak𝛽

t−kΦT
k−1rk−1 + ak𝛽

t−k 𝜙krk

m2
k

). (42)

Pk = 1
𝛽

[
Pk−1 −

akPk−1𝜙k�̂�
T
k Pk−1

m2
k𝛽 + ak�̂�

T
k Pk−1𝜙k

]
(43)
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BALDI et al. 343

The equation for 𝜃k may also be written in the form

𝜃k = 𝜃k−1 +
√

akPk𝜙k

[
rk − 𝜃T

k−1�̂�k

m2
k

]
. (44)

▪

The main differences between RLS-TD(𝜆) and RLS-TD-f can be listed as follows: the forgetting factor introduced in
the cost (40) reduces the influence of historical data. Qualitatively, this is a similar mechanism in (20)–(21) which was
used to introduce the eligibility trace mechanism. In other words, cost (40) is a generalized version of cost (12) used to
introduce the eligibility trace mechanism. The similarities are in the use of the same one step error and in the fact of
updating both the weight vector and the covariance matrix. The differences are in the update of the covariance matrix.
Another difference is that in the proposed RLS-TD-f(𝜆) we make use of Pt to update 𝜃t, which leads to a different update
as compared to RLS-TD(𝜆).

4.4 The TD error in SARSA and Q-Learning

The control problem via TD method can be divided into two categories. One is online control (or on-policy), that is, a
control policy is used to both update the value function and select new actions. The other is offline control (or off-policy),
which uses two control policies, one for selecting new actions and the other for updating the value function.

More formally, we can define

• Target policy: the policy used for learning and training;
• Behavior policy: the policy used to interact with the environment to generate data, that is, to make decisions in the

training process.

If at every time step the target policy coincides with the behavior policy, the learning is called on-policy learning.
Otherwise it is off-policy learning, that is, improve a policy different from that used to generate the data. The most
celebrated on-policy method is SARSA, and the most celebrated off-policy method is Q-Learning. Both are recalled
below.

On-policy—SARSA: The objective is to learn an action-value function Q(s, a) rather than V(s). The price to pay is
representing a function of state–action pairs (instead of just of states), but the advantage is to select optimal actions without
the need to know the next state, that is, without a model of the environment’s dynamics. The generalization of the TD(0)
formula (9) in this scenario is straightforward:

Q(st, at) = Q(st, at) + 𝛼[rt + 𝛾Q(st+1, at+1) − Q(st, at)] (45)

The name SARSA comes from the sequence of State, Action, Reward, State, Action inside the algorithm. One common
problem of on-policy and off-policy algorithms is that they may not explore extensively the search space, possibly giving
a suboptimal answer or possibly getting stuck in its current policy. To address this issue, it is common to use the so-called
𝜖-greedy policy approach. This amounts to selecting a different action with a small probability 𝜖. This is formalized as
follows

𝜋(a|s) = ⎧⎪⎨⎪⎩
𝜖∕m + 1 − 𝜖, if a∗ = arg max

a∈A
Q(s, a)

𝜖∕m, else
(46)

which means selecting the action corresponding to the best action-value function with probability 1 - 𝜖, and using a
different action with probability 𝜖.
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344 BALDI et al.

Algorithm 3. SARSA(𝜆):

Initialize: initial Q(s, a), e(s, a) = 0 ∀s, a
repeat

Starting s, a
repeat

Apply action a, get r, s′
Choose a′ from s′ using policy derived from Q (e.g., 𝜖-greedy)
calculate 𝛿 ← r + 𝛾Q(s′, a′) − Q(s, a)
update e(s, a) ← e(s, a) + 1
for all s, a: do

update Q(s, a) ← Q(s, a) + 𝛼𝛿e(s, a)
update e(s, a) ← 𝛾𝜆e(s, a)
update s ← s′; a ← a′

until :
s is terminal

until :
end

Similar to TD(𝜆), on-policy and off-policy algorithms can both make use of the eligibility trace mechanism. For
example, SARSA(𝜆) can be obtained as shown below

Q(st, at) = Q(st, at) + 𝛼𝛿tet (47)

where 𝛿t = rt + 𝛾Q(st+1, at+1) − Q(st, at), and et is the eligibility trace. See Algorithm 3.

