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Abstract
Motivation: Knowing the relation between cell types is crucial for translating experimental results from mice to humans. Establishing cell type
matches, however, is hindered by the biological differences between the species. A substantial amount of evolutionary information between
genes that could be used to align the species is discarded by most of the current methods since they only use one-to-one orthologous genes.
Some methods try to retain the information by explicitly including the relation between genes, however, not without caveats.

Results: In this work, we present a model to transfer and align cell types in cross-species analysis (TACTiCS). First, TACTiCS uses a natural lan-
guage processing model to match genes using their protein sequences. Next, TACTiCS employs a neural network to classify cell types within a
species. Afterward, TACTiCS uses transfer learning to propagate cell type labels between species. We applied TACTiCS on scRNA-seq data of
the primary motor cortex of human, mouse, and marmoset. Our model can accurately match and align cell types on these datasets. Moreover,
our model outperforms Seurat and the state-of-the-art method SAMap. Finally, we show that our gene matching method results in better cell
type matches than BLAST in our model.

Availability and implementation: The implementation is available on GitHub (https://github.com/kbiharie/TACTiCS). The preprocessed datasets
and trained models can be downloaded from Zenodo (https://doi.org/10.5281/zenodo.7582460).

1 Introduction

Model organisms, such as mouse and marmoset, are often
used in brain research as a substitute for humans. However,
because of differences between species, experiments per-
formed on model organisms do not directly translate to
humans. For example, widely used antidepressants that target
serotonin receptors are often tested on mice, while the expres-
sion pattern of serotonin receptors is highly divergent between
human and mouse, likely leading to differences in cell func-
tion between species (Hodge et al. 2019). Consequently, to fa-
cilitate translational research, it is important to better
characterize cell type matches between species. This facilitates
studying how drugs then alter biological processes within spe-
cific cell types between these species.

Traditionally, cell types were characterized solely based on
morphology, but using single-cell RNA sequencing (scRNA-
seq), the expression pattern across thousands of genes can
now be used to describe a cell type. This has resulted in the
identification of an increasing number of cell types within spe-
cific brain regions (Tasic et al. 2018; Siletti et al. 2022).
Although this improves our understanding of biological pro-
cesses in the brain, when comparing species, it introduces the
need for a method that can match these new cell types accu-
rately between species.

Unfortunately, this is not a trivial task as genes are modi-
fied, duplicated and deleted throughout evolution, resulting in
complicated many-to-many gene–gene relationships between
species. These relationships become even more complicated
when evolutionary distances increase.

Current methods that match cell types across species based
on scRNA-seq data can be divided into two groups, mainly
based on how they solve the gene-matching problem. The first
group only uses the one-to-one orthologous genes, which are
genes with exactly one match in the other species based on se-
quence similarity [e.g. using BLAST (Altschul et al. 1990)].
Methods such as scANVI (Xu et al. 2021), MetaNeighbour
(Crow et al. 2018), and LAMbDA (Johnson et al. 2019) be-
long to this group. While this is a straightforward approach,
it ignores genes with a more complex evolutionary history
which might have caused divergent functional specification of
cell types between species. The second group of methods, in-
cluding SAMap (Tarashansky et al. 2021), CAME (Liu et al.
2021), Kmermaid (Botvinnik et al. 2021), and C3 (Kabir
et al. 2018), overcomes this limitation by considering many-
to-many relationships between the genes based on sequence
similarity. All these methods rely on the classical assumption
that sequence similarity is a good measure of how genes func-
tionally relate to each other. However, sequence similarity of-
ten considers one nucleotide/amino acid at a time, which to a
large extent ignores sequence contexts important for func-
tional characterization (e.g. secondary structures and se-
quence motifs). A growing body of evidence suggests that
language models are a powerful approach to capture func-
tional similarities between genes (Heinzinger et al. 2019;
Elnaggar et al. 2021; Rives et al. 2021; Villegas-Morcillo
et al. 2021). Similarly, we hypothesize that using language
models to match genes between species can be beneficial for
cell type matching.
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Once we identified matching relationships between genes
across species, the next step is to characterize cell type
matches. We and others have posed cell type matching as a
classification task where the agreement of predictions from
two classifiers, trained on two labeled scRNA-seq datasets, is
used to match cell types between the datasets (Johnson et al.
2019; Michielsen et al. 2021; Yuan et al. 2022). Biological
differences between species, however, hinder applying such a
method directly. A solution could be to learn a common em-
bedding space for the cells before training the classifiers.

