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Abstract: Energy storage is vital for a future where energy generation transitions from a fossil fuels-
based one to an energy system that relies heavily on clean energy sources such as photovoltaic (PV)
solar energy. To foster this transition, engineers and practitioners must have open-access models
of PV systems coupled with battery storage systems (BESS). These models are fundamental to
quantifying their economic and technical merits during the design phase. This paper contributes in
this direction by carefully describing a model that accurately represents the power directions and
energy dealings between the PV modules, the battery pack, and the loads. Moreover, the general
model can be implemented using two different PV generation methods, the Gaussian model and
the meteorological data-based model (MDB). We found that the MDB model is more appropriate
for short-term analysis compared to the Gaussian model, while for long-term studies, the Gaussian
model is closer to measured data. Moreover, the proposed model can reproduce two different energy
management strategies: peak-shaving and maximizing self-consumption, allowing them to be used
during PV–BESS sizing stages. Furthermore, the results obtained by the simulation are closed when
compared to a real grid-tied PV–BESS, demonstrating the model’s validity.

Keywords: PV–BESS modeling; solar–battery systems; PV–BESS

1. Introduction

As the adverse effects that climate change pose to humanity become more evident due
to extreme weather events, mitigation actions are fundamental and must occur promptly.
Definitely, the way and pace at which developed countries have consumed energy is not
sustainable. Therefore, the actions to mitigate climate change must be directly related to a
drop in the world energy demand and an increase in clean energy generation in the near
future [1]. Among those actions are the electrification of transport and heating. However,
such components of the energy transition urge a dramatic, but planned, expansion of the
installed power capacity from renewable energy sources and energy storage systems. As
detailed in [2], renewable energy sources (RES) spread in low-voltage distribution networks
can cause overvoltages, and the increasing power demand created by the electrification
of heat and transportation can cause congestion. This way, energy storage systems can
contribute to avoiding such issues on the distribution network. Thus, combining renewable
energy sources with energy storage technologies is expected to grow exponentially in the
coming years [3]. Particularly, photovoltaic (PV) energy has been identified as one of the
most prominent RES technology, as it is accessible to everyone and has low maintenance
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costs. The PV system’s upfront costs have been decreasing [4] continuously. Likewise,
battery energy storage systems (BESS) are becoming more reliable and profitable and,
therefore, more attractive to investors [5].

Given the massive rise expected in the amount of PV systems worldwide, it is crucial
to develop models that help engineers and practitioners during the design process of the
PV system. Among the processes needed for a correct design, energy yield simulations and
profitability studies must be performed [6]. For doing so, the power flow between a PV
system’s components—PV modules, grid, and battery pack—and the criteria defined by
the Energy Management Systems must be simulated to calculate the energy exchange.

There are several commercial PV-related software available. For instance, PVSYST©

was one of the first programs developed to evaluate PV potential, considering the location
and meteorological data while also including a database of products—e.g., PV modules,
inverters, battery packs, optimizers, and charge controllers—that better suit the PV system
to be installed [7]. Additionally, PV*SOL© is a simulation program that allows designing
PV systems with energy storage with the possibility of 3D visualization and shading
analysis [8]. In the case of PVSYST©, the professional license costs around 675 USD per year,
while the license for PV*SOL© is 1295 USD with an updating scheme. Thus, to facilitate the
adoption of PV systems in place where buying this proprietary software is too high, it is
fundamental to have open-access models and libraries that provide free tools, which are
essential in enabling the adoption of PV systems in places where the cost of purchasing
proprietary software is prohibitive for many people.

1.1. Relevant Literature

During the last few years, multiple papers have described methods to model the
output power of PV systems. Authors have proposed several mathematical tools for
forecasting short, medium, and long periods of PV generation. For instance, in [9], a 15 min
ahead method based on a higher Markov chain is proposed to obtain the PV generation’s
probability distribution function, considering temperature and irradiance to determine
the PV system operation points. Similarly, in [10], a PV power forecasting method was
implemented for ranges between 5 min to 36 h, including in situ measurements and satellite
images as inputs. These approaches are beneficial for PV power predictions, especially in
the context of smart grids, as reported in [11], where having a reliable estimation of PV
power for the electricity grid’s stability is fundamental. Convolutional neural networks are
also proposed by [12] to forecast PV output based on historical operation and meteorological
data from power plants in the region.

Despite the increasing research in modeling renewable energy sources, they alone
cannot create strong grids due to their dependency on weather conditions. Therefore,
energy storage systems should be coupled to ensure stability [13]. While historical data
is essential to validate such tools for designing a well-sized PV system (viz., adequate
installed PV peak power and battery storage capacity, quantification of economic benefits),
recent works have proposed different approaches for modeling the interaction between RES
and battery energy storage systems, as shown in Table 1. For instance, ref. [14] proposed a
multifunctional control strategy for a battery energy storage system, in which minimizing
the PV power ramp rate was proposed. An improved electric system cascade analysis to
optimize a PV system with a BESS for a residential load based on historical data, with
results comparable with HOMER, was presented in [15]. In contrast, proprietary software
such as Matlab-Simulink©, DIgSILENT©, and HOMER© have been used in different case
studies involving the power flow within a PV system and other distributed energy sources.
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Table 1. Reported PV–BESS models

BESS Model PV Model Control Requirements Language Ref.