Off-policy—Q-Learning: It is defined by the update rule:

Q(st, at) = Q(st, at) + 𝛼[rt + 𝛾max
a

Q(st+1, a) − Q(st, at)]. (48)

The main difference here is that instead of using 𝛾Q(st+1, at+1) as in SARSA algorithm, where at + 1 is picked from an
𝜀-greedy policy, in Q-Learning we pick the actual optimal action according to maxaQ(st + 1, a). Also for Q-Learning, one
can use an 𝜀-greedy method to select new actions. But for the update of value function, Q-Learning uses the greedy method
maxa Q(st+1, a), without 𝜀-greedy approach. Algorithm 4 shows the Q-Learning(𝜆) which makes use of the eligibility trace
mechanism.

It is clear that the LS and RLS versions of SARSA and Q-Learning can be obtained in a similar way as LS-TD(𝜆) and
RLS-TD(𝜆). As in TD algorithm, this requires to introduce linear function approximators which can be expressed (for
both SARSA and Q-Learning) as

Qt(s, a) = 𝜙T
t (s, a)𝜃t, (49)

where 𝜙T
t (s, a) (instead of 𝜙T

t (s)) refers to the feature-extraction function that maps state s and action a to valued feature
(column) vector with K dimensions, and 𝜃t has a similar meaning as the previously introduced vector, except having a
different dimension. Accordingly, one can follow a similar instrumental variable procedure and obtain the versions of
SARSA and Q-Learning using the proposed forgetting factor method. This is left to the reader to avoid repetitions.

An important aspect of reinforcement learning has not been addressed in this work, which is the so-called
exploitation-exploration dilemma. This dilemma amounts to the problem of introducing or not probing noise in the
control action in an effort to better estimate the optimal value or action value function. Interestingly, this problem is
connected to the issue of persistence of excitation in adaptive control, as it was shown in the framework of adaptive
optimization.34-36 Because recently some approaches have been proposed in adaptive control about estimation with
reduced persistence of excitation,37,38 it is reasonable to expect that these ideas can be beneficial also in the reinforcement
learning field.
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BALDI et al. 345

Algorithm 4. Q-Learning(𝜆):

Initialize: initial Q(s, a), e(s, a) = 0 ∀s, a
repeat

Starting s, a
repeat

Apply a, get r, s′
Choose a′ from s′ using policy derived from Q (e.g., 𝜖-greedy)
a∗ ← arg maxb Q(s′, b)
calculate 𝛿 ← r + 𝛾Q(s′, a∗) − Q(s, a)
update e(s, a) ← e(s, a) + 1
for all s, a: do

update Q(s, a) ← Q(s, a) + 𝛼𝛿e(s, a)
If a′ = a∗, then e(s, a) ← 𝛾𝜆e(s, a)
else e(s, a) ← 0
update s ← s′; a ← a′

until :
s is terminal

until :
end

5 VALIDATION

5.1 Cart-pole balancing

The balancing problem of inverted pendulums is a typical nonlinear control problem, studied by several communities
in control theory and in artificial intelligence.1 Figure 2 shows the cart-pole balancing scenario, which consists of a cart
moving horizontally on a rail and a pole (the inverted pendulum) that has one end attached to the cart. The system can
be presented by two variables (and their corresponding velocities): x represents the horizontal position of the cart, while
𝜗 represent the angle of the pole with respect to the vertical axis (note that 𝜗= 0 is the downright position and 𝜗 = 𝜋 is
the desired upright position). The control input is F, representing the horizontal force applied to the cart. The behavior
of the cart-pole system can be described by the differential equations

ẍ = 1
mc + mpsin2𝜗

[F + mp sin 𝜗(l�̇�2 + g cos 𝜗)] (50)

�̈� = 1
l(mc + mpsin2𝜗)

× [−F cos 𝜗 − mpl�̇�2 cos 𝜗 sin𝜗 − (mc + mp)g sin 𝜗] (51)

where g is the acceleration due to the gravity, that is, 9.81m/s2.

