

Delft University of Technology

Fake It Till You Make It
Data Augmentation Using Generative Adversarial Networks for All the Crypto You Need
on Small Devices
Mukhtar, Naila ; Batina, Lejla; Picek, Stjepan; Kong, Yinan

DOI
10.1007/978-3-030-95312-6_13
Publication date
2022
Document Version
Final published version
Published in
Topics in Cryptology - CT-RSA 2022

Citation (APA)
Mukhtar, N., Batina, L., Picek, S., & Kong, Y. (2022). Fake It Till You Make It: Data Augmentation Using
Generative Adversarial Networks for All the Crypto You Need on Small Devices. In S. D. Galbraith (Ed.),
Topics in Cryptology - CT-RSA 2022 : Cryptographers’ Track at the RSA Conference, 2022, Proceedings
(pp. 297-321). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics); Vol. 13161). Springer. https://doi.org/10.1007/978-3-030-
95312-6_13
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-030-95312-6_13
https://doi.org/10.1007/978-3-030-95312-6_13
https://doi.org/10.1007/978-3-030-95312-6_13

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Fake It Till You Make It: Data
Augmentation Using Generative

Adversarial Networks for All the Crypto
You Need on Small Devices

Naila Mukhtar1(B) , Lejla Batina2, Stjepan Picek3,4 , and Yinan Kong1

1 Macquarie University, Sydney, Australia
naila.mukhtar@ieee.org, yinan.kong@mq.edu.au
2 Radboud University, Nijmegen, The Netherlands

3 Radboud University, Nijmegen, Nijmegen, The Netherlands
lejla@cs.ru.nl

4 Delft University of Technology, Delft, The Netherlands

Abstract. Deep learning-based side-channel analysis performance heav-
ily depends on the dataset size and the number of instances in each tar-
get class. Both small and imbalanced datasets might lead to unsuccessful
side-channel attacks. The attack performance can be improved by gen-
erating traces synthetically from the obtained data instances instead of
collecting them from the target device, but this is a cumbersome and
challenging task.

We propose a novel data augmentation approach based on condi-
tional Generative Adversarial Networks (cGAN) and Siamese networks,
enhancing the attack capability. We also present a quantitative compar-
ative deep learning-based side-channel analysis between a real raw signal
leakage dataset and an artificially augmented leakage dataset. The anal-
ysis is performed on the leakage datasets for both symmetric and public-
key cryptographic implementations. We investigate non-convergent net-
works’ effect on the generation of fake leakage signals using two cGAN
based deep learning models.

The analysis shows that the proposed data augmentation model
results in a well-converged network that generates realistic leakage traces,
which can be used to mount deep learning-based side-channel analysis
successfully even when the dataset available from the device is not opti-
mal. Our results show that the datasets enhanced with “faked” leak-
age traces are breakable (while not without augmentation), which might
change how we perform deep learning-based side-channel analysis.

Keywords: Deep learning-based side-channel attacks · ASCAD ·
Elliptic curve cryptography · GANs · Data augmentation · Signal
processing

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. D. Galbraith (Ed.): CT-RSA 2022, LNCS 13161, pp. 297–321, 2022.
https://doi.org/10.1007/978-3-030-95312-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95312-6_13&domain=pdf
http://orcid.org/0000-0001-5206-7432
http://orcid.org/0000-0001-7509-4337
https://doi.org/10.1007/978-3-030-95312-6_13

298 N. Mukhtar et al.

1 Introduction

Profiling side-channel attacks (SCAs) are the class of attacks in which the adver-
sary is assumed to have access to the target device’s open copy. Then, the
attacker uses that copy of a device to build a strong profiling model. In the
second phase of the attack, the attacker infers the secret information, e.g., the
secret key from the target device based on the profiling model and measure-
ments of some physical activity of the target device while cryptographic imple-
mentation is running on it. Recently, deep learning-based attacks have been
extensively studied for improving the profiling SCA, see, e.g. [1–3]. The deep
learning model’s performance can suffer if enough data is not provided during
the training phase. What is more, using deep learning may not even make sense
if not enough data is available. This lack of availability could be a consequence
of implemented countermeasure prohibiting collecting a large number of traces
or due to the evaluation setup [4]. Additionally, it is common to use side-channel
leakage models like the Hamming weight or Hamming distance, which will result
in an imbalanced class scenario [5].

Deep learning is data-hungry. Not providing enough data can mean that
either we do not reach the full potential of a certain method or, in more extreme
cases, that the method shows very poor performance. One common reason for it
is overfitting, where the deep learning model learns how to model the noise, mak-
ing it difficult to generalize to the previously unseen examples. To fight against
it, researchers commonly use techniques like 1) hyperparameter tuning - to find
architectures that are better tuned for the task and thus have less tendency to
overfit, 2) regularization - to lower the complexity of a neural network model
during training, and thus prevent the overfitting, and 3) data augmentation - to
provide additional (synthetic) examples, utilizing the capacity of a model better,
but also regularize the model with noise inherent to the synthetic examples. Each
of those techniques has its advantages and drawbacks, and they are also success-
fully applied to the side-channel domain. Interestingly, while hyperparameter
tuning and regularization (e.g., dropout, L2 regularization) are commonly used
in SCA, data augmentation received less attention, despite very good prelimi-
nary results. One possible reason lies in the difficulty of clearly visualizing how
a successful synthetic side-channel measurement should look (something much
simpler in, e.g., image classification domain).

Cagli et al. proposed the first data augmentation setup for deep learning-
based SCA to counter the effects of clock jitter countermeasure [6]. Still, the
authors do not consider scenarios where the number of measurements is sig-
nificantly limited. Picek et al. presented the results with “traditional” machine
learning data augmentation techniques and concluded that Synthetic Minority
Over-sampling Technique (SMOTE) could aid in data generation, resulting in
improved attack performance [5]. Differing from us, the authors used the Ham-
ming weight leakage model, resulting in an imbalanced dataset. In our work, we
used intermediate values resulting in more classes and more challenging analy-
ses. Luo et al. used a mixup data augmentation technique where new synthetic
examples are based on randomly selected combinations of existing examples [7].

Fake It Till You Make It 299

The authors conducted experiments for several datasets and leakage models and
obtained mostly similar behavior for the original and mixup traces. Generative
Adversarial Networks (GAN) is another popular data augmentation technique
that is widely used in the image processing domain for generating fake images [8],
which significantly improves the machine learning model’s performance [9]. Only
one existing study presents the realization of using GAN-generated fake signals
as leakage signals for deep learning-based side-channel analysis [10]. However,
the authors use more profiling traces and the Hamming weight leakage model
(which will result in fewer classes), making their work significantly different from
ours. What is more, this work misses providing a detailed analysis of the GAN
network before using it for the fake data generation.

