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Finite-Sample Analysis of Identification of
Switched Linear Systems With Arbitrary or

Restricted Switching
Shengling Shi , Member, IEEE , Othmane Mazhar, and Bart De Schutter , Fellow, IEEE

Abstract—For the identification of switched systems
with measured states and a measured switching signal, this
letter aims to analyze the effect of switching strategies on
the estimation error. The data is assumed to be collected
from globally asymptotically or marginally stable switched
systems under switches that are arbitrary or subject to an
average dwell time constraint. Then the switched system
is estimated by the least-squares (LS) estimator. To cap-
ture the effect of the parameters of the switching strategies
on the LS estimation error, finite-sample error bounds are
developed in this letter. The obtained error bounds show
that the estimation error is logarithmic of the switching
parameters when there are only stable modes; however,
when there are unstable modes, the estimation error bound
can increase linearly as the switching parameter changes.
This suggests that in the presence of unstable modes, the
switching strategy should be properly designed to avoid the
significant increase of the estimation error.

Index Terms—Identification, switched systems.

I. INTRODUCTION

THE FINITE-SAMPLE error analysis of identification
methods has recently received considerable attention [1].

When the estimated model is used for controller design, the
obtained error bound is important in understanding the effect
of the estimation error on the control performance [1]. While
several works consider the finite-sample analysis of linear
system identification [2]–[7], the finite-sample analysis for
identifying hybrid systems has rarely been addressed [8]. In
this letter, we consider the identification of a particular class
of hybrid systems, i.e., switched linear systems (which consist
of multiple linear systems corresponding to different modes).
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A practical setting is when the switching signal of a
switched system is measured, e.g., servo turntable systems [9]
and power systems with the switching signal as an input for
stabilization [10]. In this setting, the statistical analysis of
the identification problem has been considered in [11]–[13].
The authors of [11] consider a more general setup where the
outputs are measured instead of the states, and a subspace
identification method is employed. However, the estimation
procedure requires collecting data from multiple independent
trajectories obtained by restarting the system. When both the
states and the switching signal are measured, the statisti-
cal analysis of the switched LS estimator, i.e., applying the
standard LS estimator for every mode separately, has been
addressed recently in [12], [13]. The extension of the analy-
sis from the standard LS to switched LS is non-trivial, as the
covariances of the local estimators are coupled through the
system dynamics [13].

The authors in [13] have established the consistency of
the switched LS estimator; however, the result is asymptotic
and thus valid only when the data length approaches infin-
ity. The work [12] addresses the finite-sample analysis of the
switched LS estimator. The employed estimator requires sub-
sampling the data and knowing the noise covariance, typically
an unknown quantity. Furthermore, all the above three works
model the switching signal as a stochastic process, i.e., an i.i.d.
process or a Markov chain. This model may not be suitable
for some situations, e.g., when the switching is an external
input or caused by state-space partition.

This letter aims to derive a finite-sample estimation error
bound for the LS estimation of switched linear systems from
the measured states and the measured switching signal. We
consider the typical classes of deterministic switching signals,
including arbitrary switching and switching with an average
dwell time constraint [14]. Under the considered classes of
switching signals, we assume the nominal switched system to
be globally marginally or asymptotically stable.

A preliminary estimation error bound is first obtained by
extending the results in [3] for linear systems; however, the
resulting bound contains the Gramian of the switched system,
which depends on the measured switching sequence. To obtain
an error bound that generally holds, independently of any real-
ization of the switching signal, and that captures the effect of
the parameters of the switching strategies, data-independent
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bounds on the spectrum of the Gramian are developed and
then combined with the preliminary bound. In summary, the
contributions of this letter are as follows:

• The existing data-independent finite-sample error bound
in [3] for linear system identification is extended to
switched systems.

• Data-independent error bounds for the spectrum of the
Gramian are developed for the switched system.