Simulink© block Simulink© block Rule-based

Irradiance,
temperature, PV
system rating, BESS
rating

Matlab-Simulink© [13]

Energy balance - Multifunctional
control

PV generation data,
BESS rating

Matlab©,
RSCAD-RTDS© [14]

Energy balance Analytical
approximation

Electric system
cascade analysis
(ESCA) (rule-based)

Irradiance,
temperature, sun
altitude, latitude,

Matlab© [15]

Energy balance Isotropic solar
radiation

Mixed-integer linear
programming (MILP)

Irradiance,
temperature, latitude,
PV system rating,
BESS rating

Matlab© [16]

Energy balance - Monte-Carlo PV generation data,
BESS rating Not indicated [17]

Proprietary software Proprietary software Proprietary software

Irradiance, latitude
and longitude, PV
system rating, BESS
rating

HOMER© [18]

Voltage source in
series with an
internal resistor

- PQ control PV generation data,
BESS rating DIgSILENT© [19]

One can notice the importance of accurate data for PV–BESS models from Table 1. As
can be seen, most of the models require measurements of temperature and irradiance for
an appropriate output. These data can be obtained from multiple sources of software such
as Meteonorm© or SolarGIS©, local meteorological institutes and international projects, as
well as the ERA-Interim [20]. Nevertheless, forecasts are required to accurately predict the
behavior of the system.

Although previous research has been published under the open access scheme, the
complete details of how to implement the model presented have not been made available
in its entirety [21–24]. Moreover, most of the literature uses proprietary software requiring
a license purchase, as shown in Table 1. Therefore, this paper introduces an open-access
platform (the repository can be found in [25]) for modeling and simulating a PV–battery
system that can be included in the publicly available options for designing and understand-
ing the dynamics of a PV–battery system for solar engineers and practitioners. Additionally,
this article provides the possibility of choosing among two PV generation models based on
the data available and the objective of the analysis.

1.2. Contributions

This paper contributes by

• Describing in detail two open-access models for PV systems that can be coupled with
a BESS model, detailing how all the parts integrate into a general PV–BESS model;

• Proposing the most suitable uses for each PV system model, based on their inherent
advantages and drawbacks and available data;

• Making available a model for two different modes of operation, i.e., a PV–BESS for peak-
shaving applications and a PV–BESS system that maximizes self-consumption; and

• Demonstrating the dynamics of a PV–BESS system using both integrated models for
peak-shaving and self-consumption applications, validating them with measurements
of a PV system in Costa Rica.
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2. PV–BESS Model

The open-access model consists of several parts, as shown in Figure 1. The PV mod-
eling part is carried out to obtain the PV power. The energy management system (EMS)
manages the energy flow between all the system components according to the mode of
operation defined. The battery modeling keeps track, among other things, of the battery
state-of-charge (SoC) to determine whether it can deliver, receive, or stay idle according
to the energy management system. The PV model is considered an optimal orientation
method, which provides the optimum tilt and azimuth of the PV array to obtain the
maximum energy yield annually.

Figure 1. Block diagram of the PV–BESS model, considering the parameters for each instant k.

2.1. PV Modeling

In this section, we explain two approaches to calculating the power generated by a
PV system: the meteorological data-based model and the Gaussian model. Both methods
need a different set of inputs and have different advantages and limitations. This way,
one can use the model that fits better according to the information available and project
requirements.

2.1.1. Meteorological Data-Based Model

This model consists of three main parts: the solar calculator, PV system optimum
orientation block for a specific objective (e.g., maximizing annual yield, yield during winter,
or production during peak demand hours), and the thermal model. The inputs for the
solar calculator are the location (latitude and longitude) of the PV system and the time
frame where the analysis will be performed (date), as shown in Figure 2. Based on that,
and following the procedure reported in [26], it is possible to express the position of the
sun in terms of altitude (as) and azimuth (As). These two coordinates are calculated every
time step k and are the PV system optimum orientation block inputs. This block also takes
annual irradiance information to estimate the total irradiance over a PV module (Gm) for a
specific orientation, i.e., azimuth (Am) and inclination of the module (am). Note that the
values of Am and am are changed to find the combination that yields the maximum energy
(in kWh/m2) over a year. This way, it is possible to study modules not optimally oriented
due to installation constraints such as roof orientation.

