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Abstract

This note provides the derivation of closed-form expressions for elas-
tic displacements, strains, and stresses inside an inclusion. Jansen et al.
(2019) and Wu et al. (2021) obtained correct expressions for the stresses
inside an inclusion, but their derivation of these expressions contained mis-
takes. In this note, the correct derivation of expressions for the stresses
inside an inclusion is presented and some of the results of the aforemen-
tioned studies are clarified.

1 Introduction

The linear elastic displacements, strains, and stresses due to pore pressure
changes in a reservoir can be determined with inclusion theory. Eshelby [1957]
first introduced inclusion theory to compute the stresses around elliptical in-
clusions. This approach and the closely-related nucleus of strain concept were
later adopted to estimate subsidence and stress fields outside elliptical subsur-
face reservoirs [Geertsma, 1973, Segall, 1985, 1989, 1992, Segall et al., 1994].
Stresses inside the reservoir were considered by Segall and Fitzgerald [1998],
but the stresses inside elliptical inclusion are uniform. More recently, Soltan-
zadeh and Hawkes [2008], Jansen et al. [2019], Lehner [2019], and Wu et al.
[2021] considered the stresses inside reservoirs of various shapes. Soltanzadeh
and Hawkes [2008] do not present analytical expressions for the stresses, while
the other three studies do present closed-form expressions. Although all these
studies presented correct final solutions for the stress field, their derivations
included a conceptual step that involves mathematical subtleties and in some
cases errors. The aim of this report is to clarify and correct the derivation of
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closed-form expressions for the stresses inside an inclusion and in particular ad-
dress the derivations by Jansen et al. [2019] and Wu et al. [2021] as published
in Journal of Geophysical Research - Solid Earth.

2 General equations of inclusion theory

A thorough explanation of inclusion theory is given by Mura [1987] and Rudnicki
[2011]. Here, we will briefly go through the key equations. We consider an
inclusion domain Ω within an infinite homogeneous elastic space. When the
inclusion is exposed to an eigenstress σ∗ij or eigenstrain ε∗ij , there is an elastic
response. The general expression for the displacements ui due to the eigenstress
or eigenstrain is given by

ui(x) =

∫
Ω

σ∗kl(x
′)gik,l(x,x

′)dΩ =

∫
Ω

Cklmnε
∗
mn(x′)gik,l(x,x

′)dΩ, (1)

where Cijkl is the fourth-order stiffness tensor and gij are Green’s functions,
which represent the equilibrium solution for the displacement at point x due to
a point force at another point x′. Expressions for the Green’s functions will be
given later.

The total strains can be obtained from the displacements through the com-
patibility equations

εij(x) =
1

2

(
uj,i(x) + ui,j(x)

)
. (2)

The elastic strains eij are defined as the difference between the total strain and
the eigenstrain

eij(x) = εij(x)− ε∗ij(x). (3)

The stresses can be obtained from the elastic strains by Hooke’s law

σij(x) = Cijkl(εkl(x)− ε∗kl(x)) = Cijklεkl(x)− σ∗ij(x). (4)

These are the general equations of inclusion theory. In this report, we will
assume that the elastic properties are isotropic, such that Hooke’s law can be
simplified to

σij(x) = λ[εkk(x)−ε∗kk(x)]δij+2µ[εij(x)−ε∗ij(x)] = λδijεkk(x)+2µεij(x)−σ∗ij(x),
(5)

where λ and µ are Lamé’s first and second parameter, respectively, and the
kk subscript indicates summation. In the next section, we will apply this ap-
proach to determine the displacements, strains, and stresses resulting from fluid
production or injection in subsurface reservoirs under the assumption of two-
dimensional plane strain.
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3 Application to plane strain poroelasticity

We represent the reservoir as an inclusion that experiences an eigenstress due
to changes in pore pressure. The magnitude of the eigenstress is then