Notation

For any positive integer k, [k] denotes the set {1, 2, . . . , k}.
Given any real matrix M, ρ(M) denotes its spectral radius,
σmax(M) denotes its maximum singular value, σmin(M)

denotes the minimum singular value, and M† denotes its pseu-
doinverse. Given two symmetric matrices M and H, M ≤ H
and M < H means that H − M is positive semi-definite and
positive definite, respectively. For any real number c, �c� and
�c� denote the floor function and the ceiling function, respec-
tively. For the summation

∑k1
j=k0

aj of any sequence with some

integers k0, k1, we define
∑k1

j=k0
aj � 0 if k1 < k0.

II. PROBLEM FORMULATION

Consider the discrete-time switched linear system:

xt+1 = Awt xt + et, (1)

where t ∈ Z
+ is the time step, xt ∈ R

n is the state vector,
wt is the deterministic switching signal satisfying wt ∈ [s]
with s a positive integer, and et is a sub-Gaussian distributed
white noise vector with variance proxy 1 and E(ete	

t ) = I.
The (nominal) system is said to be (globally) marginally sta-
ble1 if, when the noise is absent, there exists a b such that
‖xt‖2 ≤ b‖x0‖2 for any t and any x0. Similarly, (nominal)
global asymptotic stability is defined when the noise is absent.

We consider the LS estimation of the switched system given
the measurements in {(xt, wt)}N

t=1, when the switched system is
(globally) asymptotically or marginally stable. For simplicity,
we assume x0 = 0 for the data collection. For any mode i ∈ [s],
let Ti ⊆ [N − 1] denote the subset of time steps when mode
i is active, i.e., wt = i for all t ∈ Ti, and Ni ∈ Ti denotes the
last time step when mode i is active.

Then the LS estimator for mode i is

Âi = arg min
Ai

∑

t∈Ti

‖xt+1 − Aixt‖2
2,

=
⎛

⎝
∑

t∈Ti

xt+1x	
t

⎞

⎠

⎛

⎝
∑

t∈Ti

xtx
	
t

⎞

⎠

†

. (2)

Equation (2) leads to

Âi − Ai = SiX
†
i , (3)

where Si �
∑

t∈Ti
etx	

t , Xi �
∑

t∈Ti
xtx	

t . Therefore, the main

goal is to derive a high-probability error bound for ‖SiX
†
i ‖2.

In addition, we focus on developing an error bound that is

1While different definitions for marginal stability exist, we follow the notion
in [15].

data-independent and captures the dependence on the param-
eters of the switching strategies. Data-independent bounds are
more theoretically informative than data-dependent ones as
they reveal how they scale with the properties of the unknown
system and the parameters of the switching signal [1]. They
also provide the worst-case guarantees as they hold for any
realization of the data.

Before we address the above problem, let us define some
notations. For any time step t, we adopt a shorthand notation:
A(t) � Awt . For any two positive integers j ≥ k, we define
A(j:k) � A(j)A(j−1) · · · A(k) and A(j:k) � I when j < k. Then for
any t, we have

xt = A(t−1:0)x0 +
t−1∑

i=0

A(t−1:t−i)et−1−i. (4)

We define the Gramian of the system:

�t �
t−1∑

i=0

A(t−1:t−i)A
	
(t−1:t−i), (5)

and it can be found that E(xtx	
t ) = �t.

Remark 1: The results in this letter remain valid if et is
replaced by a more general noise source ηt = σeet in (1),
which has E(ete	

t ) = σ 2
e I. This new noise will lead to the

same LS estimate (2) due to the cancellation of σe in (2).

III. PRELIMINARY ERROR BOUND

In this section, we obtain a preliminary high-probability
bound for ‖Ai − Âi‖2 by applying the result for linear system
identification. In particular, we start from the finite-sample
bound in [3]. While there are other bounds available for linear
systems, the one in [4] is derived for asymptotic stable system
only, and the one in [2] has an additional parameter introduced
by the analytical method.

Since the switching signal is deterministic, the bound in [3]
for linear systems extend to the estimation error of this let-
ter with the difference that the Gramian for linear systems
is replaced by the Gramian in (5). To this end, we first
define T(0) � K(n + ln 2

δ
), where K is some positive con-

stant. Then following [3, Secs. 4, 9] analogously, the following
high-probability error bound for one mode can be obtained.

