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Generalized Signal Models and Direct FID-Based
Dielectric Parameter Retrieval in MRI

Patrick S. Fuchs , Student Member, IEEE, and Rob F. Remis

Abstract— In this article, we present full-wave signal models
for magnetic and electric field measurements in magnetic res-
onance imaging (MRI). Our analysis is based on a scattering
formalism in which the presence of an object or body is taken
into account via an electric scattering source. We show that these
signal models can be evaluated, provided that Green’s tensors
of the background field are known along with the dielectric
parameters of the object and the magnetization within the excited
part of the object. Furthermore, explicit signal expressions are
derived in the case of a small homogeneous ball that is embedded
in free space and for which the quasi-static Born approximation
can be applied. The conductivity and permittivity of the ball
appear as explicit parameters in the resulting signal models
and allow us to study the sensitivity of the measured signals
with respect to these dielectric parameters. Moreover, for free
induction decay signals, we show through simulations that,
under certain conditions, it is possible to retrieve the dielectric
parameters of the ball from noise-contaminated induction decay
signals that are based on electric or magnetic field measurements.

Index Terms— Born approximation, dielectric parameter
retrieval, free induction decay (FID), magnetic resonance imaging
(MRI), scattering formalism.

I. INTRODUCTION

THE influence of biological tissue on a typical magnetic
resonance imaging (MRI) experiment (and previously in

nuclear magnetic resonance (NMR) or zeugmatography [1])
has been investigated almost as long as the imaging modality
exists. Most of this research has focused on the signal-to-noise
ratio (SNR) of the received signals [2] and on the influence
of tissue on the antenna sensitivity patterns [3]. Both of these
aspects play an important role in understanding the structure
of the received signal, of course, and are taken into account in
signal optimization frameworks as shown in the recent work
[4], for example. However, the influence of scattering currents
induced in biological tissue through the magnetization itself is
neglected in research on this matter up till now.

Due to the relationship between the SNR and the MRI
background field, there is a continuing push to higher field
strengths to achieve improved SNRs and faster scan times.
These improvements do come at a cost as with higher field
strengths also the frequency at which the MRI measurement
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is performed increases. This higher frequency leads to new
challenges in RF coil design, for example, and the received
signals are generally more sensitive to changes in the dielectric
(tissue) parameters as well.

In RF coil design, a major challenge at higher fields is
to achieve a uniform excitation of the region of interest
(ROI). Since the size of the object is on the order of the
wavelength, nonuniform RF fields and interference patterns
may appear within the ROI. Possible solutions are increasing
antenna array sizes and combining antenna types although it
has been demonstrated that such an approach has diminishing
returns for larger array sizes [5]. Another approach is varying
the array elements, using dipoles [6], combining loops and
dipoles [7], [8], or using “special” fractionated dipoles [9].
In most of these approaches, the goal is to optimize the so-
called ultimate intrinsic SNR (UISNR) or, in other words, to
approximate ideal current patterns, which would lead to the
highest SNR [4]. Originally, the term UISNR was introduced
in [10] but additions have been made ever since, covering
parallel MRI [11], current patterns required to attain this ratio
[4], and addition of the specific absorption rate (SAR) [12].

For the SAR, all the abovementioned challenges are com-
bined, as the higher heterogeneity of the RF fields leads to
a local increase in tissue heating, which limits the amount
of current that can be used to power measurement and,
thus, limits the SNR that can be obtained for specific field
strength and antenna array. Validated simulation techniques
may be used to obtain more accurate local SAR estimates
and may lead to antenna designs with reduced restrictions
on the antenna currents that can be employed, or dielectric
pads (passive shimming) can be used to improve the field
homogeneity and reduce local heating effects [13].

In this article, we focus on the signal modeling part and
derive full-wave signal models based on Maxwell’s equations.
Electric and magnetic field measurements are considered, and
we show that the resulting signals are due to the time-varying
magnetization inside the object and the induced electric scat-
tering currents, each weighted by their own receive field as
determined by the coil or antenna that is used for recep-
tion. The signal models can be explicitly evaluated provided
Green’s tensors of the background medium and the medium
parameters of the object are known. Moreover, to gain further
insight into how the electromagnetic medium parameters of
the object influence the measured signal, explicit time- and
frequency-domain signal models are derived for a special
case, where the background medium consists of air and the
object is a homogeneous ball that is uniformly excited and
for which the Born approximation applies. Quasi-static signal
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representations are derived from the full-wave signal models,
and through a series of numerical experiments, we verify our
models for the received signals. Finally, we demonstrate that,
under certain conditions, it is possible to retrieve the dielectric
parameters of the ball from measured free induction decay
(FID) signals that are based on electric or magnetic field
measurements. Electromagnetic field simulations are presented
in which we validate our approach.

We present our analysis in the Laplace- or s-domain since
it allows us to easily obtain frequency-domain solutions by
letting s → jω via the right-half of the complex s-plane or
time-domain field responses using standard Laplace transfor-
mation rules.

II. THEORY

Let Dobj be a bounded domain occupied by a penetrable
object that is present in an MR scanner. We assume that
the complete object or part of this object has been excited
during the transmit state of the scanner. More precisely, we
assume that the temporal derivative of magnetization ∂t M(x, t)
is nonzero within the subdomain Dex ⊆ Dobj and vanishes
outside this domain. In other words, ∂t M(x, t) has the domain
Dex as its spatial support and Dex = Dobj if the complete object
is excited.