GAN’s performance for generating fake images/signals depends on the gen-
erator’s progressive learning based on the discriminator’s response. The design
and selection of a GAN play an important role in generating realistic leak-
age signals. A well-convergent GAN network will generate traces carrying rele-
vant/significant features similar to the original data samples. Designing a GAN-
based model with optimum convergence or equilibrium point is one of the great-
est challenges for generating fake signals [11] that contain the characteristics
of real leakage traces. Several techniques, presented for fake image generation,
can help achieve convergence, including feature matching [12], conditional GAN
(cGAN) [13], and semi-supervised learning [12].

In our work, we generated 50% traces for each class (256 × 150 × 2 real and
fake traces for AES and 16× 150 × 2 real traces for ECC), making the setting
very challenging.

Our approach is inspired by the fake image generation presented in [14]. Our
presented generic model can generate fake data for various leakage datasets,
including symmetric and public-key algorithm implementations. We provide a
comparative analysis with the existing simple dense layer-based GAN used for
leakage generation.

Specifically, we list our contributions as follows:

– We present a layered approach for generating the 1-dimensional fake signals
for deep learning-based side-channel analysis (DL-SCA). Our approach com-
bines Siamese network and conditional GAN (cGAN) characteristics with an
extra model loss monitoring layer introduced to detect the model convergence.
The visual representation of the loss function of the proposed data augmenta-
tion technique helps analyze the well-converged GAN model. A well-converged
network helps in generating indistinguishable fake traces that will give the
same insights to the data as that of the original signals. With this, we show-
case the relevance of “real vs. fake” data and exhibit successful attacks with
synthetic data that could impact various real-world use cases and security
applications.

– We provide a comparative analysis exhibiting the fake leakage trace datasets’
effect on the side-channel model training performance. These fake leakage
traces are generated from various converging points during the proposed
Siamese-cGAN model training, which helps to analyze the importance of the
well-converged models.

300 N. Mukhtar et al.

– The proposed Siamese-cGAN model can be generalized to any leakage dataset
(from varying cryptographic algorithm implementations). To demonstrate
this, we trained our proposed model on datasets containing either symmetric
or public-key algorithm implementations, using two different neural networks
for generator and discriminator. Best performing neural networks are further
selected for analysis. While several results show the benefits of data augmen-
tation for symmetric-key implementations, data augmentation is significantly
less explored in the context of attacks on public-key implementations (we are
aware of only one work [15]).

– We provide a comparative analysis of our proposed Siamese-cGAN model
with the existing used cGAN model [10] (named as cGANModelA in this
study) for generating fake leakage traces.1

– The performance of the Siamese-cGAN data augmentation model is evaluated
by applying the actual deep learning-based side-channel attack on the gener-
ated leakage traces using four different neural network architectures (one mul-
tilayer perceptron (MLP) and two Convolutional Neural Networks (CNNs)
for symmetric algorithm implementation leakages and one CNN for public-
key implementation leakages). Our results show that the fake data samples
generated from the well-convergent model combined with 50% real data suc-
cessfully recovered the secret with similar efficiency as real data traces alone.
What is more, for the ASCAD dataset case (AES measurements), the key
rank suggests even improved results for the dataset consisting of real and fake
traces. We emphasize that the goal of our approach is not only to improve
the attack performance in scenarios where there are enough real measure-
ments for a successful attack. Rather, we envision it for constrained settings
where more measurements than available are needed to break the target. We
think here of implementations that randomize the secret (key) after a number
of algorithm’s execution such that the adversary can collect only a limited
number of traces for the analysis.

2 Preliminaries

2.1 Profiled Side-Channel Attacks

The profiled attack represents the most powerful side-channel attack where the
adversary has access to the target device’s open copy. There are two phases
of the attack: the profiling phase and the attack phase. In the profiling phase,
the adversary creates a profile of the device with all the possibilities for the data
leakages and then uses that profile (template in the case of template attack [16] or
machine learning model) in the attack phase to distinguish/predict the unknown
secret information [17].

Commonly, profiled attacks are divided into classical ones like template
attacks [16] and stochastic model [18], and machine learning-based attacks [1,19].

1 We note that the provided details were not sufficient to ensure the reproducibility
of the results, so we did our best to infer the used architecture from the description.

Fake It Till You Make It 301

Machine learning-based side-channel attacks (ML-SCA) follow the same steps
as the classical profiling attacks. More precisely, they have two phases: train-
ing phases (profiling phase) and test phase (attack phase). The adversary can
train the model with the leakage examples collected from the identical copy of a
target device and then evaluate the trained model using previously unseen exam-
ples. When using deep learning instead of other machine learning techniques, we
denote such attacks as deep learning-based side-channel attacks (DL-SCA).

2.2 Generative Adversarial Networks (GANs)

The Generative Adversarial Networks were first introduced by Goodfellow et al.
in 2014 [9]. Since then, many variations of GAN have been proposed, including
conditional GAN (cGAN), Deep Convolutional GAN (DC-GAN), Information
Maximizing (InfoGAN), and Stacked GAN (StackGAN) [13,20–23].

A Generative Adversarial Network (GAN) is a neural network architecture
for training a generative model, which can generate plausible data. It consists
of two neural networks adversarial models, discriminator D and generator G.
Real data is labeled as ‘1’ and artificially generated (fake) data is labeled ‘0’.
Generator G network generates the fake data with random noise input z, and
discriminator D network discriminates between real and fake data.

GANs are based on the concept of a zero-sum non-cooperative game where
one network (discriminator) is trying to minimize the loss, and the other network
(generator) is trying to maximize the loss (this min-max problem as given by
Eq. (1), where x and z represent the real and fake generated trace, respectively).

The discriminator’s task is to distinguish the real and generated data
instances, whereas the generator’s task is to improve the model based on the
feedback from the discriminator. However, the generator is trying to generate
data traces that are alike. This makes it hard to find a good convergence point.
GAN converges when both D and G reach a Nash equilibrium, meaning that one
(D/G) will not change its actions anymore, no matter what opponent (D/G)
does. This is the optimal point that adversarial loss in GANs aims to optimize.

Ex[log(D(x))] + Ez[log(1 − D(G(z)))]. (1)

2.3 Conditional Generative Adversarial Networks (cGANs)

GANs help generate plausible data, but there is no way to control what random
data they will generate. GAN can be conditioned with extra data to control
the generated information to handle that issue. GAN with an extra condition is
called conditional Generative Adversarial Network (cGAN). The extra data in
cGANs is the class label of the data samples. Using class labels for cGAN training
has two main advantages: firstly, it helps in improving the GAN performance,
and secondly, it helps in generating the specific target class samples.

In the training process of the cGAN model, the generator network gener-
ates data based on the label and the random input and tries to replicate the
actual distribution in the real data samples. The generated samples are of the
same structure as the input labeled data. In the next step, the real and the

302 N. Mukhtar et al.

generated/fake data are given as input to the discriminator. The discriminator
is first trained with the original/real labeled data samples and is then trained
with the fake generated data samples. Similar to GANs, the discriminator’s task
is to separate the fake from real data samples, which helps the generator generate
better (realistic) samples [13].