Theorem 1: For any δ ∈ (0, 1/4), if n ≥ 2 and |Ti| ≥
max{T(0), 64n ln

(
tr(�Ni − I) + 1

)+ 128n ln

(
5

δ

)

}, (6)

then with probability at least 1 − 4δ, we have ‖Âi − Ai‖2 ≤
1√|Ti|

√

32n

[
1

2
ln
(
4tr(�Ni) + 1

)+ ln

(
5

δ

)]

. (7)

The result admits a less compact formulation when n = 1 [16].
The bound in (7) decreases as |Ti| increases, and it holds uni-
formly for all the modes with probability at least 1 − 4sδ for
any δ ∈ (0, 1/(4s)). The lower bound (6) requires a mode to be
visited sufficiently often and is related to the persistent excita-
tion of the state measurements, i.e., it ensures that

∑
t∈Ti

xtx	
t

in (2) is invertible and also well-conditioned with high prob-
ability. Similar requirements for the switching sequence also
appear, e.g., in [17].
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Remark 2: The constant K in T(0) is due to a concentration
inequality of sub-Gaussian random matrices, see [3, Propsition
8.3]. Concentration inequalities and the resulting finite-sample
results are typically not precise and hold up to some unspeci-
fied constants, as discussed in [18] and shown in [2]–[4]. The
main objectives of interest are typically the change rate of
the guarantees when important parameters change, e.g., the
sample size or the state dimension.

The bound (7) depends on the switching sequence {wt}N
t=1

due to the Gramian �Ni . Given that tr(�T) ≤ nλmax(�T),
we will further upper bound λmax(�T) for a certain class of
switching signals using the properties of the switching class.
Combining this upper bound with the results in this section
will lead to estimation error bounds that capture the depen-
dence on the parameters of switching strategies. These error
bounds can reveal how the properties of the switching signal
influence the estimation error.

Note that the derived bounds for the Gramian in the follow-
ing sections are also applicable to other finite-sample bounds
for linear system identification [2], [4], [5] when extended
to switched systems, as the Gramian is an essential object
in these bounds. In addition, since λmin(�T) can also be of
interest, e.g., in [2], [4], the analysis of the lower bound for
λmin(�T) can be found in [16].

IV. SPECTRAL PROPERTIES OF THE GRAMIAN

To derive a bound for λmax(�T) that captures the parame-
ters of the switching strategies, the properties of the switching
signal should be further specified. In this letter, we consider
the typical classes of deterministic switching signals that are
arbitrary or under time restriction [14].

In addition, both sides of (6) depend on |Ti|; this is clear
when only a single mode is active, i.e., Ni = |Ti|. Thus,
λmax(�T) should not grow too fast as T increases; otherwise,
there may not exist a Ti for (6) to hold. To control the growth
rate of λmax(�T), the (nominal) switched system is assumed
to be asymptotically or marginally stable under switching.

A. Arbitrary Switching

We first consider systems that are marginally or asymp-
totically stable under arbitrary switching, i.e., any switching
sequence. The following stability condition follows immedi-
ately from [14, Th. 6].

Lemma 1: The switched system is globally marginally sta-
ble under arbitrary switching (or asymptotically stable) if there
exists a positive integer m such that ‖As1 · · · Asm‖2 ≤ 1 (or
‖As1 · · · Asm‖2 < 1) for all sj ∈ [s] and j = 1, . . . , m.

In the above case, we say that the switched system is glob-
ally marginally or asymptotically stable with stability horizon
m. Here, m can be interpreted as a safe time horizon, within
which any switching sequence will not affect stability. It has
been shown in [14] that if global asymptotic stability and the
∞-norm are considered instead, the above condition is suffi-
cient and necessary. In this letter, we consider the 2-norm to
facilitate our analysis of λmax(�T). With this result, we aim
to upper bound λmax(�T) as a function of m.