σ∗ij = αpδijδΩ, (6)

where α is Biot’s coefficient, p is the change in pore pressure, δij is the regular
Kronecker delta, and δΩ is a modified Kronecker delta which equals 1 inside
the inclusion and 0 outside. Note that the eigenstress tensor only has non-
zero values along the main diagonal (i.e, pore pressure changes do not directly
induce shear stresses). In this report, we will assume that pore pressure changes
are uniform across the reservoir. Hence, the eigenstress components will also
be uniform across the reservoir. An expression for the eigenstrain ε∗ij can be
obtained from Equation 6 using Hooke’s law. Under plane strain conditions,
this yields

ε∗ij =
αp(1 + ν)

3K
δijδΩ, (7)

where K is the bulk modulus, which is the stress-free strain under plane strain
conditions [Wang, 2000].

Substituting Equation 6 into 1 yields

ui(x, y) = αp

∫∫
Ω

∂gix
∂x′

+
∂giy
∂y′

dx′dy′, (8)

where the Green’s functions under plane strain conditions are given by Mura
[1987] as

gxx(x, y, x′, y′) =
1

8π(1− ν)µ

(
(x− x′)2

R2
− (3− 4ν) lnR

)
, (9a)

gyy(x, y, x′, y′) =
1

8π(1− ν)µ

(
(y − y′)2

R2
− (3− 4ν) lnR

)
, (9b)

gxy(x, y, x′, y′) =
1

8π(1− ν)µ

(x− x′)(y − y′)
R2

, (9c)

with R =
√

(x− x′)2 + (y − y′)2. Substituting Equations 9a-9c into 8 yields

ux(x, y) =
D

2

∫∫
Ω

x− x′

R2
dx′dy′ =

D

2

∫∫
Ω

gx dx
′dy′, (10a)

uy(x, y) =
D

2

∫∫
Ω

y − y′

R2
dx′dy′ =

D

2

∫∫
Ω

gy dx
′dy′, (10b)

with D = (1−2ν)αp
2π(1−ν)µ . We define Gx and Gy as the double integrals of the Green’s

functions

Gx =

∫∫
Ω

gx dx
′dy′, (11a)
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Gy =

∫∫
Ω

gy dx
′dy′. (11b)

As noted by Wu et al. [2021], Fubini’s theorem does not hold inside the inclusion
due to the singularity in gx and gy at (x, y) = (x′, y′). Therefore, changing the
order of integration yields different results in this region. The proper way to
solve the double integrals for points inside the inclusion is shown in Section 4.
Expressions for Gx and Gy are given in Section 5 for rectangular inclusions and
Section 6 for triangular inclusions.

Once the displacement field is known, the total strains εij are obtained by
differentiation as

εxx =
D

2

∂

∂x

∫∫
Ω

gx dx
′dy′ =

D

2

∂Gx
∂x

=
D

2
Gxx, (12a)

εyy =
D

2

∂

∂y

∫∫
Ω

gy dx
′dy′ =

D

2

∂Gy
∂y

=
D

2
Gyy, (12b)

εxy =
D

4

(
∂

∂x

∫∫
Ω

gy dx
′dy′+

∂

∂y

∫∫
Ω

gx dx
′dy′

)
=
D

4

(
∂Gy
∂x

+
∂Gx
∂y

)
=
D

2
Gxy.

(12c)
Note that we take the derivative of the displacements outside of the double
integral. Due to the singularity in the Green’s functions, Leibniz integral rule
is not valid and thus switching the order of differentiation and integration is
not allowed for points inside the inclusion [Mura, 1987, p. 12]. Nevertheless,
earlier studies placed the derivative under the integral sign to derive Green’s
functions for the strains and stresses [Soltanzadeh and Hawkes, 2008, Jansen
et al., 2019, Wu et al., 2021]. However, properly solving the resulting integrals
(with the procedure shown in Section 4) does not yield the correct expression
for the strains and stresses. This approach is only valid for points outside the
inclusion. Possibly, this approach has been wrongfully adopted from studies
which only considered stresses outside the inclusion. Expressions for Gxx, Gyy,
and Gxy are presented in Section 5 and 6.