2.4 Data Augmentation

Data augmentation is an umbrella term representing various techniques used
to increase the amount of data by adding (slightly) modified copies of already
existing examples or newly created synthetic examples from existing data. Data
augmentation can act as a regularization technique and will help reduce overfit-
ting. While data augmentation can be applied to any domain, most of the results
and techniques were developed for data augmentation in image classification [24].

2.5 Deep Learning Algorithms

Based on the deep learning-based side-channel attacks (DL-SCA) performance
on various cryptographic algorithms [6,25,26], we tested our newly generated
datasets using two state-of-the-art deep learning approaches: multilayer percep-
tron (MLP) and Convolutional Neural Network (CNN). MLP and two variations
of CNN [3,27] are used to evaluate the AES dataset, and one CNN architec-
ture [25] is used to evaluate the ECC dataset.

2.6 Siamese Neural Network

Siamese neural network (also called twin/identical neural network) is an artifi-
cial neural network architecture consisting of two similar neural networks (with
the same weights and network parameters). It is capable of processing two dif-
ferent input vectors to produce comparable output vectors [28]. The two neural
networks are feedforward multilayer perceptrons that work in tandem and are
trained in a backpropagation manner. The idea behind the Siamese neural net-
work is not to learn to classify the labels but to discriminate between the input
vectors. Hence a special loss function, contrastive loss, or Triplet Loss is used
for the training of the network [29]. For training the network, the input vec-
tor pairs (xi, xj) are prepared; a few pairs consist of similar vectors, and a few
pairs consist of dissimilar vectors. The similar vector pair is labeled as y = ‘1’,
whereas the dissimilar pair is labeled as y = ‘0’. Each pair is fed to the Siamese
network, and distance is computed to check the similarity. The output vectors
from each network are compared using cosine or Euclidean distance and can
be considered as a semantic similarity between projected representation of the
input vectors [30].

2.7 Cryptographic Algorithms Under Evaluation

For our analysis, we investigate the performance of our proposed model on two
publicly available datasets. One dataset corresponds to the implementation of

Fake It Till You Make It 303

Advanced Encryption Standard (AES) and the other to the Elliptic Curve Cryp-
tography (ECC) implementation.

– The ASCAD dataset [27] is the first dataset that acts as a basis for compar-
ative analysis of deep learning-based side-channel analysis (DL-SCA). The
traces are collected from the masked AES-128 bit implementation on an 8-
bit AVR microcontroller (ATmega8515). The leakage model is first-round
S-box (Sbox[P (i)3 ⊕k∗]) where the third byte is exploited (as that is the first
masked byte). There are 60 000 total traces along with the metadata (plain-
text/ciphertext/key). These traces are further split into two datasets, one for
training (profiling) consisting of 50 000 and the other for the test (attack),
consisting of 10 000 traces. Each trace consists of 700 features. The labels are
stored in a separate file.

– The publicly available ECC dataset [25,31] consists of power consumption
traces collected from a Pinata development board (developed by Riscure).
The board is equipped with a 32-bit STM32F4 microcontroller (with an ARM-
based architecture), running at the clock frequency of 168 MHz and having
Ed25519 implementation of WolfSSL 3.10.2. The target is profiling a single
EC scalar multiplication operation with the ephemeral key with the base point
of curve Ed25519. The 256-bit scalar/ephemeral key is interpreted as slices of
four nibbles. Hence, there are 16 classes/labels in the dataset. The dataset has
a similar format as ASCAD. The database consists of two groups of traces;
profiling traces and attack traces. Each group further consists of “TRACES”
and “LABELS”. Each raw trace consists of 1 000 features, representing the
nibble information used during the encryption. Profiling and attack traces
groups consist of np and na tuples, with a corresponding label for each trace.
In total, there are 6 400 traces, out of which 80/20 are used for profiling
(np = 5120) and attacking (na = 1280).

The profiling traces from both datasets are used to train the cGAN mod-
els. Half of the real traces per class are kept in the final dataset, along with
the generated data samples. The attacking traces are used for evaluating the
performance of the DL-SCA model trained with the new dataset.

It should be noted that the purpose of this research is to analyze the effect of
artificially generated features in data traces for environments where the adversary
has an additional constraint on collecting leakage traces to form a dataset. The
presented methodology can be extended to produce and test the fake leakage traces
for any other cryptographic algorithms.

3 Related Works

Data augmentation represents a set of techniques to reduce overfitting and
improve the supervised machine learning task (commonly, classification). Data
augmentation is a well-researched topic, mostly framed in the context of image
data augmentation [24]. While there are multiple ways to divide the data aug-
mentation techniques, a common one is on 1) techniques transforming the input,
2) deep learning techniques (where our work also belongs), and 3) meta-learning.

304 N. Mukhtar et al.

Data augmentation in SCA is used to improve side-channel attack perfor-
mance and can be put in the same general direction as, e.g., works exploring how
to improve hyperparameter tuning. As data augmentation increases the amount
of data, it is commonly considered in the deep learning perspective as there,
very large datasets are beneficial. There are significantly more works consider-
ing symmetric-key cryptography and deep learning-based SCA than public-key
cryptography.

The first investigation that uses convolutional neural networks for side-
channel attacks on AES is conducted by Maghrebi et al. [1]. This work rep-
resents a significant milestone for the SCA community as it demonstrated how
deep learning could be used without feature engineering and efficiently break
various targets.2

Cagli et al. investigated how deep learning could break implementations
protected with jitter countermeasures [6]. This work is highly relevant as it
introduced data augmentation to the SCA domain. The authors used two data
augmentation techniques: shifting (simulating a random delay) and add-remove
(simulating a clock jitter). Picek et al. investigated how reliable are machine
learning metrics in the context of side-channel analysis. Their results showed
that machine learning metrics could not be used as sound indicators of side-
channel performance [5]. Additionally, as the authors used the Hamming weight
leakage model that results in class imbalance, they utilized a well-known data
balancing technique called SMOTE, showing that the attack performance can be
significantly improved. Kim et al. explored how to design deep learning architec-
tures capable of breaking different datasets [2]. Additionally, they used Gaussian
noise at the input to serve as a regularization factor to prevent overfitting. Luo
et al. investigated how mixup data augmentation can improve CPA and deep
learning-based side-channel attacks [7].

Next, several works aimed at improving neural network performance by pro-
viding a systematic approach for tuning neural network architectures. Zaid et
al. were the first to propose a methodology to tune the hyperparameters related
to the convolutional neural network size (number of learnable parameters, i.e.,
weights and biases) [3]. Wouters et al. [32] further improved upon the work from
Zaid et al. [3] by showing how to reach similar attack performance with even
smaller neural network architectures. Rijsdijk et al. used reinforcement learning
to provide an automated way to construct small convolutional neural networks
that perform well [33]. Following a different approach to improving the attack
performance, Wu and Picek showed how denoising autoencoder could be used to
reduce the effect of countermeasures [34]. The first work that considers the usage
of GANs (more specifically, cGANs) for the SCA domain is made by Wang et
al. [10]. While this work shows the potential of GANs in SCA, the results indicate
that a large profiling set is required to construct useful synthetic data.