Measurements are carried out outside the object and take
place in free space. To set up the data models that describe our
measurements, we first consider a surface S with unit normal
ν and closed boundary curve C with a unit normal τ along this
curve such that τ and ν are oriented according to the right-
hand rule. The surface S has an area A, and the position vector
of its barycenter is denoted by xR. The surface is completely
located in air and is used to measure the electromotive or
magnetomotive force given by

V̂emf(s) =
∫

x∈C
Ê · τ d� and Îmmf(s) =

∫
x∈C

Ĥ · τ d� (1)

respectively. Using Maxwell’s equations and assuming that the
area A of the surface is sufficiently small (diameter much
smaller than the smallest wavelength of interest), we have

V̂emf(s) = −s
∫

x∈S
B̂ · ν dA ≈ −sμ0 A Ĥ(xR, s) · ν (2)

where we have used B̂ = μ0Ĥ since the measurement
surface S is located in air. Similarly, for the magnetomotive
force, we obtain

Îmmf(s) = s
∫

x∈S
D̂ · ν dA ≈ sε0 A Ê(xR, s) · ν (3)

where we have used D̂ = ε0Ê. Assuming that a measurement
is linear and time-invariant, we can generalize our field mea-
surement description to

d̂h(s) =
∫

x∈Drec

m̂h(x, s) · Ĥ(x, s) dV (4)

and

d̂e(s) =
∫

x∈Drec

m̂e(x, s) · Ê(x, s) dV (5)

in which a volumetric receiver is used to obtain the measured
signals. The receiver is completely located outside the object
and occupies the receiver domain Drec, and its action on the
electromagnetic field inside the receiver domain is described
by the vectorial receiver functions m̂h and m̂e for magnetic
and electric field measurements, respectively. Note that the
electromotive and magnetomotive forces are special cases of
(4) and (5). In particular, with

m̂h(s) = sμ0 Aδ(x − xR)ν (6)

and

m̂e(s) = sε0 Aδ(x − xR)ν (7)

we have d̂h(s) = −V̂emf(s) and d̂e(s) = Îmmf(s). Since an elec-
tromotive force measurement is characterized by (4) and (6),
these equations provide a model for a magnetic field mea-
surement. Similarly, a magnetomotive force measurement is
characterized by (5) and (7), and these equations provide a
model for an electric field measurement. In the following, we
take the general signal models (4) and (5) as a starting point
and consider the electromotive and magnetomotive forces as
special cases.

A. Scattering Formalism

To further develop the signal models (4) and (5), the
magnetic and electric field strengths inside the receiver domain
are obviously required. To this end, we set up a scattering for-
malism and write the electromagnetic field as a superposition
of a background and a scattered field. The background field
is defined as the field that is present when the constitutive
parameters within the object domain are the same as the
parameters of the background medium, while the scattered
field takes the presence of the object into account. Assuming
that the background can be accurately described by a back-
ground conductivity σb(x), a background permittivity εb(x),
and a permeability μb(x), the Laplace-domain background
field satisfies Maxwell’s equations

−∇ × Ĥb + σbÊb + sεbÊb = 0 (8)

and

∇ × Êb + sμbĤb = −K̂ (9)

where K̂ is the Laplace transform of μ0∂t M with M(x, t)
being the time-varying magnetization with the domain Dex

as its spatial support. Across interfaces where the background
medium parameters exhibit a jump, the above Maxwell’s equa-
tions have to be supplemented by the appropriate boundary
conditions, and if perfectly conducting structures are present
in the background configuration, then the boundary condition
for a perfectly conducting structure has to be included as
well, of course. For general inhomogeneous background con-
figurations that can be described in terms of the background
medium parameters, the above Maxwell’s equations can only
be solved numerically. Formally, however, we can express the
electromagnetic background field in terms of Green’s tensors
of the background medium as

Ĥb(x, s) =
∫

x′∈Dex

Ĝ
HK

(x, x′, s) · K̂(x′, s) dV (10)
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and

Êb(x, s) =
∫

x′∈Dex

Ĝ
EK

(x, x′, s) · K̂(x′, s) dV (11)

where Ĝ
HK

and Ĝ
EK

are the magnetic current to magnetic field
and the magnetic current to electric field Green’s tensors of
the background medium.

Furthermore, the scattered field {Ĥsc, Êsc} satisfies
Maxwell’s equations

−∇ × Ĥsc + σbÊsc + sεbÊsc = −Ĵsc (12)

and

∇ × Êsc + sμbĤsc = 0 (13)

where Ĵsc is the Laplace transformed dielectric scattering
source given by

Ĵsc(x, s) = {
σ̂ (x) − σb(x) + s[ε̂(x) − εb(x)]}Ê(x, s) (14)

for x ∈ Dobj, where σ̂ (x) is the conductivity of the object
and ε̂(x) is its permittivity. The object is assumed to have
no contrast in its permeability with respect to the background
medium.

For the scattered field, we have the integral representations

Ĥsc(x, s) =
∫

x′∈Dobj

Ĝ
HJ

(x, x′, s) · Ĵsc(x′, s) dV (15)

and

Êsc(x, s) =
∫

x′∈Dobj

Ĝ
EJ

(x, x′, s) · Ĵsc(x′, s) dV (16)

where Ĝ
HJ

and Ĝ
EJ

are the electric current to magnetic field
and the electric current to electric field Green’s tensors of the
background medium. Having the integral representations for
the background and scattered fields at our disposal, we can
now further develop the full-wave signal models (4) and (5).

B. Full-Wave Signal Model

Writing the total magnetic and electric fields in the receiver
domain as a superposition of the background and scattered
fields and using the integral representations (10), (11), (15),
and (16), the signal models of (4) and (5) become

d̂h(s)

=
∫

x∈Dant

m̂h(x, s)·
∫

x′∈Dex

Ĝ
HK

(x, x′, s)·K̂(x′, s) dV dV

+
∫

x∈Dant

m̂h(x, s)·
∫

x′∈Dobj

Ĝ
HJ

(x, x′, s)·Ĵsc(x′, s) dV dV

(17)

and

d̂e(s)

=
∫

x∈Dant

m̂e(x, s)·
∫

x′∈Dex

Ĝ
EK

(x, x′, s)·K̂(x′, s) dV dV

+
∫

x∈Dant

m̂e(x, s) ·
∫

x′∈Dobj

Ĝ
EJ

(x, x′, s) · Ĵsc(x′, s) dV dV .