Several equations are used as intermediate steps to arrive at the annual energy yield
Em. First, the cosine of the angle of incidence (θm) is calculated as

cos(θm(k)) = cos(am) cos(as(k)) cos(Am − As(k)) + sin(am) sin(as(k)). (1)
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Once angle of incidence is obtained based on the position of the sun using the solar
calculator, one can calculate the direct irradiance (Gdirect) as a function of the direct normal
irradiance (DNI) as

Gdirect(k) = DNI(k) cos(θm(k)). (2)

Then, the diffuse irradiance (Gdiffused) is calculated as

Gdiffuse(k) = DHI(k) Vsky,factor(k), (3)

where DHI is the global horizontal irradiance and Vsky,factor is the sky view factor (fraction
of the PV module facing the sky), calculated as

Vsky,factor(k) =
1 + cos(θm(k))

2
. (4)

Moreover, the reflected irradiance results from the albedo (α), considered constant at a
value of 0.2 in this article, and the global horizontal irradiance (GHI) can be calculated as

Greflected(k) = GHI(k) α [1−Vsky,factor(k)]. (5)

All the contributions of the irradiance over the plane of an array (Gm) can be computed as

Gm(k) = Gdirect(k) + Gdiffused(k) + Greflected(k). (6)

This gives the value of the irradiance falling into the PV modules for every timestep.
By integrating it, the total energy that can be potentially converted into electricity over

a period of time is determined as

Em =
∫

Gm(k) dt. (7)

Once Gm is known, the power of the PV module can be calculated using

PPV(k) = Gm(k)APVηpv(k), (8)

where the efficiency of the module is represented by ηPV, and APV is the area of the
PV module. However, ηPV is heavily influenced by the temperature of the PV module.
Therefore, the thermal model introduced by Duffie and Beckman in [27] considers it by
including ambient temperature and wind speed. This model consists of an iterative process
that assumes an initial temperature, and it is run through a loop until Tm converges to a
particular value. With a known (Tm), the final efficiency of the PV module to be later used
by Equation (8) is given by

ηPV(k) = ηSTC[1 + β(Tm(k)− TSTC)], (9)

where ηSTC is the efficiency at STC (standard test conditions), TSTC is the module tempera-
ture at standard test conditions (25 ◦C), and β is a temperature coefficient. For monocrys-
talline PV modules, β is normally taken as −0.0035/◦C.

As mentioned by [16], few studies estimated the effect of tilted PV arrays. The
proposed meteorological data-based model considers it in two approaches: it can either
estimate the optimal tilt angle for the modules or the output for any given tilt angle. This
is especially useful for designers, as using the optimal tilt angle is not always possible.
Moreover, the inputs required for this model are similar to other methods in the state-of-the-
art (see Table 1), requiring temperature, irradiance, longitude and latitude, and the ratings
of the PV and the BESS; and as it is a non-iterative process, the computational cost is very
low. On the other hand, the outputs for real-time applications will not be precise if historical
data is used. However, the output is expected to be accurate if measurements are used as
input instead of historical data. Likewise, if the intention is to use the model to forecast, its
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accuracy will highly depend on the quality of the predicted values for temperature and
irradiance.

latitude, longitude

date

Solar 
calculator

𝐴𝑠(𝑘), 𝑎𝑠(𝑘) PV system 
optimum 

orientation

DNI(𝑘)
DHI(𝑘)
GHI(𝑘)

𝐴𝑚 𝑘
𝑎𝑚(𝑘)

𝐺𝑚(𝑘)
Thermal model

𝑇𝑎𝑚𝑏 (𝑘) 𝑊𝑠(𝑘)

𝑃𝑝𝑣(𝑘)

Figure 2. Block diagram of the meteorological data-based model to determine the optimal orientation
for a given objective.

2.1.2. Gaussian Model

The stochastic behavior of the weather variables, such as temperature, wind speed, and
irradiance, make it difficult to forecast the output of a PV system accurately. As indicated in
Section 1.1, and demonstrated with the meteorological data–based model, a representative
behavior is an alternative for precise calculations. On the other hand, ref. [28] proposed
a simplified approximation for the ideal clear-sky solar curve, called envelope curve. The
model is based on the Gaussian bell equation, associating the probability density with the
daily specific energy production and using the error function, er f (x), to adjust the output
near sunrise and sunset. Using this approach, the maximum theoretical power during sun
hours can be estimated as

Ps(t) =
EPV

σ
√

2π
e
−
(t− µ)2

2σ2 er f
[
−α1(t− tsr)

σ
√

2

]
er f
[
−α2(t− tss)

σ
√

2

]
, (10)

where tsr is the sunrise time, tss is the sunset time, and µ is the mean power time. EPV is
the output energy from the system given by

EPV = Pp
PVEsd (11)

where Pp
PV is the peak power of the system and Esd is the daily specific energy production

per unit of power.
The Equation (10) also considers two fitting factors that can be adjusted based on

previous meteorological measurements: α, related to the slope of the bell near the sunrise
(α1) and sunset time (α2), and σ, related with the width of the bell. To avoid residual power
values outside the sun hours, Equation (10) can be rewritten as

PPV(t) =


0 t < tsr

Ps(t) tsr < t < tss

0 t > tss

. (12)

Figure 3 shows the algorithm to implement the Gaussian model. First, one needs a
dataset with measurements of the power output of a reference PV system, Pre f

PV , as well as
the specific energy production, Emonth, ref

s,D , sunrise time, tmonth, ref
sr , and sunset time, tmonth, ref

ss
for that location. Then, the fitting factors σ, α1, and α2 have to be adjusted so the resulting
envelope curve correlates with the envelope curve of the reference dataset. Once tuned,
the model can be extrapolated for systems close to the reference system since the radiation
conditions and the sunrise and sunset times would be similar.
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Figure 3. Block diagram of the Gaussian model.