Here, we introduce a method to transfer and align cell types
in cross-species analysis (TACTiCS) that incorporates the two
claims that we make: (1) using language models to match
genes functionally between species and (2) training classifiers
in a shared embedding space to transfer cell types from one
species to the other. We show that TACTiCS correctly
matches human, mouse, and marmoset brain cell populations
from the primary motor (M1) cortex at a detailed cell type
level, and does so better than SAMap, the current state-of-
the-art method.

2 Methods

TACTiCS takes as input two single-cell (sc) or single-nucleus
(sn) RNA-seq datasets, with raw expression counts, from two
species A and B. TACTiCS consists of four steps (Fig. 1): (1)
matching genes based on the protein sequences, (2) creating a
shared feature space by mapping expression values with the
gene matches obtained in step 1, (3) training within-species
cell type classifiers, and (4) matching cell types by swapping
the classifiers.

2.1 Matching genes

First, we created an embedding for every gene using
ProtBERT, a transformer-based language model (Elnaggar
et al. 2021). The protein sequences were retrieved from
UniProt (The UniProt Consortium 2023). For human and
mouse, we selected only the Swiss-prot sequences, but for
marmoset we selected all protein sequences. We input the pro-
tein sequences to ProtBERT to create an embedding for each
protein hProtBERT (Fig. 1A). ProtBERT generates a 1024-di-
mensional embedding for every amino acid in the protein se-
quence. To allow TACTiCS to work with variable-length
proteins, we followed common practice (Heinzinger et al.
2019) and took the mean embedding over all positions to rep-
resent the whole protein sequence (as well as the correspond-
ing gene). Protein sequences longer than 2500 amino acids
(<2% of all sequences) were truncated to the first 2500 to fit
into the memory of the GPU.

Next, for every pair of genes from species A and species B,
we calculated the cosine distance between the ProtBERT
embeddings. The initial set of gene matches were pairs with a
cosine distance �0.005. To ensure that a gene is not con-
nected to too many genes, we kept only the five closest genes,
that met the distance threshold, for every gene.

Finally, we filtered the informative gene matches. Hereto,
we calculated the top 2000 highly variable genes per species
using Scanpy highly_variable_genes, and kept only
those gene matches where at least one of the two genes is
within the set of highly variable genes in their respective spe-
cies (Wolf et al. 2018). From these matches, we constructed
two sets of genes GA and GB, corresponding to species A and

B, respectively, consisting of genes with a match in the other
species.

To obtain sequence similarity based gene matches, we used
BLAST instead of ProtBERT. To obtain the many-to-many
BLAST matches, we elected matches with an E-value <1e�6
as the initial set of matches. We used the bitscore as the dis-
tance metric. Since BLAST is not symmetrical, one gene match
is assigned a separate E-value and bitscore for each direction.
If only one direction meets the E-value threshold, we use the
corresponding bitscore as the gene distance. If both directions
meet the threshold, we use the average of the two bitscores.
The list of matches is then filtered similarly as before with the
closest-five and highly varying gene filtering. Additionally, we
obtained one-to-one BLAST matches by starting with the
same set of matches using the E-value threshold. For every
gene, we kept only the best match, i.e. the gene with the high-
est bitscore. We discarded gene matches that were not recipro-
cal and finally also applied the highly varying gene filtering to
obtain the one-to-one matches.

2.2 Creating a shared feature space by mapping

expression values with the gene matches

We normalized the expression levels of genes as follows: (1)
the raw expression counts of each dataset are normalized by
the number of reads per cell such that the total number of
counts in every cell is 10 000 and (2) the natural logarithm of
the normalized counts are taken:

xij ¼ ln
xijP

k2Gxik
� 1e5 þ 1

� �
;

where xij is the expression of gene j in cell i. Finally, a Z-score
per gene is calculated to form the normalized expression ma-
trices XA and XB for genes GA and GB, respectively. We cre-
ated a shared feature space for the two datasets spanning
GA [GB (Fig. 1B). The shared feature space is partly equal to
the expression matrices XA and XB and partly imputed:

XA
iu ¼

XA
iu; if u 2 GA

1P
v2GA

euv

X
v2GA

euvXA
iv; if u 2 GB

8><
>:

where XA
iu is the normalized expression of cell i from species

A for gene u in the shared feature space. The expression of
within species genes does not change. For a cross-species
gene, we imputed the expression by taking the weighted aver-
age of the expression of the within-species genes it is matched
to. The weight between gene u and gene v is calculated as:

euv ¼ 1� similarityðhProtBERT
u ; hProtBERT

v Þ
0:005

;

where similarity calculates the cosine distance between the
ProtBERT embeddings. The weights are scaled to the interval
[0, 1] by dividing with the distance threshold. When BLAST is
used instead, we used the (average) bitscore between the two
genes directly, since the bitscore does not have to be inversed.
The edge weight is set to 0 for gene pairs that do not match
according to the threshold and filtering criteria. The resulting

matrices XA and XB both span the same set of genes, and can
thus be compared directly.
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2.3 Cell embeddings

The shared feature space is put through two linear layers to
create the cell embeddings (Fig. 1C). Each linear layer is fol-
lowed by a rectified linear unit (ReLU) activation function.
The first layer creates embeddings of length 64. The second
layer creates embeddings of length 32. These embeddings are
used to visualize the embedding space with a UMAP. The
weights to embed the cells are shared across the species.