Theorem 2: Define σmax � maxi∈[s] σmax(Ai). If there exist
a positive integer m and a real number amax ∈ [0, 1] such that

‖As1 · · · Asm‖2 ≤ amax for all sj ∈ [s] and j = 1, . . . , m, then
it holds that

λmax(�T) ≤
(

m−1∑

i=0

σ 2i
max

) �(T−1)/m�∑

j=0

a2j
max. (8)

Proof: For any i ∈ {0, 1, . . . , T − 1}, it holds that i =
�i/m�m + bi for some non-negative integer bi < m. This leads
to ‖A(T−1,T−i)‖2 ≤ ‖A(T−1,T−bi)‖2×

‖AT−bi−1,T−bi−m‖2 · · · ‖A(T−i+m−1,T−i)‖2

≤ a�i/m�
max ‖A(T−1,T−bi)‖2 ≤ σ bi

maxa�i/m�
max . (9)

Since �i/m� ∈ {0, . . . , �(T − 1)/m�} and bi < m, it holds that
λmax(�T) ≤

T−1∑

i=0

‖A(T−1:T−i)‖2
2 ≤

�(T−1)/m�∑

j=0

[

a2j
max

(
m−1∑

b=0

σ 2b
max

)]

,

which concludes the upper bound.
The upper bound can be simplified in special cases.
Corollary 1: In the setting of Theorem 2, if σmax �= 1 holds

additionally, we have

λmax(�T) ≤ p(�T/m� + 1), (10)

where p � (1 − σ 2m
max)/(1 − σ 2

max);
The above corollary also covers the situation with σmax > 1,
and combining it with (7) can lead us to an estimation error
bound that depends on the stability horizon m:

Corollary 2: For any δ ∈ (0, 1/4), if the switched system is
globally marginally stable under an arbitrary switching signal
with stability horizon m, and if it holds that σmax �= 1, n ≥ 2
and |Ti| ≥ max{T(0),

64n ln
(
n
[
p(�Ni/m� + 1) − 1

]+ 1
)+ 128n ln

(
5

δ

)

}, (11)

then with probability at least 1 − 4δ, we have ‖Âi − Ai‖2 ≤
1√|Ti|

√

32n

[
1

2
ln
[
4np(�Ni/m� + 1) + 1

]+ ln

(
5

δ

)]

.

The above error bound is logarithmic of 1/m, and thus the
increase of the stability horizon m leads to a slow decrease
in the error bound. Intuitively, given a data length N, a larger
m leads to less informative state measurements and thus a
smaller Gramian in (7), which decreases the error bound.
The decay rate of the bound in terms of the data length
is O(

√
(ln N)/|Ti|), which agrees with the asymptotic anal-

ysis in [13, Corollary 4]. Furthermore, when the nominal
system is asymptotically stable, i.e., amax < 1, we have
λmax(λT) ≤ m/(1 − a2

max), and combing this bound with (7)
shows that the estimation error of each mode is O(1/

√|Ti|),
which matches the optimal decay rate of the LS estimator
for asymptotically stable linear systems [4]. In addition, (11)
requires |Ti| to scale with the state dimension as O(n ln(n)),
which is in line with the rate in [2].

Remark 3: The bound in Corollary 2 is pseudo-data-
independent, as |Ti| still varies over different switching
sequences in the considered class of switching signals, i.e.,
arbitrary switching in this section. We choose to keep |Ti| in
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the bound, as the data size of a particular mode is valuable
information for identifying one mode. In some situations, e.g.,
with a stochastic switching that visits every mode with a pos-
itive probability, it is possible to substitute |Ti| by a function
of the total sample size N, e.g., see a similar step taken in [13]
for the asymptotic analysis. Then the bound becomes less tight
but completely data-independent.

B. Minimum Dwell Time

Time-restricted switching is a standard switching strategy
in the control of switched systems [14]. The intuition is that
if the system does not switch too often or stay too long at
unstable modes, the overall switched system can be stable.
We first consider switching with a dwell time constraint, where
each mode is stable, and the system stays in each mode for
a sufficiently long time such that the overall system is stable.
The concept of dwell time is defined as follows.