F I G U R E 2 The cart-pole balancing control system
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346 BALDI et al.

According to the values suggested in Reference 1, we set the mass of the cart mc = 1.0 kg, the mass of the pole
mp = 0.1 kg, the pole length l= 0.5 m. The reward for the problem is defined as

r = −x2 − 𝜗2 − ẋ2 − �̇�
2 − 𝜌F2 (52)

which is a quadratic cost. Here, 𝜌 is a design constant representing the importance of the input in the cost (in order to avoid
applying large inputs). In the simulation experiment, we set 𝜌 = 0.1. Furthermore, we select the following approximator,
which is motivated by a quadratic value function which is zero at the desired equilibrium

𝜙t(s) = [x2
t , ẋ2

t , (𝜗t − 𝜋)2, �̇�
2
t , xtẋt, xt(𝜗t − 𝜋), xt�̇�t, ẋt(𝜗t − 𝜋), ẋt�̇�t, (𝜗t − 𝜋)�̇�t]T (53)

𝜃t = [𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5, 𝜃6, 𝜃7, 𝜃8, 𝜃9, 𝜃10]T . (54)

We consider a Policy Iteration setting, which can be described as the problem of improving the performance of an ini-
tially stabilizing controller. The initially stabilizing controller is obtained by selecting 𝜃(0) to have the coefficients of the
Lyapunov matrix that solves the corresponding linear quadratic regulator. We consider a Model-based Policy Iteration, in
which the model is used to obtain the next state of the system.

In RLS-TD(𝜆) algorithm, we set the discount rate 𝛾 = 0.95, 𝜆 = 0.8, which are the same values suggested in Refer-
ence 1. In RLS-TD with forgetting factor algorithm, we set the discount rate 𝛾 = 0.95 (which is the same as RLS-TD(𝜆)
algorithm), the weighting coefficient ak = 1, the forgetting factor 𝛽 = 0.95, and the normalizing signal m2

k = 1 + 𝜙T
t 𝜙t. In

both algorithms, we set P0 = 10I. Most of these values are found by trial-and-error experiments. We select the initial con-
dition x = 0; ẋ = 0; 𝜗 = 𝜋 + 𝜋∕36(i.e., 185◦); �̇� = 0: the learning process (evolution of the states and inputs) resulting from
the two algorithms is sketched in Figures 3 and 4.

For the same initial condition, in order to check if the algorithms are effectively learning, we apply the controller
offline. The term εofflineε refers to using the estimate obtained at time t in a new experiment with the same initial con-
dition x = 0; ẋ = 0; 𝜗 = 𝜋 + 𝜋∕36(i.e., 185◦); �̇� = 0. By doing this, it is easy one can calculate the corresponding cost to
check if the algorithm is improving its performance or not. The results are shown in Figures 5 and 6, where it can be seen
that the offline reward is improving, especially in the initial phase. The proposed RLS-TD with forgetting factor method
seems to improve more as compared to the initial stabilizing controller. The learning is more effective when the system
states are far from the equilibrium, which is when the regressor 𝜙t(s) assumes larger values: as the system approaches the
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F I G U R E 3 Cart/pole states and inputs using RLS-TD(𝜆)
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F I G U R E 5 Offline reward of RLS-TD(𝜆)
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equilibrium, the regressor 𝜙t(s) assumes smaller values and the learning becomes smaller. It can be seen that when the
system has converged to the equilibrium, the learning curve might even become a bit worse. Dependence of learning on
the quality of data is a well known phenomenon in learning schemes.10

In the offline simulation experiment, the reward range of RLS-TD(𝜆) algorithm starts from −0.04102 and reaches
−0.03708 (best value): after that, it becomes a bit worse and converges to−0.03735. The reward range of the new algorithm
starts from −0.04025 and reaches −0.03687 (best value): after that, it becomes a bit worse and converges to −0.03697. The
evolution of the weights 𝜃t for both algorithms, are in Figures 7 and 8. One can see that, for both algorithms, a comparable
trend in the evolution.