(18)

Interchanging the order of integration and using the reci-
procity properties of Green’s tensors [14] allow us to write
the signal representations as

d̂h(s)=
∫

x′∈Dex

K̂(x′, s) · Ŵmg
h (x′, s) dV

−
∫

x′∈Dobj

Ĵsc(x′, s) · Ŵmg
e (x′, s) dV (19)

and

d̂e(s) = −
∫

x′∈Dex

K̂(x′, s) · Ŵel
h (x′, s) dV

+
∫

x′∈Dobj

Ĵsc(x′, s) · Ŵel
e (x′, s) dV (20)

where we have introduced the receive fields for a magnetic
field measurement as

Ŵmg
h (x′, s) =

∫
x∈Drec

Ĝ
HK

(x′, x, s) · m̂h(x, s) dV (21)

and

Ŵmg
e (x′, s) =

∫
x∈Drec

Ĝ
EK

(x′, x, s) · m̂h(x, s) dV (22)

while the receive fields for an electric field measurement are
given by

Ŵel
h (x′, s) =

∫
x∈Drec

Ĝ
HJ

(x′, x, s) · m̂e(x, s) dV (23)

and

Ŵel
e (x′, s) =

∫
x∈Drec

Ĝ
EJ

(x′, x, s) · m̂e(x, s) dV . (24)

Equations (19) and (20) are the full-wave signal models
for magnetic and electric field measurements, respectively,
in which the magnetic-current source (magnetization) and
the scattering source contribute to the measured signal both
weighted by their respective antenna receive fields. These
receive fields depend on Green’s tensors of the background
medium and the coils or antennas used for reception and
clearly provide us with a means to optimize the received
signal. In particular, in high-field MRI so-called signals voids
are often observed in the resulting image, which is due to
wave interference effects that take place within the body [15].
The impact of these interference effects on the received signal
is captured by the second term on the right-hand sides of
(19) and (20). Therefore, the above signal models can be
used to minimize interference effects by designing receiving
antennas or coils for which the corresponding magnetic receive
fields Ŵmg

h or Ŵel
h are dominant and as uniform as possible.

High permittivity pads [16] are also often used to eliminate
signals voids in an MR image, and the above signal models
can be used to optimize these pads and their location as
well since their presence can be taken into account in the
scattering current Ĵsc(x, s). In practice, the pads are placed in
the neighborhood and on top of the body part that needs to be
imaged. From the above signal models, it immediately follows
that to have an effect on the received signal and ultimately an
MR image; a pad should be placed at a location where the
electric receive fields Ŵmg

e and Ŵel
e do not vanish. If this leads

Authorized licensed use limited to: TU Delft Library. Downloaded on February 21,2022 at 07:56:31 UTC from IEEE Xplore.  Restrictions apply. 



1454 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 70, NO. 2, FEBRUARY 2022

to an unrealistic pad location, then different receive antennas
or different receive locations (or both) must be used to image
the desired field of view in which signal voids are eliminated
or minimized.

Finally, in principle, the above signal models may also be
used to retrieve the dielectric properties of the body part of
interest. In this case, receiving antennas must be used for
which the electric receive field Ŵmg

e and Ŵel
e are optimized,

and the second terms on the right-hand sides of (19) and
(20) are dominant. In fact, in Section III-C, we will show
that, for the specific case of a homogeneous ball located in
an air-filled background, this is essentially the case for an
electric field dipole measurement but not for a magnetic field
dipole measurement. In general, we have to resort to the signal
models of (19) and (20), however, to design receive antennas
or coils that are sensitive to the dielectric parameters of the
object or body part of interest.

To evaluate these models, first, the magnetization (and,
hence, the magnetic-current source K̂) must be known within
the excited part Dex of the object since the time variations of
this field quantity generate the radiated electromagnetic field.
Second, the conductivity and permittivity profiles of the object
must be known. This allows us to determine the electric field
strength within the object by solving a forward problem with
the magnetic-current density K̂ in Dex as a source. Finally,
Green’s tensors of the background medium must be known as
well to determine the receive fields (21)–(24). In general, these
tensors can only be determined through simulations since the
background is inhomogeneous. In conclusion, the full-wave
signals can be evaluated in principle, provided that: 1) the
magnetization in Dex is known; 2) the conductivity and permit-
tivity profiles of the object are known; and 3) Green’s tensors
of the background medium are known. Note that frequency-
domain responses are obtained by letting s → jω, and time-
domain signal responses involve temporal convolutions of the
magnetic-current source and the dielectric scattering source
with their respective receive fields since their Laplace-domain
counterparts all are s-dependent in general.

C. Simplified Full-Wave Signal Models for a Ball Located in
Free-Space

Given the above observations, we consider a specific con-
figuration for which it is possible to develop signal models
that explicitly show how the received signals depend on the
conductivity and permittivity of the object. In particular, we
first consider a background medium consisting of free space.
Green’s tensors of the background medium and the receive
fields for electromotive or magnetomotive force measurements
(dipole measurements) can then be determined explicitly.
Second, we take a small homogeneous ball with a constant
conductivity σ and permittivity ε as our object of interest.
Explicit signal models can then be developed, provided that
the radius of the ball is sufficiently small.

