

Delft University of Technology

Exploiting PUF Variation to Detect Fault Injection Attacks

Köylü, Troya ; Garaffa, Luiza; Reinbrecht, Cezar; Zahedi, Mahdi; Hamdioui, Said; Taouil, Mottaqiallah

DOI
10.1109/DDECS54261.2022.9770154
Publication date
2022
Document Version
Final published version
Published in
Proceedings of the 2022 25th International Symposium on Design and Diagnostics of Electronic Circuits
and Systems (DDECS)

Citation (APA)
Köylü, T., Garaffa, L., Reinbrecht, C., Zahedi, M., Hamdioui, S., & Taouil, M. (2022). Exploiting PUF
Variation to Detect Fault Injection Attacks. In H. Kubatova, A. Steininger, M. Jenihhin, T. Garbolino, P. Fiser,
J. Belohoubek, & J. Borecky (Eds.), Proceedings of the 2022 25th International Symposium on Design and
Diagnostics of Electronic Circuits and Systems (DDECS) (pp. 74-79). (Proceedings - 2022 25th International
Symposium on Design and Diagnostics of Electronic Circuits and Systems, DDECS 2022). IEEE.
https://doi.org/10.1109/DDECS54261.2022.9770154
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/DDECS54261.2022.9770154
https://doi.org/10.1109/DDECS54261.2022.9770154

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Exploiting PUF Variation
to Detect Fault Injection Attacks

Troya Köylü, Luiza Garaffa, Cezar Reinbrecht, Mahdi Zahedi, Said Hamdioui, Mottaqiallah Taouil
Computer Engineering Group
Delft University of Technology

Delft, the Netherlands
{T.C.Koylu, M.Taouil}@tudelft.nl

Abstract—The massive deployment of Internet of Things
(IoT) devices makes them vulnerable against physical tam-
pering attacks, such as fault injection. These kind of hard-
ware attacks are very popular as they typically do not
require complex equipment or high expertise. Hence, it is
important that IoT devices are protected against them. In
this work, we present a novel fault injection attack detector
with high flexibility and low overhead. Our solution is
based on the reuse of a security primitive used in many
IoT devices, i.e., ring oscillator (RO) physically unclonable
function (PUF). Our results show that we obtain a high
detection effectiveness and no false alarms against most
popular fault injection attacks based on voltage and clock
manipulations.

Index Terms—fault injection detection, PUF, RO, IoT,
hardware security

I. INTRODUCTION

In the past, faults were only considered during testing
of dies to catch manufacturing defects and for reliability
issues caused by single event upsets. Nowadays, adver-
saries can deliberately inject faults into the system to
steal data, subvert the control flow of the execution, or
escalate privileges [1]. This threat is critical for devices
that are highly deployed in the field, which is for ex-
ample the case for Internet of Things (IoT) [2]. Hence,
these devices are susceptible to different fault injection
attacks, including cheap and straightforward techniques
like voltage manipulations [3] or glitching the clock [4].

Many countermeasures against fault injection attacks
such as voltage and clock glitching have been proposed.
We can group these countermeasures in three classes:
integrity checkers, shielding, and sensors. The first group
of countermeasures uses redundancy mechanisms to
validate a fault-free operation. These mechanisms can
be added in time (e.g., algorithm-wise [5], instruction-
wise [6], and via delay mechanisms [7]) or in space
(i.e., extra hardware [8]) [9]. However, these mechanisms
result in a high-performance penalty or overhead, which
limit their application to the IoT devices with strict
resource budgets. The second group of countermeasures
uses shielding to protect against electromagnetic and
laser-based attacks. There are two types of shields: pas-
sive and active. Passive shields contain metal meshes

that cover the circuit against attacks [10], whereas ac-
tive shields monitor the data transfer on the mesh to
detect irregularities that arise from attacks [11]. Again,
shielding also causes overhead and they are typically
limited to detecting a single type of attack. In the final
countermeasure group of sensors, there are voltage [12]
and clock sensors [13]. Due to the different nature of
fault attacks, this typically necessitates multiple sensors
against each attack technique. Thus, using ring oscilla-
tor (RO) or physically unclonable function (PUF)-based
sensors become a viability, as they are usually sensitive
to changes from multiple sources. This is investigated in
a number of studies, but they (i) consider very limited
attack cases [14]–[16], (ii) do not take environmental
changes into consideration [14], (iii) do not reuse already
installed resources so create significant overhead [14],
[17], [18], (iv) generate false alarms [17], and (v) use rare
or broken PUFs [15], [16]. Specifically, a sensor that even
attains 99.9% protection cannot be considered as secure,
as an attacker that has infinite time can find a point of
vulnerability. Therefore, special countermeasures for IoT
are needed, which are not only effective in a variety of
situations and attacks but also are lightweight.