2.4 Training species-specific cell type classifier

We used these embeddings to train a separate classifier per
species. We used a neural network consisting of one linear
layer followed by a softmax activation function (Fig. 1D).
Both classifiers take the cell embedding as input and output
cell type probabilities, hA;out or hB;out, only for cell types be-
longing to its respective species. During training, cells are in-
put only to the classifier of its corresponding species.

The loss to update the embedding and classification weights
consists of two parts: (1) the classification loss and (2) the
alignment loss. Both losses are calculated separately per spe-
cies. For the classification loss, we used the weighted cross-
entropy loss between the predictions and targets:

LclsA
¼ 1

NA

XNA

i¼1

XTA

t¼1

wtY
LS
it ln hA;out

it

� �
;

where LclsA
is the classification loss for species A. NA and TA

are the number of cells and cell types in species A, respec-
tively. wt is the weight for cell type t, explained further below.
hA;out

it is the output of classifier A, specifically the probability
that cell i belongs to cell type t. The one-hot encoded targets
Y are modified with label smoothing to prevent overfitting
and improve stability:

YLS
it ¼

1� �; if Yi ¼ t
�

T � 1
; otherwise

(

where � (¼0.1) controls the smoothness. The weight of each
cell type is updated every epoch based on the accuracy of that
cell type:

wt ¼ 1� acctð Þ�aþ 1;

where acct is the accuracy of class t in the current epoch. a is a
hyperparameter that controls the influence of the accuracy on

Figure 1. Schematic overview of TACTiCS. We use human and mouse as example, but cell types from any two species can be matched. (A) Matching

genes on protein sequences using ProtBERT. (B) Bipartite graph of gene matches. Gene expression is imputed by taking the weighted average from

connected genes in the bipartite graph. (C) Creating cell embeddings using linear layers on the shared feature space. The weights of the linear layers are

shared. (D) Classifying within-species cells during training. The classifier consists of a linear layer outputting the cell type probabilities followed by a

softmax. (E) Classifying cross-species cells using transfer learning. The predictions are used to match cell types.
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the weight. We use a ¼ 9 such that the weights are in the in-
terval 1;10½ � which restricts the relative difference in weight
between cell types. By updating the weights, a cell type with a
lower accuracy in the current epoch will have a higher weight
in the next epoch and thus the predictions will shift to that
cell type.

The alignment loss aims to integrate the embedding space
across the species, such that cross-species cells with a similar
gene expression are close in the embedding space:

LalignA
¼ 1

NA

XNA

i¼1

MSE
1

Ncross
i

�� �� X
j2Ncross

i

XB
j ; XA

i

 !
;

where NA is the number of cells of species A and Ncross
i are

the 20 nearest cross-species neighbours for cell i. MSE calcu-
lates the mean-squared error between the prediction of the
shared features of neighbours j and the actual shared features
for cell i. If the alignment loss is minimized, neighbours in the
embedding space can be used to predict the gene expression.
The final loss is a combination of the classifier loss, the align-
ment loss and a regularization loss:

L ¼ LclsA
þ LclsB

þ LalignA
þ LalignB

þ c hj jj j22;

where h consists of all parameters in the model, and is used
for the L2 regularization to prevent overfitting. c is the weight
of the L2 norm, which is set to 0.01. The model is trained for
200 epochs. We used the Adam optimizer with a learning rate
of 0.001. The full training process takes around 30 min.

To efficiently use large scRNA-seq datasets, the neural net-
work is trained in batches. A batch size of 5000 cells per spe-
cies is used to speed up the training while still having enough
cells per cell type. Instead of sequentially iterating over the
dataset, each batch is randomly sampled from the full dataset,
while accounting for the size of each cell type. More specifi-
cally, every cell is assigned a probability NA=NA

t or NB=NB
t ,

where NA is the total number of cells of species A and NA
t is

the number of cells of species A belonging to cell type t. These
probabilities are then used to sample a batch of cells per spe-
cies with a similar number of cells for each cell type.