Let the background medium be free space and consider an
electromotive or magnetomotive force measurement. For an
electromotive force measurement, the receive function m̂h is

given by (6), and since the background medium is free space,
Green’s tensors are explicitly known [14], and the receive
fields follow as:

Ŵmg
h (x′, s) = sμ0 AĜ

HK
(x′, xR, s) · ν

= A

4π |x′ − xR|3 exp(−sτ )
[
(1 + sτ )p1 + (sτ )2p2

]
(25)

and

Ŵmg
e (x′, s) = sμ0 AĜ

EK
(x′, xR, s) · ν

= sμ0 A

4π |x′ − xR|2 exp(−sτ )(1 + sτ )n × ν

(26)

where τ = c−1
0 |x′ − xR| with c0 being the electromagnetic

wave speed in vacuum. It is clear that τ is the travel time
from the point of integration x′ to the receiver location xR.
Furthermore, p1 = 3n(n · ν) − ν, and p2 = n(n · ν) − ν with
n = (x′ − xR)/|x′ − xR| being the unit vector pointing from
the receiver location to the point of integration.

Similarly, for a magnetomotive force measurement, the
receive function m̂e is given by (7), and the receive fields
follow as

Ŵel
h (x, s) = sε0 AĜ

HJ
(x, xR, s) · ν

= − sε0 A

4π |x′ − xR|2 exp(−sτ )(1 + sτ )n × ν (27)

and

Ŵel
e (x, s) = sε0 AĜ

EJ
(x, xR, s) · ν

= A

4π |x′ − xR|3 exp(−sτ )
[
(1 + sτ )p1 + (sτ )2p2

]
.

(28)

Note that Ŵmg
e and Ŵel

h are proportional to each other, and
Ŵmg

h = Ŵel
e .

Second, we take a small ball as our object of interest. The
ball is centered at the origin of our reference frame and has
a radius a > 0. It is characterized by a constant conductivity
σ and permittivity ε, and its permeability is equal to that of
free space. We assume that the radius a is so small that the
ball is excited throughout (Dex = Dobj), and time variations of
the magnetization (and, hence, the magnetic-current source K̂)
are uniform, that is, K̂ does not vary with position within the
ball. For a given magnetization, the magnetic-current source
is now known, and the total electric field within the ball can
be computed by solving the integral equation

Ê(x′, s) = Êb(x′, s)

− χ̂(γ̂ 2
0 − ∇ ∇·)

∫
x′∈Dobj

Ĝ(x − x′, s)Ê(x′, s) dV

(29)

for the electric field Ê(x′, s) with x′ ∈ Dobj. In the above
equation, γ̂0 = s/c0 is the propagation coefficient of free
space, χ̂ = ε̂r − 1 + σ̂ /(sε0) is the contrast of the ball, Ĝ
is the scalar Green’s function of free space, and Êb can be
determined from (11) since K̂ is known. In Section III, we
will essentially follow such an approach, except that we will
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determine the electric field in the time-domain using FDTD
for a given magnetization. Here, we use the above integral
equation to arrive at the desired signal models. Specifically, let
us consider frequencies of operation s and a ball of radius a
with conductivity and permittivity values σ̂ and ε̂, respectively,
such that the condition

(2a|γ̂0|)2|χ̂ | � 1 (30)

is satisfied. For 3-D scalar wave field problems, this is a
sufficient condition for the Neumann series to converge [17],
[18]. In addition, let us assume that there is (essentially)
no charge accumulation at the boundary of the ball. The
gradient-divergence term is then negligible, and the above
integral equation turns into a scalar integral equation for each
component of the electric field. Moreover, since we consider
frequencies and dielectric parameters for which (30) holds, we
may approximate

Ê(x′, s) ≈ Êb(x′, s). (31)

Now provided that the quasi-static condition |2aγ̂0| � 1 is
also satisfied, this background field is essentially given by

Êb(x′, s) = −1

3
K̂ × x′ (32)

with x′ ∈ Dobj. Notice that this background field does not have
a radial component, which is consistent with our assumption
of no charge accumulation at the boundary. Also, note that, if
the quasi-static condition |2aγ̂0| � 1 holds, then (30) can be
satisfied for |χ̂ | � 1 [18].

Provided that the quasi-static and Born approximations hold,
the dielectric scattering source within the ball is given by

Ĵsc(x′, s) = [σ̂ + s(ε̂ − ε0)]Ê(x′, s)

= −1

3
[σ̂ + s(ε̂ − ε0)]K̂(s) × x′ (33)

for x′ ∈ Dobj. Substituting in (19) and (20), we obtain the
signal models

d̂h(s) = K̂(s) ·
∫

x′∈Dobj

Ŝmg(x′, s) dV (34)

and

d̂e(s) = −K̂(s) ·
∫

x′∈Dobj

Ŝel(x′, s) dV (35)

where the vectorial sensitivity functions are given by

Ŝmg(x′, s) = Ŵmg
h + χ̂ex′ × Ŵmg

e (36)

and

Ŝel(x′, s) = Ŵel
h + χ̂ex′ × Ŵel

e (37)

with χ̂e = [σ̂+s(ε̂−ε0)]/3 = sε0χ̂/3. Substituting expressions
(25)–(28) for the receive fields in the above equations and
assuming that the time derivative of the magnetization is
band-limited and centered around the (Larmor) frequency ω0

such that the conductivity and permittivity can be considered
constant on this frequency band, we obtain by applying an
inverse Laplace transform the time-domain signals

dh(t) = μ0∂t M(t)
t∗
∫

x′∈Dobj

Smg(x′, t − τ ) dV (38)

and

de(t) = −μ0∂t M(t)
t∗
∫

x′∈Dobj

Sel(x′, t − τ ) dV (39)

for t > 0, where the asterisk denotes convolution in time and
the time-domain sensitivity functions are given by

Smg(x′, t) = A

4π |x′ − xR|3
3∑

k=0

τ kδ(k)(t)rmg
k (40)

and

Sel(x′, t) = A

4π |x′ − xR|3
3∑

k=0

τ kδ(k)(t)rel
k (41)

where δ(k) is the kth derivative of the Dirac distribution.
Explicit expressions for the expansion vectors rmg,el

k , k =
0, 1, 2, 3, are given in the Appendix.