In this work we present a novel fault injection attack
detector that can be used against a variety of attacks. Our
solution is based on the monitoring of the responses of
the PUF, which are already installed in the IoT devices as
security primitives. In summary, our main contributions
are as follows:

• Proposal of an effective, lightweight, flexible (can be
used for many applications), adaptive (against aging
and environmental changes), and robust (no single
point of vulnerability) fault injection detector based on
RO PUF.

• Evaluation of the detector under clock attacks (i.e.,
clock glitch).

• Evaluation of the detector under voltage attacks (i.e.,
underfeeding and glitching).

The rest of the paper is organized as follows. Sec-
tion II explains the methodology. Section III describes
the experiments that we use to evaluate the detector’s
performance. Finally, Section IV concludes the paper.978-1-6654-9431-1/22/$31.00 ©2022 IEEE

2022 25th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS)

74

74

20
22

 2
5t

h
In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

D
es

ig
n

an
d

D
ia

gn
os

tic
s o

f E
le

ct
ro

ni
c

C
irc

ui
ts

 a
nd

 S
ys

te
m

s (
D

D
EC

S)
 |

97
8-

1-
66

54
-9

43
1-

1/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
D

D
EC

S5
42

61
.2

02
2.

97
70

15
4

Authorized licensed use limited to: TU Delft Library. Downloaded on May 10,2022 at 06:35:11 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Example of an RO PUF Architecture [19]

II. METHODOLOGY

This section describes our RO PUF-based fault in-
jection detector. Section II-A explains the concept be-
hind our detector. Thereafter, Section II-B describes the
working principle of the detector. Finally, Section II-C
describes its hardware implementation.

A. Using RO PUFs against Fault Attacks

RO PUFs, whose architecture is shown in Figure 1,
create unique responses by comparing different counters.
The clock frequency of these counters are determined
by the oscillation frequencies of the selected ROs. Each
RO is designed with the same number of odd inverters,
each equal in size with equal spacing (i.e., they are
interconnected exactly in the same way). Hence, in an
ideal world, all ROs have the same oscillating frequency.
However, due to process variations, the frequency of
each inverter slightly differs and as a result, the counters
will end up with different values when the amount of
clock periods are counted in a certain time window. By
comparing the values of the two counters, a single bit
response can be generated. Note that more response bits
can be generated by using more ROs and more counters.
In this PUF, the challenge (i.e., input) defines which ROs
are selected to generate the response. For example, in
Figure 1, the binary input "0100" selects RO 0 (for the top
counter) and RO 1 (for the bottom counter) to generate
the response, while input "1000" uses RO 0 (top) and RO
2 (bottom).

In general, the RO PUF is easy to implement, has a
medium to low overhead and provides good responses
compared to other types of PUFs. However, this PUF
is very sensitive to thermal, power supply and noise
variations [20] and hence, to fault injection. Such a
sensitivity is an important issue in PUFs as they can
impact the PUF reliability. To make PUFs reliable, aux-
iliary hardware is used to correct erroneous bits, like
error correction codes [21]. On the other hand, using
PUF sensitivity to make sensors [22] in order to monitor
the temperature or other environmental conditions have
already been proposed. However, using PUFs for sensing
fault injection attacks is largely unexplored.

In this study, we assume that the attacker is equipped
to perform clock and voltage-based fault injection attacks
to leak sensitive information. Hence, the attacker has
physical access to an IoT sensor or gateway device that
contains an RO PUF for cryptographic operations. This
is a very common scenario, as it is the only way to
ensure a root of trust in each device when the network
is not fully trusted [23]. However, we only assume that
the attacker can leak information by injecting faults to
sensitive operations and observing the network [24].
Other sophisticated means of leaking information (i.e.,
side channel analysis) is out of the paper’s scope and
protection schemes such as masking should be deployed
for them [25].