2.5 Transferring cell type predictions across species

After the neural network is trained, the cell types are trans-
ferred by using the classifiers on the species they were not
trained on (Fig. 1E). That is, we calculate hB;out for cells of
species A, and hA;out for cells of species B. The transferred cell
type for a single cell is the cell type with the highest probabil-
ity. To aggregate the information of the single cells to the cell
type, we calculate the fraction of cells that are predicted to
match cell types across species, which forms a normalized
confusion matrix for both transferring directions. We average
the two matrices to create a combined matrix, where high val-
ues indicate reciprocal matches. The values in the combined
matrix can be used to score a match.

2.6 Dataset

We evaluated TACTiCS on snRNA-seq data taken from the
primary motor cortex of human, mouse, and marmoset
(Bakken et al. 2021). These datasets consist of 76k human
cells, 159k mouse cells, and 69k marmoset cells, respectively.
The cell type distribution varies considerably across species.
For instance, non-neuronal cells make up around a third of

both mouse and marmoset cells, while only 5% of the human
cells are non-neuronal. We use two resolutions of the cell
labels assigned by the original authors: (1) a higher resolution,
consisting of 45 cell types present in all species and (2) a lower
resolution, consisting of 20 human, 23 mouse, and 22 mar-
moset subclass cell types. At the lower resolution not all cell
types occur in all species. SMC is only present in mouse, while
Meis2 and Peri are only present in mouse and marmoset.
Species-specific cells are labeled with “NA” at the higher
resolution.

2.7 Evaluation

The combined matrix cannot be evaluated using standard
metrics for confusion matrices, such as precision or F1 score,
since we cannot distinguish between false positives and false
negatives. Instead, we focus on the matching scores from cor-
responding cell types in the combined matrix, which ideally
should be 1. We define the average diagonal score (ADS) as
the average score of the diagonal entries, after excluding
species-specific cell types. A high ADS indicates that many cell
types are correctly and reciprocally matched. However, the
ADS does not indicate how many cell types are correctly
matched. To this end, we define the recall as the fraction of di-
agonal entries where the score is highest for both that row
and column.

We compared TACTiCS with SAMap (Tarashansky et al.
2021) and Seurat (version 4) (Hao et al. 2021). SAMap is a
cell type matching method that iterates between two steps.
The first step matches the genes, which is initially done with
BLAST on the DNA or protein sequences. Instead of taking
the top-1 match, SAMap uses the BLAST bitscore directly in
their model which allows for many-to-many matches. The
second step uses the gene matches to first impute genes across
species and then embed the cells by concatenating the princi-
pal components of the original expression and imputed ex-
pression. Then, the correlation between genes in the
embedding space is used to update the gene matches. The two
steps are repeated until the process converges.

Seurat can be used to transfer cell type labels from a refer-
ence to a query dataset. Since Seurat cannot use many-to-
many matches, we use BLAST one-to-one matches for the
data integration and label transfer. Since labels can only be
transferred from the reference to the query dataset, we had to
integrate the data twice for each pairwise comparison: once
using one species as the reference and once using the other
species as the reference.

2.8 Implementation

TACTiCS is implemented in Python 3.9. Pytorch (Paszke
et al. 2019) was used for the model architecture. The scRNA-
seq data are stored as Anndata (Virshup et al. 2021) objects,
containing both the gene expression and the cell type annota-
tions. The implementation of TACTiCS is available at https://
github.com/kbiharie/TACTiCS.

As Tarashansky et al. (2021) have noted, the runtime of
SAMap increases significantly for larger datasets, and we
were unable to run SAMap for the full datasets. Instead, we
used SAMap on subsets of 50k cells per species. We sub-
sampled the data to keep the cell type proportions similar
while making sure that all cell types are included. During sam-
pling we ensured that at least 50 cells were present in the sub-
set. If a cell type contained less than 50 cells, all cells were
included in the subset.
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3 Results
3.1 Matching genes using sequence embeddings is

comparable to sequence alignment with notable

differences

First, we investigate how similar the gene matches returned by
ProtBERT and BLAST are. We retrieved 17 435 human and
14 033 mouse protein sequences, discarding 47% of the hu-
man genes and 49% of the mouse genes for which we do not
have the protein sequence. We used both ProtBERT and
BLAST to generate gene matches.