Some important information about the experimental results is shown in the Table 1. In the table, the integral norm
is the integral from 0 to t (in line with the linear quadratic regulator theory), and 𝜒 = [x, ẋ, 𝜗, �̇�]T . It can be seen that
the cost of the RLS-TD with forgetting factor algorithm is typically smaller. The third row of Table 1 refers to the best
reward obtained by using the current parameters offline. The last row of Table 1 refers to the iteration at which the reward
within ±2% of the final reward, that is, −0.03735(1± 2%) and −0.03697(1± 2%) This gives a measure of convergence
speed.
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F I G U R E 6 Offline reward of proposed RLS-TD-f
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F I G U R E 7 Weight parameter 𝜃 of RLS-TD(𝜆)

The previous experiments have been performed for initial condition x = 0; ẋ = 0; 𝜗 = 𝜋 + 𝜋∕36(i.e., 185◦); �̇� = 0. In
order to validate these benefits over a wider portion of the state space, we select four groups of initial conditions according
to the following gridding method.

We select 9 values of initial conditions for the position x of the cart: −2m,− 1.5m, … , 1.5m, 2m. We
select 9 values of initial conditions for the angle 𝜗 of the pole (in degrees for better comprehension):
180− 5◦, 180− 3.75◦, … , 180+ 3.75◦, 180+ 5◦. Similarly, we select 9 initial conditions for the speed ẋ of the cart:
−1m/s,− 0.75m/s, … , 0.75m/s, 1m/s. Finally, we select 9 initial conditions for the angular speed �̇� of the pole:
−10◦/s,− 7.5◦/s, … , 7.5◦/s, 10◦/s.

All these initial conditions crossed two by two (9× 9= 81 initial conditions), for all possible 4 combinations, so as to
obtain 4 groups of 81 initial conditions. To make the results more clear, Tables 2 and 3 report the final reward associated
to the first group of 81 initial conditions. The tables for the other 3 groups are not reported for lack of space: however,
in order to compare the approaches for all groups, we report in Table 4 how many times each algorithm overcomes the
other one in terms of offline final reward and offline convergence. Table 4 shows that the proposed algorithm has a better
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F I G U R E 8 Weight parameter 𝜃 of proposed RLS-TD-f

T A B L E 1 Comparison of experimental results RLS-TD(𝝀) RLS-TD-f

Integral norm of 𝜒T𝜒 23.36 21.58

Integral norm of 𝜌F2 38.40 33.00

Largest offline reward −0.0371 −0.0369

Convergence of offline learning 767 687

offline final reward in 70.4% of the cases, but in 67.6% of the cases more iterations are needed to converge to such better
reward. Remarkably, the better reward is achieved while obtaining better online regulation and control effort (smaller
norm of the state in 53.1% of the cases and smaller norm of the control input in 57.1% of the cases): this can partially
explain the longer convergence time, since it is known in parameter estimation literature that smaller signals will make
convergence slower.

5.2 Adaptive cruise control (ACC)

Automatic cruise control (CC) and automatic adaptive cruise control (ACC) are excellent examples of a feedback control
system. Nowadays, CC and ACC can be found in many modern vehicles. The purpose of CC is to maintain a constant
speed despite external disturbances (wind, road grade, etc.). The purpose of ACC system is slightly more complex, in the
sense that the speed may not be constant, but decided by a preceding vehicle with respect to which the ego vehicle wants
to keep a desired distance. A CC protocol measures the vehicle speed, compares it to the desired speed, and automatically
adjusts the throttle according to a control law. ACC also includes a radar to measure the relative position and relative
velocity with respect to the preceding vehicle. Both the inverted pendulum and the cruise control system are benchmark
examples often used as control test cases, for example see the Matlab tutorial https://ctms.engin.umich.edu/CTMS/index.
php or the book.33