To sense when an attack as defined occurs, we use
the embedded RO PUF, as Figure 2 shows at a high-
level. Before starting any security sensitive operation,
the system activates the detector (indicated by trigger
- T on the figure). During the operation, the detector
measures and saves the responses of an RO-based PUF
(save - S). When the operation ends, the detector com-
pares the collected responses to a reference value, which
is pre-collected under similar but no attack conditions
(COMPARE). If these values are not identical, an alarm is
raised (DECIDE). Consequently, the system can halt the
operation, redo the encryption, prevent the output from
reaching the user, or provide a random output value
(RELEASE OR DROP).

B. Working Principle

The RO PUF-based detector operates in two phases:
response collection and decision. First, the response col-
lection phase consists of applying a specific challenge to
the PUF multiple times and process each response. The
detector keeps collecting responses until the sensitive
operation (such as encryption) is completed. At the end
of this phase, the detector collects M responses (r) of N
bits, where N is given by the number of comparators (see
Figure 1). Next, in the decision phase, all M responses
are reduced to a single r by using majority voting on each
bit of the responses and the resulting r is compared to a
reference value rre f . An alarm is raised when r 6= rre f .

In order to perform these functions, our PUF must
satisfy certain properties. First, it should be able to detect
glitches in a short time window. Second, it should be
aging and change resistant. Third, it should be integrated
into a complete system. These three properties are ex-
plained next.
Detecting glitches: To guarantee a high detection effi-
ciency, we require a sensitive PUF, where the response
is evaluated after each cycle. Such a PUF would not be
useful as a security primitive for the system. To over-
come this trade-off, we propose a minor modification to
the PUF and have two modes of operation: reliable and
unreliable. The difference between the two modes is the
number of operation clock cycles used to evaluate the

75

75

Authorized licensed use limited to: TU Delft Library. Downloaded on May 10,2022 at 06:35:11 UTC from IEEE Xplore. Restrictions apply.

TIME

PROCESSOR

DETECTOR

RO PUF

SENSITIVE TASK RUNNING

TSTART

START
SECURITY

S S S S

RELEASE OR DROP

RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE

DECIDE

T: TRIGGER (START PUF)
S: SAVE

COMPARES

Start End

Fig. 2. RO PUF-based Detector Concept

Processor

Cache L1

External
Memory
Control

Ring
Oscillator

PUF

ECC

Hardware
Accelerators

Interconnection

Cache L2 Wired
Comm

Wireless
Comm

Direct
Memory
Access
(DMA)

FIA
Detector

Mode

Response

Challenge

Fig. 3. System-on-chip with the RO PUF based detector

ROs. During reliable operation, the detector produces
one response to a challenge after e.g., 100 cycles. This
makes the response more stable and hence can be used
as a security primitive. During unreliable operation,
the PUF produces responses in each clock cycle. These
responses naturally differ from the expected value but
allow the capture of clock or voltage irregularities.

Aging and environmental change resistant: An in-
field PUF ages as it is used, which affects its reliability.
This might change the challenge-response pair behavior
over time [26]. These changes should not be considered
as a fault injection attack. A similar behavior can be
observed when the device moves from a warmer to a
colder place or vice versa. To address these issues, we
propose periodic adjustment of the reference challenge-
response pair (cre f -rre f) used by the detector. This can
be accomplished by operating the PUF in the reliable
mode. For example, by challenging the PUF multiple
times, the new reference can be determined by taking
the most occurring value or average of the responses.
We assume that there are no fault attacks during this
operation.

System Integration: Figure 3 shows the SoC architec-
ture in which the proposed fault injection attack (FIA)
detector is an IP block. As observed in the figure, the
detector is integrated in the same manner as other IPs.
The processor can communicate with all the IPs and
the detector using the interconnection infrastructure. The
fault injection attack (FIA) detector communicates with
the PUF, i.e., the detector sets the operation mode of
the PUF (i.e., reliable or unreliable) through the Mode
signal, provides the Challenge, and receives/observes the
Response. Note that the error correction code (ECC) block
attached to the PUF is only used in the reliable mode,
e.g., for key generation or authentication.

Unreliable
Mode

Wait Task

Ask
Response

Save
Response

Perform
XOR

Alarm and
Protect

 No
Attack

start_FI_detect

ta
sk

_s
ta

rt

task_end HD = 0

HD != 0

attack_det

no_det

Fig. 4. FSM Implementation of Our Detector

C. Implementation

Figure 4 shows the finite state machine (FSM) im-
plementation of the detector in hardware, for the un-
reliable mode. Each time the system is about to run a
sensitive operation, it triggers the detector through the
start_FI_detect signal. This signal initiates the FSM with
its first state, which forces the PUF into the Unreliable
Mode state. The FSM subsequently proceeds to its second
state, i.e., Wait Task, where it waits for the sensitive
operation to start. The start of the sensitive operation
is indicated by the task_start signal. When the operation
starts, the FSM alternates between the Ask Response state,
where it waits for PUF responses; and the Save Response
state, where the results of the responses are saved.