For 13 935 human genes, we found a one-to-one mouse
match using BLAST. For these human genes, we defined the
ProtBERT match as the mouse gene with the most similar
ProtBERT embedding. For 13 050 of the 13 935 human genes
(94%), the BLAST match is identical to the ProtBERT match.
Thus, the top-1 match is identical for the vast majority of
genes. We ranked the BLAST matches according to the
ProtBERT embedding distance to all mouse genes (Fig. 2A).
Most of the BLAST matches have a rank close to 1 and over
98% of the BLAST matches have a rank below 100.
Additionally, 48% of the BLAST matches that differ from the
ProtBERT match are in the top-5 and thus considered in the
many-to-many matches. Thus, if the BLAST match is not con-
sidered to be the best match by ProtBERT, it is still relatively
similar based on the embedding distance.

Next, we focus on the human genes for which the
ProtBERT and BLAST match differ to investigate which
method returns the most functionally similar match. We re-
strict the comparison to the 818 human genes where the hu-
man gene, the BLAST match and the ProtBERT match are
expressed in at least one cell. We assess functional similarity
here in terms of gene expression similarity across cell types.
Therefore, we calculated the Pearson correlation coefficient
across cell types in humans and mouse. We considered the
harmonized cell types as defined in Bakken et al. (2021)
(Fig. 2B). For 568 of 818 (69%) genes, the BLAST match has
a higher gene correlation than the ProtBERT match. This is to
be expected since the harmonized cell types were defined us-
ing the BLAST matches. However, for some genes, the
ProtBERT match has a higher correlation than the BLAST

match. For example, human IL18R1 is matched to mouse
Il1r1 according to ProtBERT with a correlation coefficient of
0.945, while BLAST matches the gene to mouse Il18r1 with a
correlation coefficient of 0.103 (Fig. 3). Human IL18R1 and
mouse Il1r1 both show an increased expression for the endo-
thelial and VLMC cells, while mouse Il18r1 does not show
this pattern, and is lowly expressed in all cell types.

3.2 TACTiCS accurately matches cortical cell types

across mouse and human

Now that we have seen that ProtBERT matches can be a pow-
erful way to capture gene relationships, we use them in
TACTiCS to match cell types in mouse and human cortex
data. We use the Allen Brain Data, since the cell types have
been carefully matched and harmonized by curators. We train
TACTiCS for the human–mouse comparison for both the
subclass and cross-species resolution. At the subclass resolu-
tion, TACTiCS returns the correct cell type for all 23 cell
types that are present in both human and mouse (Fig. 4A).
The species-specific cell types, mouse Meis2, Peri, and SMC,
do not have a one-to-one match with a human cell type.
Mouse Peri only matches human VLMC with a score of 0.5,
but human VLMC matches mouse VLMC with a higher score
of 1.0. Cell types present in both species have matching scores
of �0.9 while wrong matches all have matching scores � 0.5.

To get better insight into TACTiCS performance, we visual-
ized the 32-dimensional cell embeddings using UMAP
(Fig. 4B and C; Supplementary Fig. S3). Individual human
and mouse cells do not mix well in the embedding space, but
the UMAP does seem to align at the cell type level, i.e. corre-
sponding cell types either overlap partially in the embedding
space, or are relatively close. For example, Vip cells form a
large cluster with partly human and mouse cells separated,
and cells of mixed origin in the middle. The Sncg cells also
form a larger cluster, but the separation between the human
and mouse cells is more visible. The oligodendrocytes form
two separate clusters, but they are closer to each other than to
other cell types. The cell type proportions do seem to have an
effect on the alignment in the embedding space. Cell types
with a similar number of cells in human and mouse, such as
Vip (6% in human and 2% in mouse), are clustered more co-
herently. Cell types with a large difference of occurrence
within human and mouse, such as Astro (1% in human and
11% in mouse), form one small distinct cluster that is close to
the larger cluster. The mouse-specific cell types Meis2, Peri,
and SMC are (correctly) clustered separately from the human
cells. Thus, the embedding space can align the cell types
across the species, but not the individual cells. Note that this
can be due to unresolved batch effects or actual biological dif-
ferences between the two species.

At the cross-species resolution, TACTiCS returns correct
matches for the majority of cell types, with a recall of 0.96
(Fig. 5A; Supplementary Fig. S1). The two cell types that are
not properly matched, namely a L5-IT subtype and a Sncg
subtype, are still matched with closely related cell types. The
L5-IT subtype is matched with another L5-IT subtype and the
Sncg subtype is matched to a subtype from the similar Lamp5
subclass.

To evaluate the performance of TACTiCS across species
with variable evolutionary distance, we tested TACTiCS on
cortical cell types between human–marmoset and mouse–
marmoset (Table 1). At the subclass resolution, TACTiCS
performs similar on all three comparisons with a recall of 1.0.