In the above signal models, propagation effects and travel
times from the ball to the receiver are fully taken into account.
However, when the receivers are located not too far from the
ball (in a sense to be made precise), then the signals may be
simplified even further. To this end, we substitute the receive
fields of (25)–(28) into (36) and (37) and arrange the resulting
expressions in such a way that the sensitivities are expanded
in terms of vectors that do not depend on the distance
|x′ − xR|. Carrying out these steps, we find for the magnetic
field sensitivity function

Ŝmg(x′, s) = A

4π |x′ − xR|3 exp(−sτ )

· [p1 + (sτ )(p1 + q̂mg) + (sτ )2(p2 + q̂mg)
]
(42)

while, for the sensitivity function for an electric field measure-
ment, we have

Ŝel(x′, s) = A

4π |x′ − xR|3 exp(−sτ )

· [χ̂ex′ × p1

+ (sτ )
(
χ̂ex′ × p1 + Y0qel

)
+ (sτ )2

(
χ̂ex′ × p2 + Y0qel

)]
(43)

with q̂mg = Z0χ̂e[(x′ · ν)n − (x′ · n)ν] and qel = ν × n. Note
that the vectors

p1,2 + q̂mg and χ̂ex′ × p1,2 + Y0qel (44)

are s-dependent but do not depend on |x′−xR|. We can now use
the above expressions to investigate which terms contribute to
the received signals measured at different receiver locations.
Specifically, let us first consider the case where we place the
receiver near (almost at) the surface of the ball (|xR| = a
(1 + ε), with ε > 0 small). In this case, |s|τ ≤ |γ̂02a| � 1,
and the receive field can be considered quasi-static. The signals
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models simplify to

d̂h(s) ≈ d̂QS
h (s)

= A

4π

[
K̂ ·

∫
x′∈Dobj

p1

|x′ − xR|3 dV

+ sμ0χ̂eK̂ ·
∫

x′∈Dobj

(x′ · ν)n−(x′ · n)ν

|x′ − xR|2 dV

]

(45)

and

d̂e(s) ≈ d̂QS
e (s)

= − A

4π

[
χ̂eK̂ ·

∫
x′∈Dobj

x′ × p1

|x′ − xR|3 dV

+ sε0K̂ ·
∫

x′∈Dobj

ν × n
|x′ − xR|2 dV

]
(46)

and their time-domain counterparts are given by

dQS
h (t)

= μ0 A

4π

[
∂t M·

∫
x′∈Dobj

p1

|x′ − xR|3 dV

+ σμ0

3
∂2

t M·
∫

x′∈Dobj

[(x′ · ν)n−(x′ · n)ν]
|x′ − xR|2 dV

+ εr − 1

3

1

c2
0

∂3
t M·

∫
x′∈Dobj

[(x′ · ν)n−(x′ · n)ν]
|x′−xR|2 dV

]

(47)

and

dQS
e (t) = −μ0 A

4π

[
σ

3
∂t M ·

∫
x′∈Dobj

x′ × p1

|x′ − xR|3 dV

+ εr − 1

3
ε0∂

2
t M ·

∫
x′∈Dobj

x′ × p1

|x′ − xR|3 dV

+ ε0∂
2
t M ·

∫
x′∈Dobj

ν × n
|x′ − xR|2 dV

]

(48)

for t > 0 explicitly showing that time variations of the
magnetization are received without any propagation delay in
the quasi-static limit. We observe that, for magnetic field
measurement, the conductivity and permittivity are present in
the intermediate-field contribution to the signal (1/distance2

term), while, for electric field measurement, the dielectric
properties of the ball show up in the near field contribution to
the signal (1/distance3 term).

As we move away from the ball, the travel time τ will obvi-
ously increase. The above quasi-static signal models remain
valid, however, provided that |s|τ � 1 for all x′ ∈ Dobj. It is
obvious that the quasi-static signal models can no longer be
used as soon as this inequality is not satisfied.

Finally, for later convenience, we write the quasi-static
signals as

dQS
h (t) = ∂t M · ah

1(xR) + σμ0

3
∂2

t M · ah
2(xR)

+ εr − 1

3

1

c2
0

∂3
t M · ah

2(xR) and (49)

Fig. 1. FID signal measurement setup. A homogeneous ball with a radius a,
centered at the origin has a permittivity ε, conductivity σ , and permeability
μ. Relaxation times T1 and T2.

TABLE I

DIELECTRIC MEDIUM PARAMETERS OF WHITE MATTER FOR DIFFERENT

BACKGROUND FIELDS [19], [21]

dQS
e (t) = σ

3
∂t M · ae

1(xR) + εr − 1

3
ε0 ∂2

t M · ae
1(xR)

+ ε0 ∂2
t M · ae

2(xR) (50)

where the expressions for the expansion vectors ae,h
k (xR), k =

1, 2, are easily obtained from (47) and (48).