When the sensitive operation ends, the task_end signal
notifies the FSM to enter into the comparison state called
Perform XOR. In this state, the detector performs the ma-
jority voting between responses and compares the result
with the reference PUF value using XOR operations. In
case the numbers are equal (i.e., Hamming distance (HD)
equals 0), no attack has taken place. This is signaled
in the No Attack state. On the other hand, if the XOR
results in a non-zero value (i.e., HD is nonzero), the FSM
transits into the Alarm and Protect state to notify that an
attack has taken place. In this state, the detector sets the
attack_det signal to inform the processor about the attack.
The CPU can for example prevent the results from being
transmitted to the user.

III. EXPERIMENTAL RESULTS

In this section, we present the experimental setup,
clock and voltage glitching/underfeeding experiments,
and the obtained results.

76

76

Authorized licensed use limited to: TU Delft Library. Downloaded on May 10,2022 at 06:35:11 UTC from IEEE Xplore. Restrictions apply.

System clock signal
(32 MHz)

Glitch signal

width

offset

Fig. 5. Clock Glitching

A. Setup
The performance of the detector is evaluated by run-

ning experiments on the Chipwhisperer CW305 Artix
FPGA Target [27]. We complemented the CW305 board
with a CW1173 [28] that acts as a manager, i.e., it initiates
the operation, controls the glitching, and collects the
results. The FPGA is programmed with a bitstream that
contains the design in Figure 3. It runs the AES-128 as
hardware accelerator. The PUF contains a single specific
challenge with an 8-bit response using eight ROs con-
sisting of three inverting gates (note that some ROs are
used in multiple responses). During an encryption, the
detector collects four PUF responses. Next, we describe
our clock/voltage glitching and voltage underfeeding
experiments and their results.

B. Clock Experiments
In the clock experiments, we investigate the detec-

tor’s fault detection performance during different clock
glitching configurations, where 50 AES encryption runs
are evaluated per scenario. A scenario is specified by
the glitch type. In terms of clock glitches, this is char-
acterized by a glitch width (between -50% and 50% of
the clock period) and offset (between -50% and 50%),
as illustrated in Figure 5. In our experiments, we used a
small part of the glitching range to reduce the number of
crashes and make the detection conditions less favorable,
while still being able to create effective glitches. For
each scenario, we investigate the attack effectiveness (i.e.,
ratio of the cases that create a faulty output) and report
the corresponding detector effectiveness (i.e., ratio of
the attacks detected). Table I presents the results. The
first two columns specify the configuration of the clock
glitch, the third column the attack efficiency (i.e, how
many encryptions lead to a corrupt output), and the
last column the number of times the detector raised
the attack detection flag in percentage. Note that the
attack effectiveness does not only consider successful
attacks, i.e., attacks that reveal (parts of) the key, but
also consider any faulty output in general. The reason
for this is that we want to detect how good the detector
in general is when an attacker tries to perform fault
injection, as our detector can be applied in any sensitive
operation.

As can be observed from Table I, our detector is
effective in correctly labeling clock glitching scenarios. In
only some of the glitch configurations, the AES output
became faulty. In all these cases, our detector was able

TABLE I
EVALUATION RESULTS OF THE CLOCK GLITCHING ATTACK

Clock Glitch Attack Detector
Width Offset Effectiveness Effectiveness

1.95 -5 100% 70%
2.73 -5 0% 0%
3.5 -5 0% 0%
4.5 -5 0% 0%

1.95 -3 0% 0%
2.73 -3 0% 0%
3.5 -3 0% 0%
4.5 -3 94% 30%

1.95 1 0% 0%
2.73 1 100% 40%
3.5 1 8% 100%
4.5 1 0% 100%

1.95 3 6% 80%
2.73 3 0% 60%
3.5 3 0% 0%
4.5 3 0% 0%

1.95 5 4% 80%
2.73 5 0% 90%
3.5 5 0% 70%
4.5 5 0% 0%

TABLE II
EVALUATION RESULTS OF THE VOLTAGE UNDERFEEDING

Voltage Underfeeding Attack Effectiveness Detector Effectiveness
1.1 0% 100%

1.0 (nominal) 0% 0%
0.85 0% 0%
0.75 0% 0%
0.7 100% 100%

0.65 100% 100%

to partially or fully detect these glitches. The detector
was even able to detect some cases where the attacks
were ineffective. The average detection rate in effective
attack scenarios is around 70%. The lowest detection rate
is 30%, which is indeed far from preventing most of
the attacks for that scenario. We further discuss how
to remove such singular points of failure in the next
subsection.