Definition 1 [14]: A positive integer τ is called a dwell
time of a switching signal if the time interval between two
consecutive switchings is not smaller than τ .

To characterize λmax(�T) using the dwell time, we first
define several new variables that capture the system properties.
Let all Ai be Schur stable in this subsection, and there always
exist real constants ρ < 1 and ci ≥ 1 such that ‖Ak

i ‖2 ≤ ciρ
k

holds for any positive integer k and any i ∈ [s] [19]. Then, we
define c � maxi∈[s] ci.

Finally, when the dwell time of the switching signal is larger
than a minimum dwell time τ 	 such that the switched system
is marginally stable or asymptotically stable, we can upper
bound λmax(�T) as a function of the minimum dwell time
and the constants c, ρ.

Theorem 3: Suppose that ρ(Ai) < 1 holds for all i ∈ [s],
and let τ 	 be any positive integer such that ‖Aτ	

i ‖2 ≤ a �
cρτ	 ≤ 1. If the dwell time τ of the switching signal in (1)
satisfies τ ≥ τ 	, we have

•

λmax(�T) ≤ 1 + c4 ρ2

1 − ρ2

(

1 + T

τ 	

)

; (12)

• if a < 1 also holds, we have

λmax(�T) ≤ 1 + c4 ρ4

1 − ρ2

(

1 + 1 − a�T/τ	�

1 − a

)

. (13)

Proof: Let P denote the number of switches within the time
step interval [0, T −1], and for any j ∈ [P], tj denotes the first
time step of the new mode after the j-th last switch, e.g., t1 is
the first time step after the last switch. Therefore, for the term
A(T−1,T−i) in �T and if T − i < t1, we have for some j ∈ [P],
‖A(T−1,T−i)‖2 ≤

‖A(T−1,t1)‖2 · · · ‖A(tj−1−1,tj)‖2‖A(tj−1,T−i)‖2

≤ aj−1‖A(T−1,t1)‖2‖A(tj−1,T−i)‖2,

where the last inequality follows from the minimum dwell
time condition, and a = cρτ	 ≤ 1.

According to the defined variables c and ρ, it holds that

‖A(tj−1,T−i)‖2 ≤ cρtj−T+i, ‖A(T−1,t1)‖2 ≤ cρT−t1 .

If T − i ≥ t1, ‖A(T−1,T−i)‖2 ≤ cρi. Therefore, we have

λmax(�T) ≤
T−1∑

i=0

‖A(T−1,T−i)‖2
2 ≤ 1 +

T−t1∑

j=1

(cρj)2

+ (cρT−t1)2

⎡

⎣
P−1∑

j=1

aj−1

⎛

⎝
tj−tj+1∑

i=1

(cρi)2

⎞

⎠+ aP−1
tP−1∑

k=1

(cρk)2

⎤

⎦.

Given ρ < 1 and a ≤ 1, for any positive integer N, we have
∑N

k=1 ρ2k ≤ ρ2

1−ρ2 , which leads to

λmax(�T) ≤ 1 + c2 ρ2

1 − ρ2

(
1 + Pc2ρ2(T−t1)

)

≤ 1 + c2 ρ2

1 − ρ2

(
1 + Pc2

)
≤ 1 + c4 ρ2

1 − ρ2

(

1 + T

τ 	

)

.

Finally, if a < 1, we have λmax(�T) ≤ 1 + c4 ρ2

1−ρ2 (1 +
∑P

j=1 aj−1). The fact that P ≤ �T/τ	� together with the above
equation concludes the last bound.

The first bound (12) is valid when the switched system is
marginally stable, which is guaranteed by ‖Aτ	

i ‖2 ≤ cρτ	 ≤
1. The bound (12) shows that a smaller τ 	 leads to a larger
bound for λmax(�T), which can be interpreted as the effect
of more frequent switching on the more informative states.
The bound (13) is valid when the switched system is globally
asymptotically stable. Then combining (12) and (7) leads to
the following estimation error bound.