Unlike the meteorological-based (MDB) model, this model’s results are helpful for
preliminary energy-based approximations thanks to its low computational requirements
and because it assumes evenly distributed meteorological data during specific timeframes.
Note that the model’s accuracy depends directly on the accuracy of the measurements,
both the meteorological and the reference PV system datasets. Nevertheless, this model is
not recommended for real-time control, as it does not consider the effect of cloudiness and
temperature on instant power. This is a major drawback compared with the MDB model or
the models reported in the literature (for example, the cases presented in Table 1). Still, this
model was proposed for initial estimations instead of precise instant power calculations, so
designers have a fast tool to estimate the yearly energy output of a PV system.

2.1.3. Battery Modeling

Among the main challenges of the massive deployment of PV systems in distribution
networks is their non-controllable behavior. Such behavior causes sudden changes in the
energy flow, leading to overvoltages or congestion issues [29]. Battery energy storage
systems provide a solution, as they act as filters for those sudden changes, absorbing the
surplus of energy and compensating deficits [30], providing flexibility to the electrical
network. Furthermore, the advantages of BESS installed with PV systems go beyond the
distribution system owner (DSO), as they can also benefit their owner economically. If the
energy price varies in time, the storage system can purchase energy from the grid when the
prices are lower, avoiding or reducing the purchase when the price is higher.

Consistently with most of the literature, we used an energy-balance approach to model
the BESS. The energy stored in a BESS at a particular moment depends on its previous state
and the amount of power extracted or provided between sampling times. This way, the
state equation of the energy stored in the BESS can be written as

EBESS(k + 1) = CBESS(k)SoC(k) +
PBESS(k)
ηc,d(k)

∆t− ESD
BESS(k) , (13)

where EBESS is the future amount of energy stored in the battery, CBESS is the capacity of the
battery, SoC is the state-of-charge of the battery, ηc,d is the charge or discharge efficiency as
it corresponds, PBESS is the charge or discharge power as it corresponds, ∆t is the sampling
time, and ESD

BESS is the self-discharge of the battery between time samples.
Note that most of the variables from Equation (13) depend on external conditions.

The capacity and charge and discharge efficiencies depend on the temperature and the
depth of charge or discharge. Moreover, they decrease as the battery ages [31]. On the other
hand, the state-of-charge cannot be calculated but has to be estimated. This estimation
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will depend on the BESS technology, but in most cases, it can be estimated based on the
battery’s voltage [31].

For this work, we evaluated the models for two applications: maximize self-consumption
and peak-shaving. For the first application, the EMS will meet the demand first by the PV
and then by the BESS. If the combined power of the PV and BESS inverters is insufficient to
supply the demand, the remaining power will be purchased to the grid. For the second
application, the batteries will only cover the power demand above a certain threshold when
the PV is insufficient and will charge only with the surplus of energy from the PV. Similar
to the first application, the power from the BESS will be restrained by its inverter capacity,
both for charging and discharging the batteries.

The flowchart in Figure 4 depicts the general control scheme. Note that both appli-
cations will follow the same logic, governed by two constraints: the state-of-charge of
the battery and the permitted power from the grid, Pperm

Grid . The main difference is that
the self-consumption will have a permitted power from the grid of 0 kW, whereas the
peak-shaving will have a permitted power above 0 kW.

Figure 4. Flowchart for the peak-shaving algorithm.

3. Inputs to the Models

Figures 2 and 3 depict the algorithms behind the meteorological data–based and
Gaussian models. The source code for both codes can be found in [25].

The meteorological-based model takes inputs such as ambient temperature, all the
components of the solar irradiance (DNI, DHI, and GHI), and wind speed, as seen in
Equations (2), (3), (5), (6) and (8). For this work, we used the software Meteonorm© as the
source for a yearly (1 h timestep) dataset. It is essential to point out that the output datasets
from Meteonorm© are constructed taking meteorological stations as a reference; thus, the
data are adjusted based on location. Therefore, although the datasets correctly reflect the
meteorological conditions of a particular place, they only partially fit datasets measured at
the site of interest, as the data from meteorological software give information on a typical
year while measuring data changes from year to year.

The Gaussian model only uses the daily average irradiance and requires a dataset of
power output to tune the Gaussian bell equation. However, we used the same parameters
used in [28] for two reasons: first, both systems are close enough, and second, because
the purpose of this work is to provide models that can be used with available information
before installing the system.
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3.1. PV System Installed

We used measurements from a PV system installed at the University of Costa Rica to
validate the results obtained with the models. This system comprises 17 modules of 265 Wp
Canadian Solar, each connected to a P400 SolarEdge power optimizer and arranged in a
single string to a 7.6 kW SolarEdge SE7600A-US inverter.

3.2. Load

The electrical load used was based on [32], where the average weekdays’ electrical
consumption for Costa Rica was reported. Two peaks characterize the load profile. One
occurs at noon, while the other is at 6:00 pm, close to sunset (see Figure 5). This load can be
easily replaced or used as a reference to be scaled up or down to study different cases.

Figure 5. Representative section of the electrical load considered for the test (graph created from the
data provided in [32]).

To quantify the cost savings projected with the two models and compare them with
the actual cost savings, we used a timeframe tariff shown in Table 2.

Table 2. Timeframe energy tariff considered.