III. SIMULATIONS

To test the validity of our signal models and study the
influence of the permittivity and conductivity of the ball
on these signals, we consider the configuration illustrated in
Fig. 1. In this configuration, all geometrical parameters are
fixed and wavelength-independent since we want to investigate
this setup in MR scanners with different background fields. In
particular, the radius of the ball is set to a = 2.5 cm, and
we use three receivers located on the x-axis to measure the
various field responses. With Receiver 1 we carry out surface
measurements, and in our simulations, this receiver is located
at a distance d1 = 2.5 · 10−6 cm from the ball. Receiver 2 is
located at a distance of d2 = 25 cm from the ball, and finally,
Receiver 3 is located at a distance of d3 = 50 cm from the
ball. All three receivers are loops that have a circular surface
area with a radius of 2 cm. This is the setup of our computer
phantom, and all measurements described in this section are
numerical simulations performed on this phantom. When we
carry out a magnetic field measurement (emf), the loop is
oriented in the x-direction (ν = ix ), while, for an electric
field measurement (mmf), we orient the loop in the z-direction
(ν = iz). The signal models will be evaluated for background
fields of 1.5, 3, 7, and 11.2 T. The resonance (and, therefore,
measurement) frequency for each magnetic field strength is
determined by the larmor precession frequency fL = γ B0,
where γ = 42.58 MHz/T is the proton gyromagnetic ratio
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and B0 is the magnitude of the background field. The ball
that we consider consists of white matter, and its conductivity
and relative permittivity values at the Larmor frequencies that
correspond to these background fields are listed in Table I.
In all cases, the relative permeability is taken to be equal to
one. For the relaxation times of white matter, we take those
of a 3-T background field, T1 = 900 ms, and T2 = 75 ms
[22], and we use these values for all background fields under
consideration. More information on the dielectric properties of
tissue can be found in [19] and [20], for example.

The signals that we receive are FID signals as generated by
the time-varying magnetization

Mx (t) = Meqe−t/T2 cos(ω0t) (51)

My(t) = −Meqe−t/T2 sin(ω0t) (52)

and Mz(t) = Meq(1 − e−t/T1
)

(53)

where ω0 = γ B0 is the Larmor frequency, T1 and T2 are
the longitudinal and transverse relaxation times, respectively,
and Meq is the equilibrium magnetization. For a proton spin
density ρ = 6.69 · 1028 m−3 (water) and at T = 310.15 K,
the equilibrium magnetization evaluates to Meq ≈ 0.0031B0.
The above components of the magnetization form the solution
of the Bloch equation with initial condition M(0) = Meqix .
For t > 0, the above solution describes how the magnetization
relaxes back to its equilibrium M = Meqiz as time increases.

A. Validating the Born Approximation

Before we carry out our signal analysis, we first validate the
Born approximation for all background fields under consider-
ation since our signal models are based on this approximation.
Specifically, we compute the time-domain electromagnetic
field due to the magnetization given by (51)–(53) using an
in-house UPML-FDTD code. In our FDTD model, the conduc-
tivity and permittivity values of the ball at the various Larmor
frequencies are selected according to Table I. Subsequently,
we use the computed FDTD field responses and, subsequently,
compute the electromotive force Vemf at the receiver location
xR = [3.2, 0, 0] cm. The dashed lines in Fig. 2 show the
resulting signals for various background fields. The solid lines
in this figure depict the signal model of (38) at the same
receiver location and for the same background fields. This
latter model is based on the quasi-static Born approximation
(31) and (32), while obviously no such approximation has
been applied in our FDTD simulations of our computer
phantom. From Fig. 2, we observe that the signals based
on FDTD modeling and the signals based on the quasi-static
Born approximation overlap, thereby validating that for this
configuration, and for all background fields of interest, the
Born approximation, indeed, provides us with an accurate
signal description.

B. Quasi-Static Signal Analysis

In the Laplace domain, the quasi-static signal models hold
provided that the condition |s|τ � 1 is satisfied for all
x′ ∈ Dobj and all frequencies s of interest. For the FID signals
as generated by the magnetization of (51)–(53), the Larmor

Fig. 2. Validation of the Born approximation for various background fields.
Dashed (red) lines: Vemf as determined from the magnetic field of the FDTD
simulation. Solid (blue) line: the signal model of (38). The receiver is located
at xR = [3.2, 0.0, 0] cm, and the medium parameters of the ball are listed in
Table I.

frequency is the only nonvanishing oscillation frequency, and
we can set s = jω0 in the above condition to obtain the
quasi-static requirement that 2πλ−1

0 |x′ − xR| � 1 should hold
for all x′ ∈ Dobj, where λ0 is the wavelength in free space.
Introducing the maximum distance dmax = max

x′∈Dobj

|x′ − xR|,
the quasi-static condition is satisfied if 2πdmax/λ0 � 1.
Table II lists 2πdmax/λ0 for the three receivers mentioned
above and for different background fields. From this table, we
expect the quasi-static approximation to hold for Receiver 1
and essentially all background fields under consideration. For
Receiver 2, the quasi-static signal models are expected to
hold for 1.5 T and possibly 3 T background fields, while,
for Receiver 3, the quasi-static field approximation possibly
holds at 1.5 T only. Figs. 3–5 show the full-wave signal
model of (38) (solid line) and the quasi-static signal model
of (47) (dashed line) for the electromotive force Vemf at the
three receivers of Fig. 1. Since a quasi-static electromotive
or magnetomotive force signal analysis leads to the same
conclusions, we present results for the electromotive force
only.

From Figs. 3–5, we observe that the quasi-static parame-
ters of Table II quite accurately predict when a quasi-static
signal model can be used. Specifically, for Receiver 1, the
value of 2πdmax/λ0 is at or below 0.5 for all background
fields, and Fig. 3 shows that the full and quasi-static signals
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TABLE II

BACKGROUND FIELDS AND NORMALIZED DISTANCES

essentially overlap. For Receiver 2, however, we observe that
the quasi-static model overlaps with the full-wave model for
a background field of 1.5 T but starts to deviate from the full-
wave model for a background field of 3 T. For even higher
background fields, the quasi-static model is no longer valid,
which is consistent with Table II, since 2πdmax/λ0 is larger
than one in this case. These results indicate that the quasi-
static signal model coincides with the full-wave model as long
as 2πdmax/λ0 ≤ 0.5. This observation is consistent with the
full-wave and quasi-static signal models for Receiver 3, as
shown in Fig. 5. In this case, the quasi-static signal model
already deviates from the full-wave model for a background
field of 1.5 T for which we have 2πdmax/λ0 ≈ 0.74. For
higher background fields, the quasi-static signal approximation
definitely does not hold at Receiver 3, and we have to resort
to the full-wave model of (47) in this case.