Corollary 3: In the setting of Theorem 3, for any δ ∈
(0, 1/4), if it holds additionally that n ≥ 2 and |Ti| ≥
max{T(0),

64n ln

[

n
c4ρ2

1 − ρ2

(

1 + Ni

τ 	

)

+ 1

]

+ 128n ln

(
5

δ

)

},

then with probability at least 1 − 4δ, we have ‖Âi − Ai‖2 ≤
1√|Ti|

√

32n

[

ln
1

2
[4nL + 1] + ln

(
5

δ

)]

,

where L = (1 + c4 ρ2

1−ρ2 (1 + Ni
τ	 )).

Given |Ti|, the above bound is logarithmic of 1/τ	, and thus
a smaller minimum dwell time leads to a slow increase of the
error bound, while the error bound is dominated by the sample
size |Ti| and the state dimension n.

V. SPECTRAL PROPERTIES OF THE GRAMIAN WITH

AVERAGE DWELL TIME

The so-called average dwell time constraint limits the num-
ber of switches in each time period, and it is less restrictive
than the requirement for the minimum dwell time in the fol-
lowing two aspects: (i) Unstable modes are allowed to exist,
while stability can still be guaranteed by the switching signal;
(ii) switches can happen consecutively [19]. In this section, we
aim to upper bound λmax(�T) when the switching signal satis-
fies an average dwell time constraint. We consider the possible
existence of unstable modes: assume ρ(Ai) < 1 for i ∈ [s0],
with some s0 < s, and ρ(Aj) ≥ 1 for all j ∈ {s0 + 1, . . . , s}.
In addition, there always exist positive real numbers λ1 < 1,
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λ2 ≥ 1, and Cv ≥ 1 with v ∈ [s], such that for any positive
integer k, it holds that ‖Ak

i ‖ ≤ Ciλ
k
1 and ‖Ak

j ‖ ≤ Cjλ
k
2, where

i ∈ [s0] and j ∈ {s0 + 1, . . . , s} [19]. Then we define

C = max
v∈[s]

{Cv}. (14)

Motivated by the class of switching signals in [19], we con-
sider a slightly different class of switching signals in order
to control the growth rate of λmax(�T). To introduce it, let
Nw(0, t) denote the number of switches of wt within the time
step interval [0, t). Let K−(0, t) and K+(0, t) denote the num-
ber of time steps of the stable and unstable modes within the
time step interval [0, t), respectively. Then the considered class
of switching signals is defined as follows.

Definition 2: Given λ ∈ (λ1, λ2), λ	 ∈ (λ1, λ], τa > 0, a
non-negative integer N0, and a positive integer h, a class of
switching signals, denoted by S(τa, N0, λ, λ	, h), satisfy the
following condition: for any positive integer j, it holds that

1) K−((j − 1)h, jh) ≥ rK+((j − 1)h, jh), (15)

where r � (ln λ2 − ln λ	)/(ln λ	 − ln λ1), and

2) Nw((j − 1)h, jh) ≤ N̄w. (16)

where N̄w � N0 + h/τa.
The conditions (15) and (16) constrain the number of unstable
modes and switches in the time step intervals with length h.
The condition (16) indicates that if the first N0 switches are
ignored, then the average time step interval between two con-
secutive switches should be at least τa, and τa is thus called the
average dwell time [19]. These conditions are extended from
the ones in [19], where the same conditions hold with h = T
and j = 1. Intuitively, (15) and (16) lead to more evenly dis-
tributed unstable modes in a switching sequence, which can
facilitate our analysis of �T . We should also note that (15)
and (16) are not restrictive if h is sufficiently large.

Given the defined class of switching signals, it is a straight-
forward extension of [19, Th. 3] to show the stability of the
nominal switched system.