2 We note earlier works are also using neural networks like multilayer perceptron,
but the results were in line with other machine learning techniques, and researchers
commonly used feature engineering to prepare the traces.

Fake It Till You Make It 305

There are several works using template attack (and its variants) to attack
public-key cryptography, see, e.g., [35–40]. Lerman et al. used a template attack
and several machine learning techniques to attack an unprotected RSA imple-
mentation [19]. Carbone et al. used deep learning to attack a secure implemen-
tation of RSA [41]. The authors showed that deep learning could reach strong
performance against secure implementations of RSA. Weissbart et al. showed a
deep learning attack on EdDSA using the curve Curve25519 as implemented in
WolfSSL, where their results indicate it is possible to break the implementation
with a single attack trace [25]. Weissbart et al. considered deep learning-based
attacks on elliptic curve Curve25519 implementation protected with counter-
measures and showed that even protected implementations could be efficiently
broken [42]. Perin et al. used a deep learning approach to remove noise stem-
ming from the wrong choice of labels after a horizontal attack [15]. The authors
showed that protected implementations having an accuracy of around 52% after
a horizontal attack could reach 100% after deep learning noise removal (note
that the authors also used data augmentation to reach 100% accuracy). Zaid et
al. introduced a new loss function called ensembling loss, generating an ensem-
ble model that increases the diversity [43]. The authors attacked RSA and ECC
secure implementations and showed improved attack performance.

4 Proposed Approach

4.1 Data Splitting

The leakage data traces L are collected from the device while AES or ECC algo-
rithms encryptions E are performed using the secret key K or scalar/ephemeral
key K, respectively. The labeled collected traces are then divided into two sets:
Training (DTraining) and Testing (DTesting). The training set is used to train the
Siamese-cGAN model, which produces fake traces. The newly generated dataset
(real+fake traces) is used to train the DL-SCA model, and the test set is used
to evaluate the SCA model’s performance. For a fair evaluation of the trained
Siamese-cGAN model, the test set is never shown to the network during the
Siamese-cGAN model training process.

For the rest of the paper, “cGAN models” or “Siamese-cGAN models” refer
to the model used for generating data. However, “DL-SCA models” refer to
the deep learning models, which are used to evaluate the performance of the
generated data by applying profiling side-channel attacks.

4.2 Siamese-cGAN Model for Data Augmentation

In contrast to the standard GANs, conditional GANs (cGANs) perform condi-
tional generation of the fake data based on the class label rather than generating
signals blindly. The labels c of the data traces/instances are used to train GANs
in a zero-sum or adversarial manner to improve the learning of the generator (G).
As mentioned before, the generator’s G task is to generate the leakage signals

306 N. Mukhtar et al.

that carry similar properties as the original traces using the random noise z and
the latent space input ls. The discriminator’s D task is to distinguish real and
fake signals. In the cGAN training process, first, the discriminator D is trained
with the labeled real data traces Treal, and then the discriminator D is trained
with the fake generated signals G(z) or TGen. The objective function for cGAN
is given by Eq. (2).

Ex∼TReal
[log(D(x|c))] + Ez[log(1 − D(G(z|c)))]. (2)

In our proposed design of the Siamese-conditional Generative Adversarial
Network (Siamese− cGAN), we combine cGAN with the Siamese network con-
cept. Siamese network is an architecture in which two identical/twin networks
carrying the same weights are trained with two different inputs. In the proposed
model, two generators G1 and G2 take two random input noise vectors z1 and
z2, generating fake signals G(z1) and G(z2), respectively, in a Siamese fashion.
Both the generators share the same network weights, and only the input is dif-
ferent. The discriminator D is first trained with the labeled real data TReal and
then with the fake data TGen, originating from the two twin generator networks
G1 and G2.

As mentioned before, convergence is a challenging issue in training GANs. In
some cases, the model converges and then starts diverging again; that is, it for-
gets its learned examples. Several techniques include memory-based learning, to
handle such scenarios [44]. Training the model simultaneously, in a Siamese set-
ting, with the random noise from two sources can help obtain a better-converged
model in fewer epochs by combining output from both. Moreover, to analyze the
impact of convergence, we introduced another layer in the two-step cGAN model.
This layer monitors the real traces loss LReal, generated traces loss LGen, and
GAN model Loss LGAN .

Let DGAN→R represent the loss difference between LGAN and LReal, and
DGAN → G represent the loss difference between LGAN and LGen, then the
average of loss differences over last t iterations will be given by:

1
t

t∑

i=1

(|DGAN→R(i)| + |DGAN→G(i)|). (3)

The Siamese-cGAN model stops training when the average model loss
LossAvg over the last t iteration is less than the average loss over the last t ∗ 2
iterations. The trained Siamese-cGAN model is then used to generate the ng

fake traces TGen, containing features similar to the original signals. TGen and
TReal, having ng and nr instances respectively, are combined together to form
a resultant dataset TGAN . This dataset is then used to train the deep learning
model to analyze the generated dataset’s performance with DL-SCA. A test set
is set aside for a fair evaluation before adding the generated traces into the train-
ing dataset. The test set is never shown to the neural network during training.
The proposed Siamese-cGAN specific for DL-SCA is shown in Fig. 1.

Fake It Till You Make It 307

Fig. 1. Proposed Siamese-cGAN architecture for ML-SCA.

4.3 cGAN Models for Discriminator and Generator

In the proposed Siamese-cGAN model, the selection of generator and discrimi-
nator plays a vital role. The authors in [10] recommended using a generator and
discriminator with fully connected dense layers only, without any complex layers.
However, in this study, we explore the possibility of using fully connected dense
layers and the convolutional layers in discriminator. The reason for evaluating
CNN layer-based network is that it has provided better fake images genera-
tion in image processing [20]. Hence, for evaluating the trained Siamese-cGAN
model performance, two different networks are used for the generator and dis-
criminator. These networks are denoted as Model A and Model B. Model A
is based on two fully connected layers for the generator and the discriminator.
However, Model B (CNN-based) has a more complex architecture with four
fully connected and one convolutional layer. Batch normalization, LeakyRelu,
and dropout are introduced, which help achieve a more stable model that avoids
overfitting. Additionally, we tested both Model A and Model B generators and
discriminators with and without Siamese settings to analyze the improvements
introduced by using the Siamese configuration.

Figures 8 and 9, given in Appendix A, show the structure of both the models.
We use the same generator and discriminator model architectures to generate
symmetric and public-key leakages data samples. The only parameter that needs
to be changed is the size of dense layers, which changes based on the number
of classes per target dataset. The size in each subsequent layer is doubled from
the previous layer. That is, layer 1, layer 2, and layer 3 have a size equal to the

308 N. Mukhtar et al.

number of classes, the number of classes*2, and the number of classes*4, respec-
tively. The convolutional layer has the tanh activation function. The hyperpa-
rameter details for the generator network are given in Table 1, while for discrim-
inator, we use a dense layer (512), LeakyReLU , and dropout set at 0.4.