Period Timeframe Cost ($/kWh)

Night 00:01–06:00 0.0464620:01–00:00

Valley 06:01–10:00 0.1110212:31–17:30

Peak 10:01–12:30 0.2707917:30–20:00

4. Results and Discussion
4.1. PV Generation

Figure 6 shows a representative week from the simulated year, considering simulation
parameters indicated in Table 3. As can be seen, the Gaussian model considers a uniform
curve throughout the month. As it does not consider cloudiness, its accuracy for real-time
predictions is very low, as on June 26. Still, it can perform relatively well on sunny days, as
on July 1. On the other hand, the meteorological data-based model depends on weather
conditions. This way, it can recreate sudden changes in power due to meteorological
conditions, as on July 2. We must highlight that the results of the meteorological data-
based model do not coincide with the real-time variations because we used historical data.
However, the MDB includes the seasonal effects on PV generation from an energy and
power perspective.
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Table 3. Parameters for the simulations.

Parameter Symbol Value Unit

BESS

Energy EBESS 10.78 kWh
Power of the converter Pmax

BESS 0.5 kW
Charging efficiency ηc 97 %
Discharging efficiency ηd 97 %
Initial state-of-charge SoC(0) 50 %
Minimum state-of-charge SoCmin 20 %
Maximum state-of-charge SoCmax 80 %

PV system

Peak power Pp
PV 5.525 kW

Power of the inverter Pinv 7.6 kW
Tilt of the modules am 10.5 °
Azimuth of the modules Am 200 °
Albedo coefficient α 0.2
Module efficiency at STC ηSTC 16.19 %
Thermal coefficient β −0.0035

As tools for preliminary assessment of monthly PV generation, the models showed
an acceptable accuracy, as detailed in Figure 7. For this purpose, the Gaussian model
performed better, with a monthly error ranging from −20.7% and 25.3%, with an average
of 1.456%. The MDB model, on the other hand, had a monthly error ranging from −15.8%
and 37.18%, with an average of 17.74% (the error was considered as the difference between
the total accumulated energy resulting from the measurements and each model, divided by
the total accumulated energy from the measurements). The reason behind this behavior is
similar to the analysis of the real-time comparison presented above. Since the Gaussian
model is based on monthly values gathered from PV power measurements from previous
years, the representative behavior of more extended periods (such as months) performs
better than short periods (such as specific days). Similarly, it is less sensitive than the MDB
model, which depends on meteorological data that vary yearly.

In the case of having actual measured meteorological data as inputs to the MDB model,
it will undoubtedly perform better than using historical data as provided by the software
Meteonorm© or the Gaussian Model. Similarly, the PV generation curves from the MDB
model represent more realistically the behavior of partially cloudy days than the Gaussian
Model. The Gaussian model and the MDB adequately represent the behavior expected
during sunny days regarding the PV generation profile.

Figure 6. Comparison of the instant power measured and the results obtained with the Gaussian
model and the meteorological data-based model during a representative week.
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Figure 7. Comparison of the measured monthly accumulated energy and forecasted by the Gaussian
model and the MDB meteorological data-based model.

4.2. PV–BESS

We also modeled a BESS to evaluate its combined behavior with the PV system with
two objectives: maximize self-consumption and perform peak-shaving. The inverter of the
PV system and the inverter of the BESS are connected with an AC coupling. The proposed
models allow the designer to adjust the different parameters for the PV and BESS systems.

Table 3 shows the parameters used to simulate the BESS. With this information, the
power flow balance is implemented to make decisions regarding the operation of the battery
pack, i.e., charging (positive power), discharging (negative power), or idle (zero output
power). It is important to note that the battery capacity can be easily changed. Thus, an
iterative process can be performed to progressively increase the battery capacity to quantify
energy exchange and electricity costs. This way, the optimal PV–battery system sizing can
be determined.

4.2.1. Self-Consumption

As mentioned before, the EMS can influence the power magnitude and direction,
ensuring a specific mode of operation to fulfill a predefined objective. In this case, the main
objective is to supply the electrical load only via the PV system and the BESS. Therefore,
the energy purchased from the grid can be minimized.

To validate the performance of the models under self-consumption schemes, we
defined a permitted purchase power of 0 W (Pperm = 0). This way, the algorithm will
always prioritize supplying the demand from the BESS. Figure 8 shows a representative
section of the simulated year. As expected, the BESS cannot supply the load entirely in the
absence of PV availability, as the power demand is higher than the capacity of the BESS
inverter. Thus, power is purchased from the grid. Similarly, when the available PV power
surpasses the load, the BESS is charged, constrained by the inverter’s nominal capacity,
returning the excess to the grid.

Complementary to the power exchange shown in Figure 8, the behavior of the SoC
of the BESS is shown in Figure 9 for the measured PV power and the two models. One
can notice that the SoC curves overlap at the beginning until the PV power becomes
available. Given the uniformity of the Gaussian model, the charge and discharge behavior
is consistent between days. For the MDB model, the effects of the meteorological conditions
are present when the PV power drops below the load near sunset. The power used to
charge the BESS drops for short periods, usually during the evening.
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(a)

(b)

(c)

Figure 8. Comparison of (a) the instant power measured and the results obtained with (b) the Gaus-
sian model and (c) the meteorological data-based model during a representative week, considering a
self-consumption scenario.