Lemma 2:
• If C = 1 and λ	 ≤ 1

(
or λ	 < 1

)
hold, then the switched

system is globally marginally stable (or asymptotically
stable) for any switching signal w ∈ S(τa, N0, λ, λ	, h)

with any N0, τa, λ and h;
• If C > 1, λ ∈ (λ1, 1), λ	 ∈ (λ1, λ) hold, and N0 satis-

fies N0 ln(C) ≤ −h ln(λ)
(
or N0 ln(C) < −h ln(λ)

)
, then

there exists a τ 	
a such that the switched system is glob-

ally marginally stable (or asymptotically stable) for any
switching signal w ∈ S(τ 	

a , N0, λ, λ	, h).
Proof: Recall C defined in (14), and thus (15) implies

‖A(jh−1:(j−1)h)‖2 ≤ CNw((j−1)h,jh)(λ	)h, (17)

for any positive integer j, and thus the first statement holds
trivially. If C > 1, then following a reasoning similar to the
proof of [19, Th. 3], there exists

τ 	
a = ln(C)/(ln λ − ln λ	), (18)

such that given N0 ≤ −h ln(λ)/ ln(C), (16) implies

CNw((j−1)h,jh)(λ	)h ≤ CN0λh ≤ 1. (19)

The above last inequality is strict if N0 < −h ln(λ)/ ln(C).
Then for any t, there exists a non-negative integer b < h

such that t = �t/h�h + b. Based on (17) and (19), we have
‖xt‖2 ≤

‖A(t−1:t−b)‖2‖A(�t/h�h−1:(�t/h�−1)h)‖2 · · · ‖A(h−1:0)‖2‖x0‖2

≤ ‖x0‖2(Cλ2)
h−1

�t/h�∏

j=1

[
(C)Nw((j−1)h,jh)(λ	)h

]

Therefore, if N0 ≤ −h ln(λ)/ ln(C), we have (19) and thus,
the system is marginally stable. If N0 < −h ln(λ)/ ln(C), the
system is then asymptotically stable.

In the above result, the case with C = 1 covers the sit-
uation where all the modes Ai are diagonal matrices; when
C > 1, stability is achieved by upper bounding N0, while
in [19] N0 can be chosen arbitrarily. However, the upper bound
−h ln(λ)/ ln(C) is not restrictive if h is sufficiently large.

Finally, with the considered class of switching signals, an
upper bound for λmax(�T) can be obtained.

Theorem 4: Given a switched system with a switching sig-
nal in S(τa, N0, λ, λ	, h), if it satisfies either (i) C = 1
and λ	 ≤ 1, or (ii) C > 1, λ ∈ (λ1, 1), λ	 ∈ (λ1, λ),
N0 ln(C) ≤ −h ln(λ) and τa = τ 	

a defined in (18), then it
holds that

λmax(�T) ≤ g(k0) + g(h)f (k0)
2�T/h�, (20)

where the function g is defined in (22), the function f is defined
in (21), and k0 = T − h�T/h�.

Proof: We first consider the time step interval [(j−1)h, jh),
for every positive integer j. Let K̄+ � �h/(1 + r)� be
the maximum allowable number of unstable modes in [(j −
1)h, jh) according to (15). Then for i = 0, 1, . . . , h, we have
‖A(jh−1:jh−i)‖2 ≤

f (i) �

⎧
⎪⎪⎨

⎪⎪⎩

CN̄wλi
2 if 1 ≤ i ≤ K̄+

CN̄wλK̄+
2 λi−K̄+

1 if h > i > K̄+
1 if i = 0
a if i = h

, (21)

where it holds a = (λ	)h in case (i) according to (17),
or a = CN0λh in case (ii) due to (19). Then it holds that∑b−1

i=0 ‖A(jh−1:jh−i)‖2
2 ≤ g(b) � 1 + C2N̄w×

⎡

⎣
min{b−1,K̄+}∑

j=1

λ
2j
2 + λ2K̄+

2

min{b−1,h−1}∑

k=K̄++1

λ
2(k−K̄+)
1

⎤

⎦, (22)