Table 1. Generator Architecture Details

Hyper-parameter Value

Input shape (700,1) for AES, (1 000,1) for ECC

Fully Connected layer 1 Number of classes

Fully Connected layer 2 Number of classes*2

Fully Connected layer 3 Number of classes*4

Dropout rate 0.4

5 Experiments and Results

5.1 DL-SCA Evaluation Model Architectures

As mentioned in Sect. 2.5, we use MLP and CNN architectures to evaluate the
performance of the newly generated datasets using the cGAN model. The state-
of-the-art DL-SCA model architectures for evaluating the original publicly avail-
able datasets [3,25,27] are used in the same setting except for the batch size and
epochs, which are varied between 50–200 to see the impact on the results.

For evaluating the ASCAD dataset, the first architecture is an MLP-based
network from [27]. The first CNN architecture is denoted as ASCAD-CNN1 [27],
while the second one is denoted as ASCAD-CNN2 [3]. For evaluating the ECC
dataset performance, we use the deep learning architecture presented in [25].
We use the existing state-of-the-art DL-SCA model architectures to allow fair
comparison. What is more, the goal of this work is not to find new deep learning
architectures but to enhance the performance of the existing architectures.

The performance of the DL-SCA trained models with the newly generated
datasets is evaluated using two commonly used evaluation metrics: key rank
and accuracy. Accuracy represents the number of correctly classified examples
divided by the number of examples. Key rank is the position of the correct key
guess in the key guessing vector. More precisely, this vector contains the key
candidates in decreasing order of probability, and finding the position of the
correct key indicates the effort required by the attacker to break the target.

5.2 Experimental Setup

The proposed GAN models have been developed and trained using Keras and
Tensorflow libraries for our experiments. The models are trained to generate the
fake data on a common computer equipped with 32 Gb RAM, i7-4770 CPU with

Fake It Till You Make It 309

3.40 GHz, and Nvidia GTX 1080 Ti. The time required for fake data generation
will vary depending on the number of classes and generated fake traces per class.
The Siamese−cGANModels training took less than 5 min to train and less than
5 min to generate 150 fake traces for 256 classes in total. For training a GAN
model, real data traces are given as an input in the batches of 30 data traces,
and the model is trained for 1 000 epochs.

We divide our experimental analysis into two sections.

– Analysis-1: first, in Sect. 5.3, we provide the visual representation of the
trained cGAN models over 1 000 epochs. Visual representation helps iden-
tify the convergent model, which is then further selected for analysis in the
second phase of analysis. We trained four cGAN models, out of which two
are existing and two are newly proposed, based on the generator and dis-
criminator as explained in Sect. 4.3. Details of the cGAN models are given
in Table 2. We also provide the model convergence-based comparison of our
proposed Siamese-cGAN-based model with the existing cGAN models [10].

– Analysis-2: second, in Sect. 5.4, we provide the deep learning-based side-
channel analysis of two datasets; dataset containing real leakage signals only
and the dataset consisting of both real and fake leakages, by training with
two neural networks (MLP and CNN). We also compare generating leakage
signals from the non-converging and converging networks for this analysis.
To achieve this, we generated fake signals from various points while training
the Siamese-cGAN network. More precisely, we generated the signals when
the model converged the best and generated the signals when the model was
the least convergent (initial epochs). Converging details of each model are
given in the respective sections. This comparison is performed to highlight
that not any cGAN can be selected blindly. Only a well-convergent network
will generate traces that are more alike in characteristics to that of original
real traces.

Table 2. cGAN Model Details

Model Name Description

cGAN Model A Model without CNN and Siamese network

cGAN Model B Model with CNN but without Siamese network

Siamese− cGAN Model A Model without CNN but with Siamese network

Siamese− cGAN Model B Model with CNN and with Siamese network

5.3 Analysis-1: Existing and Proposed GAN-based Approaches

This section presents a convergence-based comparative analysis of our approach
with the existing cGAN models. The existing cGAN networks (without lay-
ered Siamese-cGAN setting) are denoted as CGAN Model A/B, whereas our

310 N. Mukhtar et al.

proposed models are denoted as Siamese − cGAN Model A/B. For this anal-
ysis, all four cGAN networks are trained with the DTraining dataset and the
GAN model loss for both AES and ECC, as shown in Figs. 2 and 3, respec-
tively. Figure 2 a and b presents the real, fake, and GAN loss for training with
cGAN Model A and cGAN Model B without Siamese settings, respectively.
Next, Fig. 2 c and d presents the real, fake, and GAN loss for training with
Siamese − cGAN Model A and Siamese − cGAN Model B with the Siamese
setting. Similarly, Fig. 3 presents all four cGAN training models’ loss for the
ECC dataset.

Siamese − cGAN and cGAN models, for the ASCAD and ECC dataset
analysis, are trained for 1 000 epochs, and history is recorded every ten epoch.
Hence x-axis is scaled by 10. It can be seen that the proposed Siamese −
cGAN Model B architecture (based on CNN) provides the best loss conver-
gence of real, fake, and GAN models as the models converge around 100–150
epochs and 700–1 000 epochs for AES and ECC datasets, respectively.

This shows that the generator started generating traces similar to the real
traces at this convergence point, making it harder for the discriminator to dis-
criminate between real and fake. Existing cGAN Model A and cGAN Model B
without Siamese configuration did not converge well in 1 000 epochs. More-
over, for Siamese − cGAN Model B, GAN loss is high and quickly decreases
in initial epochs. Hence, the proposed Siamese − cGAN Model B is the
robust solution for generating artificial/fake leakage signals for both algo-
rithms as it converges better and faster than other cGAN models. Interestingly,
Siamese− cGAN Model A performs relatively poorly, indicating that the more
powerful neural network architecture was required for this task. In conclusion,
from this analysis, Siamese − cGAN Model B is further selected to generate
fake data in analysis phase 2.

5.4 Analysis-2: Analysis of the Proposed Siamese-CGAN
for DL-SCA

Based on the results from the previous analysis, Siamese − cGAN Model B
is selected for further experiments in this section. Now, we perform DL-SCA
(using MLP, ASCAD-CNN1, and ASCAD-CNN2) on the newly generated TGAN

(real+fake traces) datasets, generated using Siamese − cGAN Model B. How-
ever, we also analyzed the real dataset (with reduced traces per class). Hence,
two datasets are formed: one with real traces only and the other (TGAN) with
both real and fake traces. For TGAN datasets, two further datasets are formed,
one for the fake data generated from the well-converged model and the sec-
ond from the non-convergent model. Finally, we analyze how all these different
settings impact the key rank of a side-channel attack.