C. Voltage Experiments
We performed two types of experiments with respect

to voltage attacks. The first one is voltage underfeeding.
In this attack, the attacker supplies a voltage outside the
nominal range to the device, where 1V is the nominal
value and the voltage range 1.1 - 0.9V is considered to
be the optimal operating condition. Table II presents the
results for different voltages. The table is constructed in
a similar manner as Table I.

The first important discussion from Table II is related
to the voltage values 1.1, 1.0, and 0.85V. As mentioned
before, the first two voltages fall in the optimal condition
range, and the last one under normal condition. When
supply voltages of 1V and 0.85V are applied, we ob-
served that our detector does not raise any false alarms.
The detector does raise alarms when a 1.1V supply
voltage is used. However, note that we configured our
detector solely on the nominal voltage and hence, the
detector is able to detect this voltage setting. Therefore, it
is not straightforward to label 1.1V cases as false alarms.
In order to prevent them, the detector should be charac-

77

77

Authorized licensed use limited to: TU Delft Library. Downloaded on May 10,2022 at 06:35:11 UTC from IEEE Xplore. Restrictions apply.

Vdd

width

voltage

repeat

Fig. 6. Voltage Glitching

TABLE III
EVALUATION RESULTS OF THE VOLTAGE GLITCHING EXPERIMENTS

Voltage Glitch Attack Detector
Voltage Width Repeat Effectiveness Effectiveness

1.0 3.5 1 0% 0%
0.85 3.5 1 0% 0%
0.75 3.5 1 0% 0%
1.0 3.5 4 0% 0%
0.85 3.5 4 100% 60%
0.75 3.5 4 100% 100%
1.0 3.5 10 100% 0%
0.85 3.5 10 100% 100%
0.75 3.5 10 100% 100%
1.0 45 1 0% 0%
0.85 45 1 0% 0%
0.75 45 1 0% 0%
1.0 45 4 0% 0%
0.85 45 4 100% 50%
0.75 45 4 100% 100%
1.0 45 10 100% 0%
0.85 45 10 100% 100%
0.75 45 10 100% 100%

terized and verified based on this voltage setting as well
(i.e., change of reference value, see Subsection II-B). Sec-
ond, our detector perfectly detects the successful glitches
in the cases where voltage underfeeding took place. Note
that both the attack and detector effectiveness are 100%
for these cases.

The second set of voltage experiments is related to
voltage glitching. Table III presents the results in a sim-
ilar manner as the previous tables. The voltage glitches
are characterized by the glitch width (in percentage) and
how often they are repeated, as illustrated in Figure 6.
Each time a glitch occurs, the Vdd is shorted towards 0V.
In the table, the voltage column represents the operating
voltage. Only the voltages where the attack effectiveness
is 0% in Table II have been considered, as the detector
can detect all the other supply voltages with 100%
effectiveness.

The table shows that the detector performs well in
many scenarios. Overall, the detection effectiveness for
effective attacks is again around 70%. However, in 2
cases some effective attacks are not detected by the
detector. These occur only at nominal supply voltage.

For a more in-depth analysis, we analyzed the PUF
responses in each of the experiments. In this analysis, we
observed that a wrong response for a scenario randomly
alternates between a specific set of values. Figure 7
presents the plot of obtained PUF responses for all three
experiments: clock glitching, voltage underfeeding, and
voltage glitching. The fault-free reference response (rre f)
is 44, indicated by the white bars in the figure.

The plot shows that some responses are close to the
reference value of 44, while some are very distant. The
larger the difference with the reference value, the more

Fig. 7. Unique PUF Response for attack scenario (a) clock glitching,
(b) voltage underfeeding, and (c) voltage glitching.

likely that the attack causes bit-flips in the design. It
can be observed that the cases with a larger difference
are in greater proportions in clock glitching and voltage
underfeeding attacks. For the voltage glitching case,
there is a greater number of faulty responses closer to
the reference. As noted previously, some effective voltage
attack scenarios indeed managed to escape our detection.