where b ∈ {1, 2, . . . , h}, and g(0) � 0. Then for any
T , there exists a k0 < h such that T = �T/h�h +
k0. If i > k0, based on (19) we have ‖A(T−1:T−i)‖2 ≤
a�(i−k0)/h�‖A(T−1:T−k0)‖2‖A(jh−1:jh−l)‖2, for some positive
integer j and some l ∈ {0, . . . , h − 1}. Therefore, it holds
λmax(�T) ≤ ∑T−1

i=0 ‖A(T−1:T−i)‖2
2 ≤∑k0−1

j=0 ‖A(T−1:T−j)‖2
2

+‖A(T−1:T−k0)‖2
2

⎛

⎝
�T/h�−1∑

j=0

a2j
h−1∑

l=0

‖A(kjh−1:kjh−l)‖2
2

⎞

⎠

≤ g(k0) + g(h)f (k0)
2

�T/h�−1∑

j=0

a2j, (23)
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Fig. 1. In (a), the bound (20) is compared with λmax(�T ), where the
bound correctly capture the behavior of λmax(�T ); the resulting estima-
tion error bound for the unstable mode is shown in (b) and is compared
to 300 error trajectories resulting from 300 noise realizations. The bound
captures the behavior of the error up to a constant, i.e., its magnitude is
conservative but captures the decay trend.

where kj = 1, . . . , �T/h�. The result is obtained from a =
(λ	)h ≤ 1 in case (i) and a = CN0λh ≤ 1 in case (ii).

The bound of the above result shows λmax(�T) = O(T) for
marginally stable systems. When the system is asymptotically
stable, a bound can be obtained by exploiting (23) and a < 1.
To better interpret the upper bound, we consider the special
case where h is a factor of T .

Corollary 4: In the setting of Theorem 4, if T−h�T/h� = 0
also satisfies, then it holds that

λmax(�T) ≤ �T/h�

×
[

1 + C2N̄w

(
λ

2(K̄++1)
2 − λ2

2

λ2
2 − 1

+ λ2K̄+
2

λ2
1 − λ

2(h−K̄+)
1

1 − λ2
1

)]

,

where K̄+ � �h/(1 + r)�.
Given h, the above bound increases if more switches are

allowed, i.e., a larger N̄w, or if more unstable modes can be
active, i.e., a larger K̄+. In addition, the bound admits an
exponential growth rate in h: Let C = 1, then λmax(�T) is
O(�T/h�λk1h

2 ) for some positive constant k1, and if T ≥ h
holds, this bound increases exponentially as h increases. This
is due to that a larger time interval h in Definition 2 allows the
unstable modes to be active continuously for a longer period,
and it further leads to a linear dependence on

√
h in the estima-

tion error bound (7), in contrast to the logarithmic dependence
on the switching parameters in Corollaries 2 and 3. Therefore,
h should be limited to avoid the potential significant increase
of the estimation error.

With the above bounds, a bound for the LS estimation error
can be obtained by combining (7) and (20). A numerical exam-
ple is shown in Fig. 1, and the data is generated by a two-mode
system which contains A1 = diag(0.5, 0.5), A2 = diag(2, 2)

and satisfies the case (i) in Theorem 4.

VI. CONCLUSION

Finite-sample error bounds are developed for the LS esti-
mation of switched systems, such that the bounds capture the
effect of the parameters of the switching strategies. It is shown
that when there are only stable modes, the bound is logarithmic
of the switching parameters; however, the presence of unsta-
ble modes leads to a linear increase of the error bound as the

change of the switching parameter. This suggests that when
there are unstable modes, the switching signal should be prop-
erly designed to avoid a significant increase in the estimation
error. While the developed theoretical error bounds are conser-
vative as they concern the worst-case estimation error under
the considered classes of switching signals, they reveal how
the estimation error scales with the sample size and the impor-
tant parameters of the switched systems. Future work includes
the application of the developed bounds to analyze the sample
complexity of hybrid controllers [1], the development of less
conservative bounds for practical applications, and the con-
sideration of output measurements and unmeasured switching
signal.
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