The costs associated with coupling the PV and BESS systems for each PV curve
(measurements, Gaussian model, and MDB model) are presented in Table 4. As can be
seen, both models propose lower costs than the reference scenario. The reference scenario
considers the measured PV instant power.
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Figure 9. SoC of the battery during the self-consumption operation.

The Gaussian model predicts costs 2.89% less than the reference scenario, while the
MDB model predicts 17.49% lower costs than the reference scenario. This difference can be
explained because of the input variables for each model. As demonstrated in Section 4.1,
the Gaussian model uses representative available irradiance per month. Thus, the overall
results are expected to be closer to the reference scenario. The MDB model, on the other
hand, depends on more variables, making it less preferable to predict long periods.

Table 4. Comparison of the monthly energy costs considering an average daily consumption of
40 kWh under a self-consumption operation.

Month Measurements Gauss Model MDB Model
($) ($) ($)

January 75.36 53.29 47.70
February 47.63 45.02 40.24
March 27.31 49.66 48.68
April 44.98 63.52 48.01
May 83.08 74.59 55.72
June 83.69 74.44 66.90
July 84.48 80.29 64.87
August 76.90 76.49 65.02
September 62.45 71.46 57.17
October 77.60 79.52 70.55
November 79.77 74.98 60.49
December 87.74 63.69 60.28

Total 830.98 806.95 685.64

4.2.2. Peak-Shaving

To perform peak-shaving, we attempted to keep the load under a specific value by
reducing the power supplied from the grid. In this case, we considered a maximum
permitted load of 1.5 kW. To do so, the PV power is directly fed to the load, and if the PV
power is not enough to satisfy the load, the battery pack delivers the remaining power to
the load if the SoC is above 20%.

The results are presented in Figure 10. As can be seen, the BESS provides power to
supply part of the load only when it surpasses the threshold of 1.5 kW. Nevertheless, if the
load is above 2 kW, the difference should be provided from the grid, as the BESS inverter
is at its maximum capacity of 500 W. As a result, the power from the grid is drastically
reduced during the day, and once the PV generation reduces, the BESS delivers power to
fulfill the 2 kW goal.

Increasing or decreasing the maximum peak power from the grid affects the SoC
behavior of the BESS and the battery inverter. Figure 10b shows that the BESS never
reaches the minimum SoC allowed. Likewise, near noon, the BESS charges completely.
This way, the BESS distributes its energy more effectively throughout the day. In this
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case, the battery is not fully cycled for the nominal PV capacity defined during the day.
Therefore, parameters such as the maximum load peak or battery inverter power rating
can be changed to optimize the system sizing.

(a)

(b)
Figure 10. Power exchange using as a reference measured instant power measured (a), and (b) SoC
of the battery during the peak-shaving operation, considering a maximum allowed power purchased
from the grid of 1.5 kW.

5. Conclusions

It is fundamental to have open-access to simulation tools able to reproduce the dynamic
behavior of PV–BESS, especially for practitioners. Accordingly, this paper gives a detailed
description of all the stages needed to adequately express the nature of the PV–BESS system
in terms of power and energy. Two models to estimate PV generation were documented
and compared to an experimental dataset. Such models use similar data inputs to the
models reported in the literature and are not computationally expensive, thanks to their
non-iterative nature. Choosing one model over another is related to the data availability of
the particular site of interest and the user’s purpose. Based on our results, the Gaussian
model is beneficial for yearly energy-based estimations. In contrast, the meteorological
data-based model is better for understanding the variable behavior of PV systems and can
be used for real-time control if measurements are available as inputs instead of historical
data. Moreover, the MDB model considers the PV modules’ tilt to determine the optimal
angle or evaluate the modules on any given angle, a condition omitted in many models
in the literature. Since we used historical data, the results of the MDB model do not
coincide with the real-time variations. Still, for more prolonged analysis, it can resemble
the seasonality effect regarding cloudiness and temperature. Nevertheless, it would be
suitable for short-term predictions if predicted values for the meteorological variables
are provided.
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Then, we evaluated two EMS operation modes for the PV–BESS system: maximize
self-consumption and peak-shaving. In both cases, the model allocates the power without
violating the maximum BESS power. In our case scenario, the Gaussian model performed
better on energy estimation, with an average error of 1.456% vs. the 17.74% of the MDB
model, both compared to monthly energy measurements. When coupling the BESS model,
the predicted energy costs with the Gaussian model were 2.89 and less than the actual
costs, while the MDB model predicted costs of 17.49% more than the actual costs. Both
behaviors are explained by the input data and how the model performs in the longer term.
As the Gaussian model considers an evenly distributed energy production per month, it is
expected to represent better periods as months or years. On the other hand, in the short
term, it becomes less accurate, as it does not consider weather conditions. In those cases,
the MDB model outperforms the Gaussian model.

Further research includes the development of accurate short-term weather predictions
so that the EMS can use the MDB model for predictive control. Additionally, implementing
other ancillary services than peak-shaving can be useful to evaluate the flexibility PV–BESS
systems can provide to the grid.