The undetected cases can be an issue, especially when
attackers are able to perform various glitching experi-
ments to discover these voltage glitch values [29] (i.e.,
voltage, glitch width, and repeat values - see Table III).
However, this can be improved in several ways. First,
instead of looking at majority voting of the responses,
each individual PUF response can be analyzed and
compared to the reference. Second, aperiodic changing
of the inverter chain length can alter the PUF sensitivity
at run-time; this increases the detection probability of
currently undetected cases.

We made another set of experiments to validate
these two proposed improvements. Our experiments
show that the individual PUF responses show much
more variance when glitches occur (mean µ=63.27,
standard deviation σ=83.81) as compared to the case
when no fault injection takes place (µ=33.77, σ=61.06).
Second, when we used five inverters instead of three,
we observed a different distribution (i.e., with glitching
µ=35.02 and σ=60.42 and without glitching µ=17.33 and
σ=36.31), which indeed impacts the PUF sensitivity. This
however must be used carefully, as this might comprise
the reliability/reproducability of the PUF function when
used as security primitive.

One point we did not discuss yet is the attacks against
our detector itself. Our detector is generally robust
against them, i.e., any such attack would destabilize the
PUF response, resulting in an unexpected behavior. One
point of weakness however is the reference response. If
an attacker is able to change this value, the system will
start raising a lot of false alarms. This is not directly a
security problem, but an attacker can deny the operation
of the device in this manner. Hence, selective hardening

78

78

Authorized licensed use limited to: TU Delft Library. Downloaded on May 10,2022 at 06:35:11 UTC from IEEE Xplore. Restrictions apply.

of the reference response should be considered in cases
where denial of service must be avoided.

D. Overhead
As mentioned in Subsection III-A, we implemented

our PUF-based detector on Chipwhisperer CW305 board.
The RO PUF and detector require 53 LUTs and 16 regis-
ters, compared to 2506 LUTs and 980 registers required
for the interface, hardware AES core, and a couple of 8-
bit registers to save the PUF responses. The implementa-
tion does not include the response comparison as it can
be carried out by the software, but with using XORs,
the added overhead is minimal. This shows a very low
overhead, especially when the PUF would be reused for
authentication purposes. In that particular case, a single
challenge can be used in the reliability mode (see Sub-
section II-B). Moreover, the cost for saving the responses
can also be further reduced by comparing them on the
fly as they are produced. Note that the design satisfies
all timing constraints and that the overhead is smaller
or comparable to the state of the art.

IV. CONCLUSION

This paper presented a novel RO PUF-based fault
injection attack detector. Experimental results show that
our low-cost detector is effective against many cases
of clock and voltage-based attacks. Our RO PUF-based
detector is one of the early designs where built-in PUFs
are re-purposed against various fault injection attacks.
Furthermore, it is robust against changing environmental
conditions and aging, and provides resistance to a single
point of vulnerability. As RO PUFs are sensitive to
temperature, EM, and lasers [17], [30], [31], our method
has the potential to be used against these attacks as well.
Although we only tested our detector with a hardware
AES, our method is general and can be used with any
security sensitive operation.

V. ACKNOWLEDGMENT

This work was labelled by the EUREKA cluster PENTA
and funded by Dutch authorities under grant agreement
PENTA-2018e-17004-SunRISE.

REFERENCES

[1] J. Mickens. (2020) Software-level attacks on architectural and mi-
croarchitectural state. HiPEAC. [Online]. Available: https://www.
hipeac.net/media/private/files/73/10/ACACES-2020-part-I.pdf

[2] W. Kassab et al., “A–z survey of internet of things: Architectures,
protocols, applications, recent advances, future directions and
recommendations,” Journal of Network and Computer Applications,
vol. 163, 2020.

[3] A. Barenghi et al., “Low voltage fault attacks on the rsa cryptosys-
tem,” in FDTC. IEEE, 2009.

[4] T. Fukunaga et al., “Practical fault attack on a cryptographic lsi
with iso/iec 18033-3 block ciphers,” in FDTC. IEEE, 2009.

[6] A. Barenghi et al., “Countermeasures against fault attacks on
software implemented aes: effectiveness and cost,” in Proceedings
of the 5th Workshop on Embedded Systems Security, 2010.