We consider here a simple model of the vehicle dynamics, compare Figure 9. It consists of a vehicle that can be
controlled though a force or, more practically, through its acceleration (i.e., acceleration/brake pedal). From Newton’s
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T A B L E 2 The first group of experimental results (reward)—RLS-TD(𝜆)

x ⧵ 𝝑 −5 −3.75 −2.5 −1.25 0 1.25 2.5 3.75 5

−2 −0.8707 −0.8980 −0.9426 −1.0045 −1.0898 −1.1879 −1.2730 −1.3575 −1.5275

−1.5 −0.5162 −0.4966 −0.5037 −0.5300 −0.5643 −0.6073 −0.6563 −0.7102 −0.7966

−1 −0.2247 −0.2496 −0.2368 −0.2341 −0.2542 −0.2753 −0.2993 −0.3280 −0.3631

−0.5 −0.0571 −0.0577 −0.0626 −0.0617 −0.0687 −0.0817 −0.0979 −0.1159 −0.1483

0 −0.0374 −0.0238 −0.0123 −0.0039 0.0000 −0.0039 −0.0123 −0.0238 −0.0374

0.5 −0.1483 −0.1159 −0.0979 −0.0817 −0.0687 −0.0617 −0.0626 −0.0577 −0.0571

1 −0.3631 −0.3280 −0.2993 −0.2753 −0.2542 −0.2341 −0.2368 −0.2496 −0.2247

1.5 −0.7966 −0.7102 −0.6563 −0.6073 −0.5643 −0.5300 −0.5037 −0.4966 −0.5162

2 −1.5275 −1.3575 −1.2730 −1.1879 −1.0898 −1.0045 −0.9426 −0.8980 −0.8707

T A B L E 3 The first group of experimental results (reward)—RLS-TD-f

x ⧵ 𝝑 −5 −3.75 −2.5 −1.25 0 1.25 2.5 3.75 5

−2 −0.8581 −0.8809 −0.9114 −0.9489 −0.9881 −1.0299 −1.0756 −1.1269 −1.1859

−1.5 −0.4755 −0.4843 −0.5030 −0.5285 −0.5573 −0.5895 −0.6250 −0.6656 −0.7128

−1 −0.2264 −0.2086 −0.2171 −0.2320 −0.2519 −0.2742 −0.2994 −0.3293 −0.3643

−0.5 −0.0586 −0.0587 −0.0589 −0.0612 −0.0672 −0.0797 −0.0963 −0.1151 −0.1361

0 −0.0375 −0.0236 −0.0123 −0.0039 0.0000 −0.0039 −0.0123 −0.0236 −0.0375

0.5 −0.1361 −0.1151 −0.0963 −0.0797 −0.0672 −0.0612 −0.0589 −0.0587 −0.0586

1 −0.3643 −0.3293 −0.2994 −0.2742 −0.2519 −0.2320 −0.2171 −0.2086 −0.2264

1.5 −0.7128 −0.6656 −0.6250 −0.5895 −0.5573 −0.5285 −0.5030 −0.4843 −0.4755

2 −1.1859 −1.1269 −1.0756 −1.0299 −0.9880 −0.9489 −0.9114 −0.8809 −0.8581

F I G U R E 9 Model of Cruise Control

second law

mv̇ + bv = u (55)

When this model is used for ACC as in Reference 33, it is assumed that both relative position and velocity can be measured.
For this example, the parameters of the system are taken as in the Matlab tutorial https://ctms.engin.umich.edu/CTMS/
index.php, shown in Table 5.

Similarly to the cart-pole, we consider a Policy Iteration setting, that is, improving the performance of an initially
stabilizing controller. The initially stabilizing controller is obtained by a linear quadratic regulator. For the RLS-TD(𝜆)
algorithm, we set discount rate 𝛾 = 0.95, 𝜆 = 0.8. In RLS-TD with forgetting factor algorithm, we set discount rate 𝛾 = 0.95,
weighting coefficient ak = 1, forgetting factor 𝛽 = 0.95, and normalizing signal m2

k = 0.5 + 𝜙T
t 𝜙t. In both algorithms, we

set P0 = I.
Again, in order to check if the algorithms are effectively learning, we εofflineε apply the resulting estimate at time t

and calculate the corresponding cost. We select a group of initial conditions corresponding to pairs of the two states of
the system. The grid is composed of 64 points. The comparison results are summarized in Table 6.
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T A B L E 4 Comparison results for cart-pole system for each group of experiments