Figure 2. Comparison of ProtBERT and BLAST matches. (A) Rank of

BLAST match according to ProtBERT embedding distances. Rank 1

indicates that the best ProtBERT match and the best BLAST match are

the same. Rank NaN indicates a human gene with a ProtBERT match but

no BLAST one-to-one match. (B) Scatterplot of the correlation of the

expression of human and mouse genes when considering the best

BLAST match (x-axis) and the best ProtBERT match (y-axis). The

expression correlation is calculated as the Pearson correlation across the

average expression profiles of the cross-species harmonized cell types.

We omitted human genes where the BLAST match and ProtBERT match

are the same. Gene matches where either the human gene, ProtBERT

match or BLAST match is highly variable, are colored orange.
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At the cross-species resolution, TACTiCS performs best for
the human–marmoset comparison and worst for the mouse–
marmoset comparison. These results indicate that the perfor-
mance of TACTiCS is dependent on the evolutionary distance
between the species, since the evolutionary distance to the
closest common ancestors from human and marmoset (�40
mya) is a lot less than human and mouse (�70 mya).

3.3 TACTiCS outperforms SAMap and Seurat in

matching cortical cell types across mouse, human,

and marmoset

To benchmark TACTiCS, we compare its performance to
SAMap and Seurat using three pair-wise comparisons (hu-
man–mouse, human–marmoset, and mouse–marmoset).
Across all comparisons, TACTiCS has a higher ADS and

Figure 3. Average expression of human IL18R1 and mouse matches across harmonized cell types. The mouse matches are ordered according to the

ProtBERT embedding distances. BLAST matches human IL18R1 to mouse Il18r1.

Figure 4. TACTiCS’ performance when matching human and mouse cell types at the subclass resolution. (A) Average confusion matrix of transferred cell

types. (B) UMAP of cell embeddings, colored by species. (C) UMAP of cell embeddings, colored by cell type.

Figure 5. Performance of (A) TACTiCS and (B) SAMap on when matching human and mouse cell types at cross-species resolution. Cross-species cell

types are grouped per subclass (indicated with the light-gray lines) and class (indicated with dark-gray lines).
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recall than SAMap and Seurat at the subclass resolution
(Table 1). TACTiCS and SAMap perform well for all compar-
isons with a recall �0.95. Seurat performs well for the hu-
man–marmoset comparison, but the performance drops for
the other two comparisons with a recall of 0.85 and 0.86 for
the human–mouse and mouse–marmoset comparisons, re-
spectively. Although the resulting matches of TACTiCS and
SAMap are similar, the scores assigned by TACTiCS to those
correct matches are higher than SAMap. For instance,
SAMap correctly matches human L6b to mouse L6b, but
with a very low matching score equal to 0.47, while
TACTiCS matches the same cell types with a matching score
of 1.0. Interestingly, for the species-specific cell types,
TACTiCS suggests matches that have a low score (0.04–0.5),
allowing to detect the species-specific cell types. The perfor-
mance of SAMap and Seurat for the species-specific cell types
is not consistent across all cell types and comparisons. For ex-
ample, SAMap correctly assigns zero scores to mouse Meis2,
Peri, and SMC in the human–mouse comparison, but incor-
rectly matches mouse SMC to marmoset Peri with a high
matching score. Likewise, Seurat correctly assigns low scores
to mouse Meis2 across all three comparisons, but incorrectly
assigns higher scores to mouse Peri and SMC.

At the cross-species resolution, the performance of all meth-
ods drops compared with the subclass level as expected, but
the difference between the three methods becomes more ap-
parent (Fig. 5; Supplementary Fig. S2). TACTiCS achieved
the highest ADS and recall for the human–mouse and mouse–
marmoset comparisons. SAMap has a higher recall than
TACTiCS for the human–marmoset comparison, but not a
better ADS. Seurat performs the worst across all three com-
parisons and achieves a recall of only 0.4 for the human–
mouse comparison. For mismatches between subtypes,
TACTiCS usually matches to subtypes within the same

subclass, while SAMap regularly maps to cell types from an-
other subclass. While both TACTiCS and SAMap partly
match human Sncg to mouse Lamp5, SAMap additionally
shows similarity between human Sncg and mouse Vip.

While the human and mouse cells did not overlap much in
the UMAP of TACTiCS, Seurat consistently maps the query
dataset onto the reference dataset (Supplementary Figs S3 and
S4). However, the query dataset is not mapped equally onto
the reference dataset, which leaves large regions of the clusters
consisting of only one species. For both methods, the mixing
of species is the highest for the human–marmoset comparison
and lowest for the human–mouse comparison.