Finally, we compute the stresses from the elastic strains using Hooke’s law
(Equation 5). This yields

σxx = (λ+ 2G)εxx + λεyy − αp δΩ, (13a)

σyy = λεxx + (λ+ 2G)εyy − αp δΩ, (13b)

σxy = 2Gεxy. (13c)

In the following sections, we present the procedure to solve the double in-
tegrals for points inside the inclusion (Section 4), present expressions for Gx,
Gy, Gxx, Gyy, and Gxy for rectangular inclusions (Section 5) and triangular
inclusion (Section 6). Since we consider linear elasticity, we can use the super-
position principle to combine rectangular and triangular inclusion to recreate
the geometry of a faulted reservoir. In Section 7 we present conditions which
the computed strains must comply with, which is used to verify our expressions.
Finally, in Section 8 we derive an alternative expression for the normal stresses
that was used by Jansen et al. [2019] and Wu et al. [2021].
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4 Double integral for points inside the inclusion

Outside of the inclusion, the Green’s functions gx and gy can be integrated as
usual. Inside the inclusion however, the singularity at (x, y) = (x′, y′) compli-
cates the matter. Therefore, we will present the procedure to obtain the correct
result to the integral for points inside the inclusion here.

We consider the integral for the horizontal displacement

I =

∫∫
Ω

gx dx
′dy′, (14)

for a point (x, y) inside a rectangular inclusion

Ω = {(x′, y′) ∈ R2 | p ≤ x′ ≤ q, r ≤ y′ ≤ s}. (15)

Then, we remove a square Sδ of size 2δ × 2δ around the singularity

Sδ = {(x′, y′) ∈ R2 | x− δ ≤ x′ ≤ x+ δ, y − δ ≤ y′ ≤ y + δ}, (16)

from the original domain Ω, which yields

Ωδ = Ω \ Sδ. (17)

Since gx is anti-symmetric with respect to the line x′ = x, which indicates that
for all δ > 0 the principal value of the integral is equal to zero

P.V.

∫∫
Sδ

gx dx
′dy′ = 0. (18)

Next, we compute the integral in Ωδ

Iδ =

∫ s

r

∫ x−δ

p

gx dx
′dy′ +

∫ s

r

∫ q

x+δ

gx dx
′dy′ +

∫ y−δ

r

∫ x+δ

x−δ
gx dx

′dy′

+

∫ s

y+δ

∫ x+δ

x−δ
gx dx

′dy′.

(19)

Since the singularity has been removed from the domain, Fubini’s theorem holds
and changing the order of integration does not affect this result. The result is
also independent of δ. The solution to the integral in Equation 14 is then given
by

I = Iδ + P.V.

∫∫
Sδ

gx dx
′dy′ = Iδ. (20)

This result also holds for triangular inclusions.
The Green’s function for the vertical displacement gy is anti-symmetric with

respect to the line y′ = y, and thus for all δ > 0 its principal value also equals
zero

P.V.

∫∫
Sδ

gy dx
′dy′ = 0. (21)

Hence, the same approach can be used for the vertical displacement by replacing
gx with gy in the equations above.

5



5 Rectangular inclusion

We consider a rectangle with corners (p, r), (q, r), (q, s), and (p, s). All the
expressions presented in this section are valid for points inside and outside the
inclusion. Integrating the Green’s functions for the displacements, while taking
care around the singularity at (x, y) = (x′, y′), yields

Gx =

∫ s

r

∫ q

p

gx dx
′dy′ =

y − s
2

ln

(
(x− q)2 + (y − s)2

(x− p)2 + (y − s)2

)
−y − r

2
ln

(
(x− q)2 + (y − r)2

(x− p)2 + (y − r)2

)
+ (x− q)

(
atan

( y − s
x− q

)
− atan

(y − r
x− q

))
− (x− p)

(
atan

( y − s
x− p

)
− atan

( y − r
x− p

))
(22)

Gy =

∫ q

p

∫ s

r

gy dx
′dy′ =

x− q
2

ln

(
(x− q)2 + (y − s)2

(x− q)2 + (y − r)2

)
−x− p

2
ln

(
(x− p)2 + (y − s)2

(x− p)2 + (y − r)2

)
+ (y − s)