[5] A. Boscher et al., “Fault resistant rsa signatures: Chinese remain-
dering in both directions.” IACR Cryptol. ePrint Arch., vol. 2010,
2010.

[7] L. Anghel et al., “Cost reduction and evaluation of a temporary
faults-detecting technique,” in Design, Automation, and Test in
Europe. Springer, 2008.

[8] R. Karri et al., “Fault-based side-channel cryptanalysis tolerant
rijndael symmetric block cipher architecture,” in Proceedings 2001
IEEE International Symposium on Defect and Fault Tolerance in VLSI
Systems. IEEE, 2001.

[9] T. C. Koylu et al., “Rnn-based detection of fault attacks on rsa,”
in ISCAS, 2020.

[10] H. Bar-El et al., “The sorcerer’s apprentice guide to fault attacks,”
Proceedings of the IEEE, vol. 94, 2006.

[11] X. T. Ngo et al., “Cryptographically secure shield for security ips
protection,” IEEE Transactions on Computers, vol. 66, 2016.

[12] K. M. Zick et al., “Sensing nanosecond-scale voltage attacks and
natural transients in fpgas,” in Proceedings of the ACM/SIGDA
international symposium on Field programmable gate arrays, 2013.

[13] K. Sun et al., “Fault-tolerant cluster-wise clock synchronization
for wireless sensor networks,” IEEE Transactions on Dependable and
Secure Computing, vol. 2, 2005.

[14] C. Deshpande et al., “A configurable and lightweight timing
monitor for fault attack detection,” in ISVLSI. IEEE, 2016.

[15] K. Shimizu et al., “Puf as a sensor,” in GCCE. IEEE, 2015.
[16] G. Hammouri et al., “Novel puf-based error detection methods

in finite state machines,” in International Conference on Information
Security and Cryptology. Springer, 2008.

[17] S. Tajik et al., “Pufmon: Security monitoring of fpgas using
physically unclonable functions,” in IOLTS. IEEE, 2017.

[18] Y. Yao et al., “Programmable ro (pro): A multipurpose counter-
measure against side-channel and fault injection attack,” arXiv
preprint arXiv:2106.13784, 2021.

[19] H. Martin et al., “Enhancing puf based challenge–response sets by
exploiting various background noise configurations,” Electronics,
vol. 8, 2019.

[20] S. Docking et al., “A method to derive an equation for the
oscillation frequency of a ring oscillator,” IEEE Transactions on
Circuits and Systems I: Fundamental Theory and Applications, vol. 50,
2003.

[21] M.-D. Yu et al., “Secure and robust error correction for physical
unclonable functions,” IEEE Design & Test of Computers, vol. 27,
2010.

[22] Y. Gao et al., “Puf sensor: Exploiting puf unreliability for secure
wireless sensing,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 64, 2017.

[23] C.-C. Chang et al., “Signature gateway: Offloading signature
generation to iot gateway accelerated by gpu,” IEEE Internet of
Things Journal, vol. 6, 2018.

[24] G. Piret et al., “A differential fault attack technique against spn
structures, with application to the aes and khazad,” in Interna-
tional workshop on cryptographic hardware and embedded systems.
Springer, 2003.

[25] A. Althoff et al., “Hiding intermittent information leakage with
architectural support for blinking,” in ISCA. IEEE, 2018.

[26] R. Maes et al., “Countering the effects of silicon aging on sram
pufs,” in HOST. IEEE, 2014.

[27] “Cw305 artix fpga target,” 2016. [Online]. Available: https://rtfm.
newae.com/Targets/CW305\%20Artix\%20FPGA/

[28] “Cw1173 chipwhisperer-lite,” 2015. [Online]. Available: https://
rtfm.newae.com/Capture/ChipWhisperer-Lite/

[29] N. Timmers et al., “Controlling pc on arm using fault injection,”
in FDTC. IEEE, 2016.

[30] W. He et al., “Ring oscillator under laser: potential of pll-based
countermeasure against laser fault injection,” in FDTC. IEEE,
2016.

[31] W. He et al., “Cheap and cheerful: A low-cost digital sensor for de-
tecting laser fault injection attacks,” in International Conference on
Security, Privacy, and Applied Cryptography Engineering. Springer,
2016.

79

79

Authorized licensed use limited to: TU Delft Library. Downloaded on May 10,2022 at 06:35:11 UTC from IEEE Xplore. Restrictions apply.