To account for the differences in dataset size, we compare
TACTiCS and SAMap on the same 50k subset. The perfor-
mance of TACTiCS drops on the subset compared with the
full dataset and does not match all common cell types cor-
rectly anymore at the subclass resolution. However,
TACTiCS still outperforms SAMap at the higher resolution
across all three comparisons.

3.4 Using ProtBERT matches improves the cell type

matching for TACTiCS

Finally, we assessed the importance of using the ProtBERT
embeddings to match genes compared with using BLAST on
the final cell type matches. To this end, we trained TACTiCS
based on the BLAST many-to-many matches and SAMap us-
ing the ProtBERT matches on the human–mouse data. For a
fair comparison of ProtBERT to BLAST in SAMap, we only
apply the embedding distance threshold to the ProtBERT
matches, rather than filtering the gene matches thoroughly.
Training TACTiCS at the cross-species resolution using the
BLAST matches decreased the ADS and recall by a lot across
all comparisons (Table 1). For SAMap, the performance
remained similar, except for the human–mouse comparison
where the recall decreased from 0.8 to 0.73 when ProtBERT
matches were used instead of the BLAST matches.

Additionally, we trained TACTiCS on the BLAST one-to-
one matches. At the subclass resolution, the ADS and recall
remain similar if BLAST one-to-one is used instead of
ProtBERT many-to-many. This is not the case for all compari-
sons at the cross-species resolution. The performance
decreases for human–mouse, remains similar for human–mar-
moset, and is increased for mouse-marmoset when BLAST
one-to-one is used.

4 Discussion

Here, we present TACTiCS, a method to accurately match
cell types from scRNA-seq data across species. We applied
TACTiCS to match cell types across human, marmoset, and
mouse motor cortex, species with different evolutionary dis-
tances to each other. Even though TACTiCS matches cell
types from all three species with high confidence, we showed
that human and marmoset cell types are considerably easier
to match which correlates with their closer evolutionary dis-
tance. Furthermore, we showed that TACTiCS outperforms
the state-of-the-art method SAMap on all comparisons with
the biggest difference at a higher resolution in favor of
TACTiCS. We should note that our evaluation is limited to
using only three datasets from one tissue with a relatively
small evolutionary distance, while SAMap was originally de-
veloped to match cell types across larger evolutionary distan-
ces (Tarashansky et al. 2021).

Table 1. ADS and recall for TACTiCS, Seurat, and SAMap on human, mouse,

and marmoset.

Comparison Method Matching Subclass Cross-species

ADS Recall ADS Recall

Hu–mo TACTiCS P (m:m) 0.991 1.000 0.856 0.956
Hu–mo TACTiCS B (m:m) 0.915 0.900 0.509 0.489
Hu–mo TACTiCS B (1:1) 0.992 1.000 0.724 0.778
Hu–mo Seurat B (1:1) 0.821 0.850 0.435 0.400
Hu–mo (50k) TACTiCS P (m:m) 0.894 0.900 0.780 0.822
Hu–mo (50k) SAMap P (m:m) 0.814 1.000 0.635 0.733
Hu–mo (50k) SAMap B (m:m) 0.827 1.000 0.630 0.800
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Hu–ma TACTiCS P (m:m) 0.981 1.000 0.920 0.956
Hu–ma TACTiCS B (m:m) 0.891 0.900 0.848 0.889
Hu–ma TACTiCS B (1:1) 0.983 1.000 0.919 0.956
Hu–ma Seurat B (1:1) 0.906 1.000 0.697 0.822
Hu–ma (50k) TACTiCS P (m:m) 0.982 1.000 0.949 1.000
Hu–ma (50k) SAMap P (m:m) 0.892 1.000 0.816 0.978
Hu–ma (50k) SAMap B (m:m) 0.899 1.000 0.816 0.978
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Mo–ma TACTiCS P (m:m) 0.990 1.000 0.735 0.733
Mo–ma TACTiCS B (m:m) 0.844 0.864 0.483 0.467
Mo–ma TACTiCS B (1:1) 0.991 1.000 0.770 0.778
Mo–ma Seurat B (1:1) 0.819 0.864 0.488 0.489
Mo–ma (50k) TACTiCS P (m:m) 0.928 0.909 0.730 0.733
Mo–ma (50k) SAMap P (m:m) 0.798 0.955 0.608 0.689
Mo–ma (50k) SAMap B (m:m) 0.823 0.955 0.637 0.689

The gene–gene matching is either done using ProtBERT (P) or BLAST (B)
and can be one-to-one (1:1) or many-to-many (m:m).
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Even though TACTiCS outperforms SAMap on the (finer)
cross-species resolution, its performance drops as well. We
would like to note that the cell types at this resolution were
established by Bakken et al. (2021) by integrating datasets
from the different species and clustering them in an embed-
ding space. This resulted in ambiguous clusters which were re-
solved manually by the authors to determine which cell types
would be in one cross-species group. Since these matches are
not perfect, it makes sense that we cannot achieve a perfect
performance either.