Analysis on Real Traces. In our experiments, we reduced the size of the
ASCAD and ECC leakage datasets intentionally to analyze the effect of the
artificially generated traces on the small-size datasets. We selected nr = 150 (for

Fake It Till You Make It 311

Fig. 2. CGAN Model Training Loss for the ASCAD dataset (a) cGAN Model A, (b)
cGAN Model B, (c) Siamese− cGAN Model A, (d) Siamese− cGAN Model B

each class) leakage traces from the ASCAD and ECC datasets. The reason for
selecting precisely 150 traces per class is because we wanted an equal number of
real traces for all the classes. In the ASCAD dataset, class 213 has a minimum
number of traces (154 traces); hence 150 is selected. No artificial/fake traces are
included in the training dataset, so ng = 0. Hence, total number of traces in AES
and ECC datasets are 38 400 (150 traces × 256 classes) and 24 00 (150 traces ×
16 classes), respectively. For deep learning-based attacks, we used the previously
successful DL-SCA models for AES and ECC in respective studies [3,25,27].

The purpose of using the same deep learning-based models is to show that
the artificially generated traces produce the same results as the real traces with
the same model architectures. When considering the ASCAD-CNN1 architec-
ture, everything stays the same as in previous studies’ analysis except that we
perform normalization on the training and test data. For normalization, each
input variable feature is scaled in the range [−1, 1] by using MinMaxScaler from
the Sklearn library. For MLP, 10-fold cross-validation is performed. For ASCAD-
CNN2 analysis, in addition to applying normalization, a standardization is added
as per the proposed architecture in [3], and data is standardized around mean
with a unit standard deviation (between 0 and 1) [45,46]. For ECC, the same
model is used for training and test as proposed in [25].

312 N. Mukhtar et al.

Fig. 3. cGAN Model Training Loss for the ECC dataset (a) cGAN Model A, (b)
cGAN Model B, (c) Siamese− cGAN Model A, (d) Siamese− cGAN Model B

Figure 4 (a) shows the key rank for the real traces (38 400) dataset for the
ASCAD dataset analysis using MLP and 10-fold cross-validation. We compare
our results of reduced, original traces with the results of MLPbest reported
in [27], which is plotted for the trained model on 50 000 traces. We can see a slight
deviation though both figures are for the trained model on real traces. Figure 4
(b) shows the key rank on reduced ASCAD dataset trained using ASCAD-CNN2.
It shows key rank not approaching zero in the first 1 000 traces. This confirms
that the reduced dataset did not perform as expected with the existing models.

Figure 5 shows the accuracy for the real traces dataset for ECC dataset analy-
sis using CNN architecture [3]. Raw, real data traces analysis for ECC shows that
the private key can be recovered with 100% accuracy using CNN. It should be
noted that preprocessing and alignment have not been applied to these datasets.

Analysis on Real and Generated Traces Dataset with the Maximum
and Minimum Convergence. We introduce the terms maximum and min-
imum convergence for our analysis. Maximum convergence refers to the point
(epochs) when a stable GAN model is achieved. Minimum convergence simply
refers to the epochs when the GAN model is not stable, mostly in start epochs
and often towards the end epochs as well. In certain failure modes or mode

Fake It Till You Make It 313

Fig. 4. Results for (a) Key rank for the ASCAD dataset having 38 400 profiling traces
trained using MLP, and (b) Key rank for the ASCAD dataset having 38 400 profiling
traces trained using ASCAD-CNN2

Fig. 5. Results for training and validation accuracy for the ECC dataset having 2 400
profiling traces

collapse scenarios, the GAN model stabilizes initially and might become unsta-
ble after a few epochs when the generator trains itself that it is hard to distin-
guish between the traces of different classes (meaning traces for all the classes
look similar). The purpose of using these two types of analysis is to demonstrate
that, in contrast to the non-convergent GAN model, the traces generated with
the well convergent GAN model only produces traces similar in characteristics
to the traces of the same class but different from the traces of the other classes.

For the GAN analysis, the training dataset consists of an equal proportion
of the real traces and the artificially generated fake traces, that is, nr = 150
and ng = 150 per class, which means that in total, 300 × 256 =76 800 traces are
in the dataset. Fake leakage signals are generated for the epochs during which
the cGAN-Siamese model achieves maximum convergence. For the minimum
convergence analysis, we combined the real traces with the artificially generated
traces in equal proportion, the same as the maximum convergence case. However,
traces are collected for the epochs during which the GAN model showed the
minimum convergence.

314 N. Mukhtar et al.

Fig. 6. Key rank for the ASCAD dataset for (a) Maximum convergence cGAN −
Siamese Model B using MLP, (b) Minimum convergence cGAN −Siamese Model B
using MLP, (c) Maximum convergence cGAN − Siamese Model B using ASCAD-
CNN1, (d) Minimum convergence cGAN−Siamese Model B using ASCAD-CNN1, (e)
Maximum convergence cGAN−Siamese Model B using ASCAD-CNN2, (f) Minimum
convergence cGAN − Siamese Model B using ASCAD-CNN2

Figure 6 shows the key rank for both maximum and minimum convergence
for all three DL-SCA models and the ASCAD dataset. We notice that generating
fake traces from the maximum convergence point significantly impacts key rank.
The maximum convergence is achieved around 100–150 epochs for Siamese −
cGAN Model B. Hence, data traces are generated around those epochs for
analysis. It is observed that with the generated traces, all models (MLP, ASCAD-
CNN1, and ASCAD-CNN2) gave the best performance, and the secret key can be

Fake It Till You Make It 315

obtained efficiently. Thus, we can conclude that the artificially generated traces
contain significant information that improved the ML-SCA performance.

Fig. 7. Training and validation accuracy on the ECC dataset collected from (a) Max-
imum convergence point, (b) Minimum convergence point

The minimum convergence is observed around initial epochs, so artificial 150
traces per class are generated around this point and are combined with the real
150 traces to train the DL-SCA model. Observe that with minimum convergence,
the DL-SCA attack model shows key rank is not stable, as it reaches zero in
certain cases and starts increasing again as can be seen from Figs. 6b and 6f .
However, for Fig. 6d (trained with ASCAD-CNN1), it appears to reach a key
rank of zero near 1 000 traces, so more investigation is required to assess this
case properly.

Figure 3 shows the GAN convergence curve for the ECC dataset. The model
trained with the proposed Siamese − cGAN Model B shows a better conver-
gence than the other three cGAN models’ losses. The traces with the maximum
convergence analysis are generated around epoch 700–1 000 (70–100 scaled in
Fig. 3), and traces for the minimum convergence are generated around 20–30
epochs. The performance accuracy is high after adding artificial traces. The
trained model with the artificial traces generated with the convergent model
(Fig. 7a) shows accuracy greater than 97% using CNN, which is nearly the same
accuracy as achieved on the real traces. However, the trained model with artifi-
cial traces, with the least convergent model, shows around 90% accuracy. While
this performance is still good, we note that it cannot be compared with the per-
formance on the real dataset. Hence, the maximum convergent model generates
the artificial traces that are more alike in characteristics to the real leakage traces
and helps in training an efficient model for profiling side-channel analysis.