(
atan

(x− q
y − s

)
− atan

(x− p
y − s

))
− (y − r)

(
atan

(x− q
y − r

)
− atan

(x− p
y − r

))
(23)

These expressions are the same as the ones given by Jansen et al. [2019].
Then, the scaled strains are obtained by taking the spatial derivatives of Gx

and Gy as defined in Equation 12. This yields

Gxx = atan
( y − s
x− q

)
− atan

(y − r
x− q

)
− atan

( y − s
x− p

)
+ atan

( y − r
x− p

)
(24)

Gyy = atan
(x− q
y − s

)
− atan

(x− q
y − r

)
− atan

(x− p
y − s

)
+ atan

(x− p
y − r

)
(25)

Gxy =
1

2
ln

(
((x− q)2 + (y − s)2)((x− p)2 + (y − r)2)

((x− q)2 + (y − r)2)((x− p)2 + (y − s)2)

)
(26)

Jansen et al. [2019] found the same expressions. Wu et al. [2021] found very
similar expressions, but included an extra term −πδΩ.

6 Triangular inclusion

We consider a right triangle with vertices (o, r), (p, r), and (p, s). The angle
θ is given by θ = atan

(
s−r
p−o
)
. We assume that the hypotenuse lies along the

line y′ = x′ tan θ. Using the fact that o = r cot θ, p = s cot θ, r = o tan θ,
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and s = p tan θ, the integrated Green’s functions for the displacements in a
triangular domain are

Gx =

∫ s

r

∫ p

y′ cot θ

gx dx
′dy′ =

y − s
2

ln
(
(x−p)2+(y−s)2

)
−y − r

2
ln
(
(x−p)2+(y−r)2

)
+ (x− p)

(
atan

( y − s
x− p

)
− atan

( y − r
x− p

))
+ sin2 θ

(
(x− o) cot θ + (y − r)

2
ln
(
(x− o2 + (y − r)2

)
− (x− p) cot θ + (y − s)

2
ln
(
(x− p)2 + (y − s)2

)
+(x−y cot θ)

(
atan

( (x− o) cot θ + (y − r)
x− y cot θ

)
−atan

( (x− p) cot θ + (y − s)
x− y cot θ

)))

(27)

Gy =

∫ p

o

∫ x′ tan θ

r

gy dx
′dy′ =

x− o
2

ln
(
(x−o)2+(y−r)2

)
−x− p

2
ln
(
(x−p)2+(y−r)2

)
+ (y − r)

(
atan

(x− o
y − r

)
− atan

(x− p
y − r

))
− cos2 θ

(
x− o+ (y − r) tan θ

2
ln
(
(x− o)2 + (y − r)2

)
− x− p+ (y − s) tan θ

2
ln
(
(x− p)2 + (y − s)2

)
+ (y−x tan θ)

(
atan

(x− o+ (y − r) tan θ

y − x tan θ

)
− atan

(x− p+ (y − s) tan θ

y − x tan θ

)))

(28)

Expressions for the displacements for a triangular inclusion were not given by
Jansen et al. [2019] and Wu et al. [2021].

Taking the spatial derivatives of the integrated Green’s functions yields the
scaled strains

Gxx = atan
( y − s
x− p

)
− atan

( y − r
x− p

)
+

sin θ cos θ

2
ln

(
(x− o)2 + (y − r)2

(x− p)2 + (y − s)2

)
− sin2 θ

(
atan

( (x− p) cot θ + y − s
x− y cot θ

)
− atan

( (x− o) cot θ + y − r
x− y cot θ

))
(29)
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Gyy = atan
(x− o
y − r

)
− atan

(x− p
y − r

)
− sin θ cos θ

2
ln

(
(x− o)2 + (y − r)2

(x− p)2 + (y − s)2

)
+ cos2 θ

(
atan

( (x− p) + (y − s) tan θ

y − x tan θ

)
− atan

( (x− o) + (y − r) tan θ

y − x tan θ

))

(30)

Gxy =
1

2
ln

(
(x− p)2 + (y − s)2

(x− p)2 + (y − r)2

)
+

sin2 θ

2
ln

(
(x− o)2 + (y − r)2

(x− p)2 + (y − s)2

)
+ sin θ cos θ

(
atan

( (x− p) cot θ + y − s
x− y cot θ

)
− atan

( (x− o) cot θ + y − r
x− y cot θ

))

(31)

Again, Jansen et al. [2019] found the same expressions, but the expressions of
Wu et al. [2021] included an extra term −πδΩ.