Finally, the dotted lines in Figs. 3–5 show the contribution of
the conductivity and permittivity terms [the last two terms on
the right-hand side of (47)] to the total quasi-static signal (47).
We also observe that the contribution of these terms is small
for lower background fields but increases as the background
field strength increases. These simulation results indicate that
the conductivity and permittivity of the ball can be retrieved
from a quasi-static electromotive force measurement, provided
that the SNR of the signals and the background field strengths
are sufficiently large and the quasi-static field approximation
holds. Another option is, of course, to use an electric field
measurement (magnetomotive force measurement) as a basis
for conductivity and permittivity retrieval since, for such a
measurement, these quantities contribute to the signal via the
near-field as opposed to an electromotive force measurement,
where the medium parameters contribute to the signal via the
intermediate field.

C. Conductivity and Permittivity Retrieval

Since the quasi-static signal models under the Born approx-
imation are all valid for computer phantom measurements
carried out with Receiver 1 and all background fields of
interest, we now use these models at this receiver location
to retrieve the conductivity and permittivity of the ball (white
matter).

Let us start with the signal model for a magnetic field
measurement given by (49). Introducing the functions dh

1 (t) =
∂t M · ah

1(xR), dh
2 (t) = μ0∂

2
t M · ah

2(xR), and dh
3 (t) = c−2

0 ∂3
t M ·

Fig. 3. Electromotive force at Receiver 1 for various background field
strengths and a ball of white matter. The dielectric parameters are listed in
Table I. Solid line: full-wave signal model of (38); dashed line: quasi-static
signal model of (47); and dotted line: sum of the last two terms on the right-
hand side of (47).

ah
2(xR), we have

dBorn
h;QS(t) = dh

1 (t) + σ

3
dh

2 (t) + εr − 1

3
dh

3 (t) (54)

for t > 0. Similarly, for the electric field signal model, we
have

dBorn
e;QS (t) = σ

3
de

1(t) + εr − 1

3
de

2(t) + de
3(t) (55)

for t > 0 with de
1(t) = ∂t M · ae

1(xR), de
2(t) = ε0∂

2
t M · ae

1(xR),
and de

3(t) = ε0∂
2
t M · ae

2(xR).
Subsequently, we introduce the time instances tn =

(n − 1)�t for n = 1, 2, . . . , N with (N − 1)�t = Tobs, where
Tobs is the length of the observation interval, and consider the
above signals at these time instances to obtain

dh = dh
1 + σ

3
dh

2 + εr − 1

3
dh

3 (56)

and

de = σ

3
de

1 + εr − 1

3
de

2 + de
3 (57)

where dh = [dBorn
h;QS(t1), dBorn

h;QS(t2), . . . , dBorn
h;QS(tN )]T is an N-by-1

column vector, and all other vectors in the above equation are
defined similarly.

Since we consider FID signals as generated by the magne-
tization of (51)–(53), it immediately follows that the vector
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Fig. 4. Electromotive force at Receiver 2 for various background field
strengths and a ball of white matter. The dielectric parameters are listed in
Table I. Solid line: full-wave signal model of (38); dashed line: quasi-static
signal model of (47); and dotted line: sum of the last two terms on the right-
hand side of (47).

dh
1 and dh

3 and the vectors de
2 and de

3 are linearly dependent.
Therefore, we consider the modified (scattered) data equations

d̃h = Ahc and d̃e = Aec (58)

with c = (1/3)[σ, εr − 1]T , d̃h = dh − dh
1, d̃e = de − de

3, and
the matrices Ah and Ae have the column partitioning Ah =
(dh

2, dh
3) and Ae = (de

1, de
2). Finally, noise is added to the data,

and we attempt to reconstruct the medium parameters as

c∗ = argmin
c

∥∥d̃h,e
n − Ah,ec

∥∥2

2 (59)

where d̃h,e
n = d̃h,e +n is the noisy data vector with n being the

noise vector. With T0 = 2π/ω0, we first take Tobs = 3T0 =
O(10−8,9) s in our minimization problem. It is clear that the
exponential decay of the FID signal can be neglected in this
case. With an SNR of 20 dB, the conductivity and permittivity
are determined by solving the corresponding least-squares
problem (59), and the retrieved parameters are depicted in
Fig. 6 along with the exact conductivity and permittivity values
of white matter and for various background fields, as listed in
Table I. From this figure, we observe that, for the magnetic
field (emf) measurement model, the error in the retrieved
medium parameters decreases as the background field strength
increases. At 1.5 and 3 T, the medium parameters cannot be
retrieved, but accurate medium parameters are obtained only

Fig. 5. Electromotive force at Receiver 3 for various background field
strengths. The dielectric parameters are listed in Table I. Solid line: full-
wave signal model of (38); dashed line: quasi-static signal model of (47); and
dotted line: sum of the last two terms on the right-hand side of (47).