316 N. Mukhtar et al.

5.5 Discussion

Based on the conducted experiments, we draw some general observations:

– GANs (more precisely, conditional GANs) represent a viable option for con-
structing synthetic side-channel traces. To improve the performance of GANs,
it is beneficial to use deeper architectures and convolutional layers.

– A combination of a Siamese network and a cGAN can further improve the
quality of the obtained synthetic examples.

– The procedure of generating fake traces is efficient and can generate hundreds
of traces in a matter of minutes.

– It is important to monitor the GAN loss carefully and use the model that
minimizes it when crafting synthetic examples.

– The combination of fake and real traces performs well regardless of the applied
deep learning-based model. What is more, we see that fake traces can improve
attack performance.

– It is possible to construct synthetic examples for various cryptographic imple-
mentations with similar success, i.e., this technique is not limited to a specific
cryptographic implementation.

6 Conclusions and Future Work

A dataset of leakage traces with insufficient traces can pose a significant problem
for accurate attack modeling using deep learning-based side-channel analysis.
Data augmentation using a Generative Adversarial Network (GAN) can be useful
for such scenarios. This work proposed a layered architecture (Siamese-cGAN)
based on cGAN and Siamese network that presents a well-convergent model
to generate artificial traces similar to real traces. We performed two sets of
analyses. In the first set of analyses, we run the experiments and present a visual
comparative analysis between the performance of the proposed model and the
existing cGAN based models for leakage signal generation. For this analysis, two
neural network-based models (MLP and CNN) have been used for modeling the
generator and the discriminator networks. The best model is selected based on
the comparative analysis. The second set of analyses evaluated the generated
fake dataset by applying the DL-SCA on the leakage datasets from the exiting
AES and ECC algorithm implementations. Four state-of-the-art neural network
architectures (one MLP and three CNNs) are used for this evaluation. We also
provided a comparative analysis of the dataset’s performance consisting of data
generated from the well-convergent network and data generated from the non-
convergent network.

The proposed Siamese-cGAN model performed better than the existing sim-
ple cGAN models for both existing symmetric and public-key datasets. The
quantitative analysis results show that the well-converged Siamese-cGAN net-
work produces fake leakage traces similar to the collected traces. Hence, they
enable a better deep learning-based model for side-channel attacks. We also
observed that the CNN-trained models performed better than MLP for the key

Fake It Till You Make It 317

recovery. We conclude that leakage traces/instances with significant contribut-
ing features can be efficiently generated. However, selecting a fully converging
model might vary for each cryptographic algorithm.

As future work, we plan to explore the limits of our approach from the per-
spective of the number of synthetic traces. Indeed, while our results indicate
that 150 traces per class are more than sufficient to construct convincing syn-
thetic data, understanding the minimum required number of traces would allow
a proper evaluation of the method’s viability. Furthermore, we used only the
intermediate value leakage model, which results in more classes and balanced
measurements per class. We plan to evaluate different leakage models like the
Hamming weight model, resulting in imbalanced data and fewer classes. Finally,
it would be interesting to explore if the GAN-based approach could generate
measurements that would help reduce the effect of portability for deep learning-
based SCA [47].

A Appendix

A.1 Siamese-cGAN Model Architectures

Fig. 8. Siamese− cGANModel A

318 N. Mukhtar et al.

Fig. 9. Siamese− cGANModel B

Fake It Till You Make It 319

References

1. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations
using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.)
SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-49445-6 1

2. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. Unleash-
ing the power of convolutional neural networks for profiled side-channel analysis.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019, 148–179 (2019)

3. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for efficient CNN
architectures in profiling attacks. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2020(1), 1–36 (2019)

4. Picek, S., Heuser, A., Guilley, S.: Profiling side-channel analysis in the restricted
attacker framework. IACR Cryptology ePrint Archive 2019, 168 (2019)

5. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class imbal-
ance and conflicting metrics with machine learning for side-channel evaluations.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(1), 209–237 (2018)

6. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data aug-
mentation against jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.)
CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-66787-4 3

7. Luo, Z., Zheng, M., Wang, P., Jin, M., Zhang, J., Hu, H.: Towards strengthening
deep learning-based side channel attacks with mixup. Cryptology ePrint Archive,
Report 2021/312 (2021). https://eprint.iacr.org/2021/312

8. Liu, M.-Y., Huang, X., Yu, J., Wang, T.-C., Mallya, A.: Generative adversar-
ial networks for image and video synthesis: algorithms and applications. CoRR,
abs/2008.02793 (2020)

9. Goodfellow, I.J., et al.: Generative adversarial nets. In: Proceedings of the 27th
International Conference on Neural Information Processing Systems - Volume 2,
NIPS 2014, pp. 2672–2680. MIT Press, Cambridge (2014)

10. Wang, P., et al.: Enhancing the performance of practical profiling side-channel
attacks using conditional generative adversarial networks (2020)

11. Kodali, N., Abernethy, J., Hays, J., Kira, Z.: On convergence and stability of GANs
(2017)

12. Salimans, T., Goodfellow, I.J., Zaremba, W., Cheung, V., Radford, A., Chen, X.:
Improved techniques for training GANs. CoRR, abs/1606.03498 (2016)

13. Mirza, M., Osindero, S.: Conditional generative adversarial nets. CoRR,
abs/1411.1784 (2014)

14. Hsu, C.-C., Lin, C.-W., Su, W.-T., Cheung, G.: SiGAN: siamese generative adver-
sarial network for identity-preserving face hallucination. CoRR, abs/1807.08370
(2018)

15. Perin, G., Chmielewski, L., Batina, L., Picek, S.: Keep it unsupervised: horizontal
attacks meet deep learning. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(1),
343–372 (2021)

16. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

17. Whitnall, C., Oswald, E., Standaert, F.-X.: The myth of generic DPA...and the
magic of learning. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 183–
205. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9 10

https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-319-66787-4_3
https://eprint.iacr.org/2021/312
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/978-3-319-04852-9_10

320 N. Mukhtar et al.

18. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005). https://doi.org/10.1007/11545262 3

19. Lerman, L., Bontempi, G., Markowitch, O.: Power analysis attack: an approach
based on machine learning. Int. J. Appl. Cryptol. 3(2), 97–115 (2014)

20. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep
convolutional generative adversarial networks. In: Bengio, Y., LeCun, Y. (eds.)
4th International Conference on Learning Representations, ICLR 2016, San Juan,
Puerto Rico, 2–4 May 2016, Conference Track Proceedings (2016)

21. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: Info-
GAN: interpretable representation learning by information maximizing generative
adversarial nets. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Gar-
nett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29, pp.
2172–2180. Curran Associates Inc. (2016)

22. Zhang, H., et al.: StackGAN: text to photo-realistic image synthesis with stacked
generative adversarial networks. In: 2017 IEEE International Conference on Com-
puter Vision (ICCV), pp. 5908–5916 (2017)

23. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity
natural image synthesis. CoRR, abs/1809.11096 (2018)

24. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep
learning. J. Big Data 6(1), 60 (2019)

25. Weissbart, L., Picek, S., Batina, L.: One trace is all it takes: machine learning-based
side-channel attack on EdDSA. In: Bhasin, S., Mendelson, A., Nandi, M. (eds.)
SPACE 2019. LNCS, vol. 11947, pp. 86–105. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-35869-3 8

26. Mukhtar, N., Mehrabi, A., Kong, Y., Anjum, A.: Machine-learning-based side-
channel evaluation of elliptic-curve cryptographic FPGA processor. Appl. Sci. 9,
64 (2018)

27. Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas, C.: Deep learning for side-
channel analysis and introduction to ASCAD database. J. Cryptogr. Eng. 10(2),
163–188 (2019). https://doi.org/10.1007/s13389-019-00220-8

28. Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot
image recognition (2015)

29. Leyva-Vallina, M., Strisciuglio, N., Petkov, N.: Generalized contrastive optimiza-
tion of Siamese networks for place recognition. CoRR, abs/2103.06638 (2021)

30. Chicco, D.: Siamese neural networks: an overview. In: Cartwright, H. (ed.) Artificial
Neural Networks. MMB, vol. 2190, pp. 73–94. Springer, New York (2021). https://
doi.org/10.1007/978-1-0716-0826-5 3

31. Database for EdDSA (2019). https://github.com/leoweissbart/
MachineLearningBasedSideChannelAttackonEdDSA

32. Wouters, L., Arribas, V., Gierlichs, B., Preneel, B.: Revisiting a methodology for
efficient CNN architectures in profiling attacks. IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2020(3), 147–168 (2020)

33. Rijsdijk, J., Lichao, W., Perin, G., Picek, S.: Reinforcement learning for hyperpa-
rameter tuning in deep learning-based side-channel analysis. IACR Trans. Cryp-
togr. Hardw. Embed. Syst. 2021(3), 677–707 (2021)

34. Lichao, W., Picek, S.: Remove some noise: on pre-processing of side-channel
measurements with autoencoders. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2020(4), 389–415 (2020)

https://doi.org/10.1007/11545262_3
https://doi.org/10.1007/978-3-030-35869-3_8
https://doi.org/10.1007/978-3-030-35869-3_8
https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/978-1-0716-0826-5_3
https://doi.org/10.1007/978-1-0716-0826-5_3
https://github.com/leoweissbart/MachineLearningBasedSideChannelAttackonEdDSA
https://github.com/leoweissbart/MachineLearningBasedSideChannelAttackonEdDSA

Fake It Till You Make It 321

35. Medwed, M., Oswald, E.: Template attacks on ECDSA. In: Chung, K.-I., Sohn,
K., Yung, M. (eds.) WISA 2008. LNCS, vol. 5379, pp. 14–27. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00306-6 2

36. Heyszl, J., Mangard, S., Heinz, B., Stumpf, F., Sigl, G.: Localized electromagnetic
analysis of cryptographic implementations. In: Dunkelman, O. (ed.) CT-RSA 2012.
LNCS, vol. 7178, pp. 231–244. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-27954-6 15

37. Batina, L., Chmielewski, �L., Papachristodoulou, L., Schwabe, P., Tunstall, M.:
Online template attacks. In: Meier, W., Mukhopadhyay, D. (eds.) INDOCRYPT
2014. LNCS, vol. 8885, pp. 21–36. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-13039-2 2

38. Batina, L., Chmielewski, L., Papachristodoulou, L., Schwabe, P., Tunstall, M.:
Online template attacks. J. Cryptogr. Eng. 9(1), 21–36 (2019)

39. Özgen, E., Papachristodoulou, L., Batina, L.: Classification algorithms for template
matching. In: IEEE International Symposium on Hardware Oriented Security and
Trust, HOST 2016, McLean, VA, USA (2016)

40. Roelofs, N., Samwel, N., Batina, L., Daemen, J.: Online template attack on
ECDSA: In: Nitaj, A., Youssef, A. (eds.) AFRICACRYPT 2020. LNCS, vol. 12174,
pp. 323–336. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51938-
4 16

41. Carbone, M., et al.: Deep learning to evaluate secure RSA implementations. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2019(2), 132–161 (2019)

42. Weissbart, L., Chmielewski, �L., Picek, S., Batina, L.: Systematic side-channel anal-
ysis of curve25519 with machine learning. J. Hardware Syst. Secur. 4(4), 314–328
(2020)

43. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Efficiency through diversity in
ensemble models applied to side-channel attacks: - a case study on public-key
algorithms -. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(3), 60–96 (2021)

44. Wu, C., Herranz, L., Liu, X., Wang, Y., van de Weijer, J., Raducanu, B.: Memory
replay GANs: learning to generate images from new categories without forgetting
(2019)

45. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://
www.deeplearningbook.org

46. LeCun, Y.A., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient BackProp. In: Mon-
tavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade.
LNCS, vol. 7700, pp. 9–48. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-35289-8 3

47. Bhasin, S., Chattopadhyay, A., Heuser, A., Jap, D., Picek, S., Shrivastwa, R.R.:
Mind the portability: a warriors guide through realistic profiled side-channel anal-
ysis. In: 27th Annual Network and Distributed System Security Symposium, NDSS
2020, San Diego, California, USA, 23–26 February 2020. The Internet Society
(2020)

https://doi.org/10.1007/978-3-642-00306-6_2
https://doi.org/10.1007/978-3-642-27954-6_15
https://doi.org/10.1007/978-3-642-27954-6_15
https://doi.org/10.1007/978-3-319-13039-2_2
https://doi.org/10.1007/978-3-319-13039-2_2
https://doi.org/10.1007/978-3-030-51938-4_16
https://doi.org/10.1007/978-3-030-51938-4_16
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1007/978-3-642-35289-8_3

	Fake It Till You Make It: Data Augmentation Using Generative Adversarial Networks for All the Crypto You Need on Small Devices
	1 Introduction
	2 Preliminaries
	2.1 Profiled Side-Channel Attacks
	2.2 Generative Adversarial Networks (GANs)
	2.3 Conditional Generative Adversarial Networks (cGANs)
	2.4 Data Augmentation
	2.5 Deep Learning Algorithms
	2.6 Siamese Neural Network
	2.7 Cryptographic Algorithms Under Evaluation

	3 Related Works
	4 Proposed Approach
	4.1 Data Splitting
	4.2 Siamese-cGAN Model for Data Augmentation
	4.3 cGAN Models for Discriminator and Generator

	5 Experiments and Results
	5.1 DL-SCA Evaluation Model Architectures
	5.2 Experimental Setup
	5.3 Analysis-1: Existing and Proposed GAN-based Approaches
	5.4 Analysis-2: Analysis of the Proposed Siamese-CGAN for DL-SCA
	5.5 Discussion

	6 Conclusions and Future Work
	A Appendix
	A.1 Siamese-cGAN Model Architectures

	References