Author Contributions: J.A.-C. and V.V.-G.: conceptualization, formal analysis methodology, software,
original draft preparation, and review and editing L.R.-E. and N.N.: review and editing. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: https://github.com/jjac13/PV_BESS_model.

Acknowledgments: This investigation was carried out under the research project “Detección de fallas,
control e integración de sistemas de energías renovables no convencionales con almacenamiento
energético para redes inteligentes” number C1467 of the University of Costa Rica.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

BESS Battery Energy Storage System
DG Distributed Generation
DR Demand Response
DSO Distribution System Operators
EMS Energy Management Systems
ESS Energy Storage Systems
RES Renewable Energy Sources
SoC State-of-Charge

References
1. IRENA. World Energy Transitions Outlook: 1.5 °C Pathway; IRENA: Masdar City, United Arab Emirates, 2021; pp. 1–312.
2. Alpízar-Castillo, J.; Ramírez-Elizondo, L.; Bauer, P. The Effect of Non-Coordinated Heating Electrification Alternatives on a

Low-Voltage Distribution Network with High PV Penetration. In Proceedings of the 2023 IEEE 17th International Conference on
Compatibility, Power Electronics, and Power Engineering (CPE-POWERENG), Tallinn, Estonia, 14–16 June 2023.

3. Alpízar-Castillo, J.; Ramirez-Elizondo, L.; Bauer, P. Assessing the Role of Energy Storage in Multiple Energy Carriers toward
Providing Ancillary Services: A Review. Energies 2023, 16, 379. [CrossRef]

4. IRENA. Renewable Power Generation Costs in 2021; IRENA: Masdar City, United Arab Emirates, 2022.
5. Alotaibi, I.; Abido, M.A.; Khalid, M.; Savkin, A.V. A comprehensive review of recent advances in smart grids: A sustainable

future with renewable energy resources. Energies 2020, 13, 6269. [CrossRef]
6. Van Sark, W. Photovoltaic System Design and Performance. Energies 2019, 12, 1826. [CrossRef]
7. PVsyst–Logiciel Photovoltaïque. 2023. Available online: https://www.pvsyst.com/fr/ (accessed on 17 February 2023).
8. PV*SOL–Plan and Design Better pv Systems with Professional Solar Software|PV*SOL and PV*SOL Premium. 2023. Available

online: https://pvsol.software/en/ (accessed on 17 February 2023).

https://github.com/jjac13/PV_BESS_model
http://doi.org/10.3390/en16010379
http://dx.doi.org/10.3390/en13236269
http://dx.doi.org/10.3390/en12101826
https://www.pvsyst.com/fr/
https://pvsol.software/en/


Energies 2023, 16, 5480 16 of 16

9. Sanjari, M.J.; Gooi, H.B. Probabilistic Forecast of PV Power Generation Based on Higher Order Markov Chain. IEEE Trans. Power
Syst. 2017, 32, 2942–2952. [CrossRef]

10. Carriere, T.; Vernay, C.; Pitaval, S.; Kariniotakis, G. A Novel Approach for Seamless Probabilistic Photovoltaic Power Forecasting
Covering Multiple Time Frames. IEEE Trans. Smart Grid 2020, 11, 2281–2292. [CrossRef]

11. Bessa, R.J.; Trindade, A.; Silva, C.S.; Miranda, V. Probabilistic solar power forecasting in smart grids using distributed information.
Int. J. Electr. Power Energy Syst. 2015, 72, 16–23. [CrossRef]

12. Li, G.; Guo, S.; Li, X.; Cheng, C. Short-term Forecasting Approach Based on bidirectional long short-term memory and
convolutional neural network for Regional Photovoltaic Power Plants. Sustain. Energy Grids Netw. 2023, 34, 101019. [CrossRef]

13. Rana, M.M.; Romlie, M.F.; Abdullah, M.F.; Uddin, M.; Sarkar, M.R. A novel peak load shaving algorithm for isolated microgrid
using hybrid PV-BESS system. Energy 2021, 234, 1157. [CrossRef]

14. Rezaul Alam, M.; Alam, M.; Saha, T.K.; Sohrab Hasan Nizami, M. A PV variability tolerant generic multifunctional control
strategy for battery energy storage systems in solar PV plants. Int. J. Electr. Power Energy Syst. 2023, 153, 109315. [CrossRef]

15. Singh, R.; Bansal, R.; Singh, A.R. Optimization of an isolated photo-voltaic generating unit with battery energy storage system
using electric system cascade analysis. Electr. Power Syst. Res. 2018, 164, 188–200. [CrossRef]

16. Duman, A.C.; Erden, H.S.; Gönül, Ö.; Güler, Ö. Optimal sizing of PV-BESS units for home energy management system-equipped
households considering day-ahead load scheduling for demand response and self-consumption. Energy Build. 2022, 267, 112164.
[CrossRef]

17. Hassan, M.U.; Saha, S.; Haque, M.E. A framework for the performance evaluation of household rooftop solar battery systems.
Int. J. Electr. Power Energy Syst. 2021, 125, 106446. [CrossRef]