TABLE III

RECONSTRUCTION RESULTS FOR EMF AND MMF RECEIVERS,
AS DISPLAYED IN FIG. 6

at 11.2 T. Since the dielectric medium parameters contribute
via the near field to a signal that is based on an electric field
(mmf) measurement, we expect that, when the electric field
measurement model is used, these parameters can be reliably
recovered for low and high background fields. From Fig. 6,
we observe that this is, indeed, the case, and similar to the
magnetic field measurement model, the reconstruction results
improve as the strength of the background field increases. The
reconstructed medium parameters at various background fields
when electric and magnetic field measurement models are used
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Fig. 6. Reconstructed permittivity (top) and conductivity (bottom) values
using an EMF or MMF computer phantom measurement for various field
strengths.

are summarized in Table III. Finally, we mention that we have
repeated this experiment on an observation interval Tobs =
3T2 = O(10−2) s and found similar results, showing that the
electrical properties can also be recovered on an O(10−2) time
scale.

IV. DISCUSSION AND CONCLUSION

In this article, we have presented full-wave signal models for
MRI field measurements. The models show that the magneti-
zation and the induced electric scattering currents contribute to
the measured signals, both weighted by their respective receive
fields that are determined by the antenna that is used for
reception. We have shown that, to evaluate the models, Green’s
tensors of the background medium must be known, along with
the dielectric properties of the object, and the magnetization
within the excited part of the object must be known as well.
For inhomogeneous background media, Green’s tensors can
only be evaluated numerically in general, which may be a
formidable task especially if electrically large objects are of
interest. Moreover, for given dielectric medium profiles and
a given magnetization, the electric field strength within the
object must be computed since it is required to determine the
electric scattering source. In other words, apart from numeri-

cally computing Green’s tensors of the background medium,
a forward problem for the electric field strength must be
solved as well. Despite these computational bottlenecks, direct
evaluation is possible in principle. In addition, the models can
be easily extended to include contrasts in permeability but at
the expense of having to solve a coupled forward problem for
the electric and magnetic field within the object of interest.

To obtain explicit closed-form signal representations for
electric and magnetic field measurements, we have considered
a homogeneous ball that is embedded in free space. It is obvi-
ous that Green’s tensors of the background medium are now
known, and if the dielectric parameters and radius of the ball
are “sufficiently small,” the quasi-static Born approximation
applies meaning that the electric field within the ball may be
approximated by the quasi-static background field, which is
explicitly known. It is obvious that there is now no need to
solve a forward problem, and the medium parameters show up
explicitly in the resulting signal models. Travel time effects are
still included in these models since the Born approximation
applies to the electric field within the ball only. Quasi-static
signal models may be obtained, however, for receiver locations
for which travel time effects can be neglected. These signal
models directly generalize the standard quasi-static models as
normally used in MRI and clearly show how the dielectric
parameters of the ball influence the measured signals. In fact,
for FID signals obtained from an electric or magnetic field
measurement, we demonstrated that the dependence of the
signals on the medium parameters can even be used to retrieve
these parameters. Specifically, using simulations, we showed
that, for high background fields (7 and 11.2 T), electric (mmf)
and magnetic (emf) field measurements allow for reliable
parameter reconstructions, while, at lower field strengths, only
electric field measurements can essentially be used because
the dielectric parameters show up in the near-field of electric
field measurement and not in the near-field of magnetic field
measurement.

The simplified quasi-static models have their limitations,
of course, and care should be taken when applying these
models since they are valid for a ball and under very special
circumstances only (quasi-static field and Born approximation
apply). However, it is straightforward to construct a spherical
phantom complying with these assumptions for a real-world
experimental setup, and it is straightforward to measure the
FID to validate this model, which the authors aim to do in
future work.

It is obvious that the full-wave models do not suffer
from these limitations and allow us to determine how inho-
mogeneous dielectric tissue profiles influence the measured
signals. To validate the full-wave models, measurements of a
more complex phantom can be used in much the same way
as the validation of the simplified model. However, careful
calibration of the phantom and measurement setup, and more
complex full-wave simulations are necessary in this case.
Large-scale computations are required to determine the effects
of the conductivity and permittivity profiles on the measured
signals, but the models can potentially be used in a wide
variety of applications. For a known object and excitation
profile, for example, the receive fields of the antennas can be
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optimized for sensitivity to the electric properties or to avoid
signal voids by minimizing interference effects. Optimizing
for the local SAR that leads to tissue heating can also be
performed by minimizing the electric field sensitivity for areas
of high conductivity (since SAR is related to the product of
these two quantities). In conclusion, complex wave propaga-
tion effects that take place within a body part of interest are
captured by the signal models presented in this article, and the
models allow for signal and antenna optimization in a variety
of MR applications.

APPENDIX

EXPANSION VECTORS FOR TIME-DOMAIN SIGNAL

MODELS

The expansion vectors in the vectorial sensitivity function
Smg of (40) for a magnetic field measurement are given by

rmg
0 = p1, (60)

rmg
1 = p1 + 1

3
Z0σ [(x′ · ν)n − (x′ · n)ν] (61)

rmg
2 = p2 + 1

3
Z0σ [(x′ · ν)n − (x′ · n)ν]

+ 1

3
(εr − 1)

(x′ · ν)n − (x′ · n)ν

|x′ − xR| (62)

rmg
3 = 1

3
(εr − 1)

(x′ · ν)n − (x′ · n)ν

|x′ − xR| (63)

where Z0 is the impedance of vacuum and εr is the relative
permittivity of the ball. Furthermore, the expansion vectors in
the vectorial sensitivity function Sel of (41) for an electric field
measurement are given by

rel
0 = σ

3
x′ × p1, (64)

rel
1 = Y0q + σ

3
x′ × p1, (65)

rel
2 = Y0q + σ

3
x′ × p2, (66)

rel
3 = 1

3
Y0(εr − 1)

x′ × p2

|x′ − xR| (67)

where Y0 = (ε0/μ0)
1/2 is the admittance of vacuum, and

q = ν × n + 1

3
(εr − 1)

x′ × p1

|x′ − xR| . (68)

Note that these expansion vectors are independent of s but
do depend on the distance |x′ − xR|.
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