Furthermore, the ground-truth matches used for evaluation
are based on analyses performed using BLAST one-to-one
matches, also causing unwanted differences when comparing
results. This might explain why the performance of TACTiCS
using BLAST one-to-one is comparable to using ProtBERT
many-to-many matches. Here, we only see an improvement
for species with larger evolutionary distances (i.e. human–
mouse comparison).

All the results obtained by TACTiCS were obtained using
the same hyperparameters, which have not been tuned.
Although tuning the hyperparameters could potentially im-
prove matches between species, the advantage of the current
set of hyperparameters is that they show robust performance
across all pairwise comparisons regardless of species and reso-
lution (i.e. subclass or cross-species).

Gene matching is one of the main components of
TACTiCS. We match genes based on the distance between
their corresponding protein embeddings, which are generated
using ProtBERT instead of the commonly used sequence simi-
larity based on BLAST. Even though the top-1 matches of
ProtBERT and BLAST are largely similar, we have shown
that using ProtBERT instead of BLAST distances improves
the performance of TACTiCS. When aligning sequences using
BLAST, every amino acid is considered to be equally impor-
tant, while we speculate that ProtBERT focuses more on func-
tional domains. During further research, it would be
interesting to dive deeper into the ProtBERT embedding space
and see how this could be used to learn more about the rela-
tionships between cell types and the genes involved. A down-
side, however, of using ProtBERT distances is that the protein
sequence is needed and as a consequence, we can only use
coding genes. Using DNA sequence embedding models, e.g.
DNABert (Ji et al. 2021), for non-coding genes, could in the
future be used to overcome this limitation.

Some cell types, such as Meis2 and Peri in mice, are species-
specific. A limitation of our current approach is that the clas-
sifiers we built in TACTiCS are missing a rejection option and
therefore we cannot identify these species-specific cells auto-
matically. Although we observed that TACTiCS usually
assigns a low matching score to these species-specific cell
types, it is, however, important to realize that the matching
score represents the average accuracy of the two classifiers
and does not represent an absolute measure of cell type simi-
larity. For instance, if two human cell types are very similar,
predictions for a mouse cell type may be split over these two
human cell types (e.g. both get a score of 0.5). This is, for in-
stance, the case with the Vip cross-species clusters in Fig. 5A.
This lower score indicates that there are similar human cell
types in the data that both look like this mouse cell type. A
high score, however, does not guarantee that the two cell
types are very similar. It only indicates that these two cell
types are most similar to each other and that they are tran-
scriptionally very distinct from the other cell types in the

dataset. In other words, the scores are summaries of the classi-
fication results, and as such, they are very much dependent on
the cell types present in both datasets (i.e. the scores will
change if one cell type is missing from one of the two species).

When inspecting the cell embeddings in the low dimensional
space, we notice that the cells from difference species are not
well mixed. Matching cell types, however, are closest to each
other and species-specific cell types are more separated from all
other cells. There are many data integration methods developed
for single-cell data, such as scVI (Lopez et al. 2018), that would
achieve a significantly better integration. Since data integration
is not the main goal of TACTiCS, we did not add an explicit
mixing component to the loss function. The current loss func-
tion enforces that neighboring cells from the other species can
predict the other cell’s gene expression profile. This enforces
cells of the same cell type to be the closest, but not to fully over-
lap. Adding a component to the loss that forces cells to be
mixed (e.g. to have neighbors of both species) could greatly im-
prove the integration. Alternatively, if good integration is a
user’s desire, an option would be to replace the component of
TACTiCS that generates the cell embeddings with another data
integration method such as scVI. The flexible architecture of
TACTiCS allows the individual components (gene matching,
cell embedding, and cell classification) to be easily replaced, ex-
tended, or integrated with different methods.

With TACTiCS, we showed that using protein embeddings
to match genes is a viable alternative to BLAST when match-
ing cell types based on their scRNA expression levels across
species. TACTiCS can accurately match cell types at different
resolutions for large datasets, outperforming Seurat and
SAMap. We envision that this fast and accurate cell type
matching method will make comparative analyses across spe-
cies considerably easier, contributing to, e.g. to the study of
cell type evolution or translational research.

Supplementary data

Supplementary data are available at Bioinformatics online.
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