7 Verification of results

As the Green’s functions are solutions to the mechanical equilibrium equations,
the normal traction must be continuous everywhere. Since the eigenstress van-
ishes outside the inclusion, there must be a jump in the strains to maintain
continuous normal traction across the interface of the inclusion. The magnitude
of the required jump in strains across can be computed based only on the nor-
mal vector of the boundary [Mura, 1987, p. 39]. This approach can be used to
verify our expressions for Gxx, Gyy, and Gxy.

The normal traction vector T is given by

T = σ · n, (32)

with σ the stress tensor and n the outward unit vector normal to the chosen
boundary of the inclusion. In our two dimensional case, this means

Tx = σxxnx + σxyny
Ty = σxynx + σyyny

. (33)

The normal traction should be continuous across the boundary of the inclusion

∆Tx = ∆σxxnx + ∆σxyny = 0
∆Ty = ∆σxynx + ∆σyyny = 0

(34)

where the ∆ indicates the jump in the variable from just outside the inclusion
to just inside the inclusion (e.g., ∆σxx = σoutxx − σinxx). We use Hooke’s law to
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write the stresses in Equation 34 in terms of the strains[
(λ+ 2µ)∆εxx + λ∆εyy + αp

]
nx + 2µ∆εxyny = 0

2µ∆εxynx +
[
λ∆εxx + (λ+ 2µ)∆εyy + αp

]
ny = 0

(35)

The jump in strains can be expressed as

∆εxx = βxnx, (36a)

∆εyy = βyny, (36b)

∆εxy =
1

2
(βxny + βynx), (36c)

where βi represents the jump in the derivative of the displacements [Mura, 1987,
p. 39]. Substituting this into Equation 35 and rearranging yields[

(λ+ 2µ)βxnx + λβyny

]
nx + µ[βxny + βynx]ny = −αpnx

µ[βxny + βynx]nx +
[
λβxnx + (λ+ 2µ)βyny

]
ny = −αpny

(37)

For a given boundary with known normal vector, this yields two equations for
the two unknowns βx and βy. The general solution is

βx = αp
(λ+ µ)nxn

2
y −

(
(λ+ 2µ)n2

y + µn2
x

)
nx(

(λ+ 2µ)n2
x + µn2

y

)(
(λ+ 2µ)n2

y + µn2
x

)
−
(
(λ+ µ)nxny

)2 , (38a)

βy = αp
(λ+ µ)n2

xny −
(
(λ+ 2µ)n2

x + µn2
y

)
ny(

(λ+ 2µ)n2
x + µn2

y

)(
(λ+ 2µ)n2

y + µn2
x

)
−
(
(λ+ µ)nxny

)2 . (38b)

As an example, we consider a vertical boundary with normal vector (nx, ny) =

(1, 0). From Equation 38, we then obtain βx = − (1−2ν)αp
2(1−ν)µ = −πD and βy =

0. Substituting these values for β into Equation 36 yields ∆εxx = −πD and
∆εyy = ∆εxy = 0. This also means ∆Gxx = −2π and ∆Gyy = ∆Gxy = 0. Our
expressions for Gxx, Gyy, and Gxy satisfy this condition.