Final reward Convergence Norm state Norm input

RLS-TD(𝝀) RLS-TD-f RLS-TD(𝝀) RLS-TD-f RLS-TD(𝝀) RLS-TD-f RLS-TD(𝝀) RLS-TD-f

1st group 15/81 66/81 62/81 19/81 31/81 50/81 38/81 43/81

(18.5%) (81.5%) (76.5%) (23.5%) (38.3%) (61.7%) (46.9%) (53.1%)

2nd group 30/81 51/81 60/81 21/81 41/81 40/81 54/81 27/81

(37.0%) (63.0%) (74.1%) (25.9%) (50.6%) (49.4%) (66.7%) (33.3%)

3rd group 19/81 62/81 58/81 23/81 20/81 61/81 34/81 47/81

(23.5%) (76.5%) (71.6%) (28.4%) (24.7%) (75.3%) (42.0%) (58.0%)

4th group 32/81 49/81 39/81 42/81 60/81 21/81 13/81 68/81

(39.5%) (60.5%) (48.1%) (51.9%) (74.1%) (25.6%) (16.0%) (84.0%)

Total 96/324 228/324 219/324 105/324 152/324 172/324 139/324 185/324

(29.6%) (70.4%) (67.6%) (32.4%) (46.9%) (53.1%) (42.9%) (57.1%)

T A B L E 5 System parameters
m vehicle mass 1000 kg

b damping 50 Ns/m

T A B L E 6 Comparison results for ACC for the group of experiments

Final reward Convergence Norm state Norm input

RLS-TD(𝝀) RLS-TD-f RLS-TD(𝝀) RLS-TD-f RLS-TD(𝝀) RLS-TD-f RLS-TD(𝝀) RLS-TD-f

CC 26/64 38/64 30/64 34/64 16/64 48/64 54/64 10/64

(40.6%) (59.4%) (46.9%) (53.1%) (25.0%) (75.0%) (84.4%) (15.6%)

ACC 30/64 34/64 26/64 38/64 26/64 38/64 48/64 16/64

(46.9%) (53.1%) (40.6%) (59.4%) (40.6%) (59.4%) (75.0%) (25.0%)

The table shows that the proposed algorithm has a better improvement of the initially stabilizing performance and
faster convergence in 53.1–59.4% of the cases. The norm of the state is smaller in 59.4–75% of the cases, however the norm
of the input is larger in 75.0–84.4%: this can partially explain the faster convergence time, since it is known in parameter
estimation literature that larger signals will make convergence faster. In other words, the two benchmarks we used show
that there is a trade-off between convergence time and high control input. However, the proposed approach can better
improve the initially stabilizing control performance in both benchmarks.

6 CONCLUSION

We have shown that the forgetting factor commonly used in least-squares algorithm has a similar role to the eligibil-
ity trace in temporal difference (TD) algorithm. We adopted an instrumental variable perspective and proposed a new
algorithm. In least-square problems, the purpose of introducing forgetting factor is to give different weights to the data, so
that the algorithm can respond to the changes of system to be controlled quickly. Because TD also has a gradient-descent
structure, we have shown that forgetting factor can also be used in this setting. A further problem to be investigated analyt-
ically is the relationship between forgetting factor and eligibility trace. Currently, there is a qualitative relationship, which
can be investigated in a quantitative way in the future. TD(𝜆) algorithm using eligibility trace has the characteristics of
backward (considering the impact of past value on current value). Consequently, the qualitative similarity between for-
getting factor and eligibility trace is that the influence of the past data on the current value is considered to some extent.
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We have also used simulations to illustrate the method, performed in a policy iteration setting. Using extensive experi-
ments on benchmark problems, we have shown that the proposed algorithm can better improve the initially stabilizing
control performance.
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