18. Kim, I.; James, J.A.; Crittenden, J. The case study of combined cooling heat and power and photovoltaic systems for building
customers using HOMER software. Electr. Power Syst. Res. 2017, 143, 490–502. [CrossRef]

19. Li, Q.; Tao, Y.; Li, Z.; Zhang, Y.; Zhang, Z. Simulation and modeling for active distribution network BESS system in DIgSILENT.
Energy Rep. 2022, 8, 97–102. [CrossRef]

20. ERA-Interim. Climate Data Guide; National Center for Atmospheric Research: Boulder, CO, USA, 2018.
21. Narayan, N.; Papakosta, T.; Vega-Garita, V.; Qin, Z.; Popovic-Gerber, J.; Bauer, P.; Zeman, M. Estimating battery lifetimes in Solar

Home System design using a practical modelling methodology. Appl. Energy 2018, 228, 1629–1639. [CrossRef]
22. Vega-Garita, V.; Hanif, A.; Narayan, N.; Ramirez-Elizondo, L.; Bauer, P. Selecting a suitable battery technology for the photovoltaic

battery integrated module. J. Power Sources 2019, 438, 227011. [CrossRef]
23. Narayan, N.; Vega-Garita, V.; Qin, Z.; Popovic-Gerber, J.; Bauer, P.; Zeman, M. A modeling methodology to evaluate the impact of

temperature on Solar Home Systems for rural electrification. In Proceedings of the 2018 IEEE International Energy Conference,
ENERGYCON 2018, Limassol, Cyprus, 3–7 June 2018. [CrossRef]

24. Vega-Garita, V.; De Lucia, D.; Narayan, N.; Ramirez-Elizondo, L.; Bauer, P. PV-battery integrated module as a solution for off-grid
applications in the developing world. In Proceedings of the 2018 IEEE International Energy Conference, ENERGYCON 2018,
Limassol, Cyprus, 3–7 June 2018. [CrossRef]

25. Alpízar-Castillo, J.; Vega-Garita, V. PV BESS Model. 2023. Available online: https://github.com/jjac13/PV_BESS_model
(accessed on 6 of June 2023).

26. US Naval Observatory Astronomical Applications Department. Computing Approximate Solar Coordinates. 2023. Available
online : https://aa.usno.navy.mil/faq/sun_approx (accessed on 17 February 2023).

27. Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes; Wiley: Hoboken, NJ, USA, 2013; p. 936.
28. Alpízar-Castillo, J. Simplified Model to Approach the Theoretical Clear Sky Solar PV Generation Curve through a Gaussian

Approximation. Niger. J. Technol. 2021, 40, 44–48. [CrossRef]
29. Wang, L.; Yan, R.; Saha, T.K. Voltage regulation challenges with unbalanced PV integration in low voltage distribution systems

and the corresponding solution. Appl. Energy 2019, 256, 113927. [CrossRef]
30. Datta, U.; Kalam, A.; Shi, J. Smart control of BESS in PV integrated EV charging station for reducing transformer overloading and

providing battery-to-grid service. J. Energy Storage 2020, 28, 113927. [CrossRef]
31. Stecca, M.; Elizondo, L.R.; Soeiro, T.B.; Bauer, P.; Palensky, P. A comprehensive review of the integration of battery energy storage

systems into distribution networks. IEEE Open J. Ind. Electron. Soc. 2020, 1, 46–65. [CrossRef]
32. ICE. Plan de Expansión de la Generación Eléctrica 2018–2034; Technical Report; ICE: London, UK, 2019.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TPWRS.2016.2616902
http://dx.doi.org/10.1109/TSG.2019.2951288
http://dx.doi.org/10.1016/j.ijepes.2015.02.006
http://dx.doi.org/10.1016/j.segan.2023.101019
http://dx.doi.org/10.1016/j.energy.2021.121157
http://dx.doi.org/10.1016/j.ijepes.2023.109315
http://dx.doi.org/10.1016/j.epsr.2018.08.005
http://dx.doi.org/10.1016/j.enbuild.2022.112164
http://dx.doi.org/10.1016/j.ijepes.2020.106446
http://dx.doi.org/10.1016/j.epsr.2016.10.061
http://dx.doi.org/10.1016/j.egyr.2022.01.113
http://dx.doi.org/10.1016/j.apenergy.2018.06.152
http://dx.doi.org/10.1016/j.jpowsour.2019.227011
http://dx.doi.org/10.1109/ENERGYCON.2018.8398756
http://dx.doi.org/10.1109/ENERGYCON.2018.8398764
https://github.com/jjac13/PV_BESS_model
https://aa.usno.navy.mil/faq/sun_approx
http://dx.doi.org/10.4314/njt.v40i1.7
http://dx.doi.org/10.1016/j.apenergy.2019.113927
http://dx.doi.org/10.1016/j.est.2020.101224
http://dx.doi.org/10.1109/OJIES.2020.2981832

	Introduction
	Relevant Literature
	Contributions

	PV–BESS Model
	PV Modeling
	Meteorological Data-Based Model
	Gaussian Model
	Battery Modeling


	Inputs to the Models
	PV System Installed
	Load

	Results and Discussion
	PV Generation
	PV–BESS
	Self-Consumption
	Peak-Shaving


	Conclusions
	References