8 Alternative expression for the normal stresses

In this section, we show that our earlier definition of the normal stresses in
Equation 13 is equivalent to the definitions given by Jansen et al. [2019] and
Wu et al. [2021]. For this purpose, we must first consider the stress arching
ratios γij , which are defined by Mulders [2003] and Soltanzadeh and Hawkes
[2008] as the ratios of stress change over the pore pressure change multiplied by
Biot’s coefficient

γij = −σij
αp

. (39)
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Soltanzadeh and Hawkes [2008] state that for a cylindrical inclusion under plane
strain conditions, the sum of the two stress arching ratios in the normal direction
is constant

γxx + γyy =
1− 2ν

1− ν
δΩ. (40)

Wu et al. [2021] state that this holds for any inclusion under plane strain con-
ditions, regardless of its shape. This indeed holds for our expressions for rect-
angular and triangular inclusions. We start with writing Equation 40 in terms
of the stresses

−σxx + σyy
αp

=
1− 2ν

1− ν
δΩ. (41)

Using Hooke’s law (Equation 13), the stresses can be rewritten in terms of the
strains

−2(λ+ µ)(εxx + εyy)− 2αpδΩ
αp

=
1− 2ν

1− ν
δΩ (42)

The strains can be written in terms of the Green’s functions, which yields

−D(λ+ µ)(Gxx +Gyy)− 2αpδΩ
αp

=
1− 2ν

1− ν
δΩ. (43)

Using D = (1−2ν)αp
2π(1−ν)µ and λ+µ

µ = 1
1−2ν and rearranging then yields

Gxx +Gyy = 2πδΩ. (44)

Thus, the sum of Gxx and Gyy has a constant value of 2π inside the inclusion
and zero outside.

Our earlier definition of the stresses (Equation 13) can be written as

σxx = λ(εxx + εyy) + 2µεxx − αpδΩ, (45a)

σyy = λ(εxx + εyy) + 2µεyy − αpδΩ, (45b)

or in terms of the Green’s functions

σxx =
λD

2
(Gxx +Gyy) + µDGxx − αpδΩ, (46a)

σyy =
λD

2
(Gxx +Gyy) + µDGyy − αpδΩ. (46b)

Now substituting in Equation 44 yields

σxx = CGxx + (λπD − αp)δΩ, (47a)

σyy = CGyy + (λπD − αp)δΩ, (47b)

with C = µD = (1−2ν)αp
2π(1−ν) . Finally, using λ = 2µν

1−2ν and the definition of D =
(1−2ν)αp
2π(1−ν)µ gives

σxx = C(Gxx − 2πδΩ), (48a)

σyy = C(Gyy − 2πδΩ). (48b)

Thus, the factor −2πCδΩ in Jansen et al. [2019] and Wu et al. [2021] contains
both the contribution of the volumetric strain and the eigenstress to the normal
stresses.
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9 Conclusions

We presented the derivation of closed-form expressions for displacements, strains,
and stresses inside a poroelastic inclusion. This derivation differs from both
Jansen et al. [2019] and Wu et al. [2021], who incorrectly applied the Leibniz
integral rule and integrated Green’s functions for the stresses. Jansen et al.
[2019] did not take note of the singularity at (x, y) = (x′, y′) and solved the
double integral incorrectly, but managed their expressions for Gxx, Gyy, and
Gxy satisfy the necessary jump in strains and thus continuous normal traction.
Wu et al. [2021] correctly solved the double integral according to Section 4, but
their solution for Gxx and Gyy does not satisfy the required jump in strains.
As Leibniz integral rule is not valid inside the inclusion, the Green’s function
for the stresses used by Jansen et al. [2019] and Wu et al. [2021] is only valid
outside the inclusion. Wu et al. [2021] did obtain correct expressions for the
stresses, but did so incorrectly by using two different values for the eigenstress
σ∗ij throughout the solution process.

Furthermore, we showed that our expressions for the stresses are equivalent
to those presented by Jansen et al. [2019] and Wu et al. [2021]. Hence, while
their derivations contained errors, they nevertheless obtained the correct ex-
pressions for the stresses. Both these papers included the term −2πCδΩ in the
normal stresses, but had different, incorrect explanations for its origin. Here,
we showed that this term comprises of the contributions of the eigenstress and
the volumetric strain to the normal stresses.
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