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LOW COMPLEX ACCURATE MULTI-SOURCE RTF ESTIMATION

Changheng Li, Jorge Martinez and Richard C. Hendriks

Circuits and Systems (CAS) Group, Delft University of Technology, Delft, The Netherlands

ABSTRACT

Many multi-microphone algorithms depend on knowing the relative
acoustic transfer functions (RTFs) of the individual sound sources in
the acoustic scene. However, accurate joint RTF estimation for mul-
tiple sources is a challenging problem. Existing methods to jointly
estimate the RTF for multiple sources have either no satisfying per-
formance, or, suffer from a very large computational complexity. In
this paper, we propose a method for robust estimation of the indi-
vidual RTFs in a multi-source acoustic scenario. The presented al-
gorithm is based on linear algebraic concepts and therefore of lower
computational complexity compared to a recently presented state-of-
the-art algorithm, while having a similar performance. Experimental
results are presented to demonstrate the RTF estimation performance
as well as the noise reduction performance when combining the es-
timated RTFs with a beamformer.

Index Terms— Joint diagonalization, microphone array signal
processing, source separation, RTF estimation, speech enhancement

1. INTRODUCTION

Microphone arrays are ubiquitous these days and can be used for ap-
plications like source separation [1–3], dereverberation [4–6], noise
reduction [7–10] and sources localization [11]. These applications
have in common that they heavily rely on acoustic-scene dependent
parameters like relative acoustic transfer functions (RTFs), power
spectral densities (PSDs) of the sources, PSDs of the late reverber-
ation and PSDs of the microphone self-noise. In particular the RTF
plays a very important role in beamforming applications. knowing
and having an accurate estimate of the RTF per source is very impor-
tant, for example, to steer a beamformer in the right direction [12], or
preserve the spatial cues in binaural noise reduction algorithms [8].
However, accurate RTF estimation is also rather challenging. In this
paper we therefore specifically focus on estimating the RTFs and
present an algorithm to jointly estimate the individual RTFs of the
sources in the acoustic scene.

RTF estimation for a single point source in noise is a problem
that has been addressed before in several papers, e.g. [13–15]. In
this work, we consider the more general and more challenging case
of simultaneously RTF estimation for multiple sources. A few meth-
ods have been proposed for multiple source RTF estimation in recent
years, e.g., [16–18]. In [16], the RTFs are estimated by updating
the initial estimate of the RTFs in an iterative fashion. However
in reality, the a priori information of the RTFs might be unknown.
In [17], the expectation maximization (EM) method is used to esti-
mate the RTFs by assuming that, in each time-frequency bin, only
a single source is active, which thus puts limitations on the acous-
tic scenarios. In [18], a simultaneous confirmatory factor analysis
(SCFA) method was proposed to estimate the RTFs and also the
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PSDs of sources, late reverberation and the microphone self-noise
jointly. However, due to the non-convexity of the problem formula-
tion, the SCFA method in [18] has a rather high computational cost
and is therefore currently less applicable for real-time applications.

To accurately estimate the RTFs jointly for multiple sources,
our starting point is the algorithm proposed in [1]. This algorithm
was developed for blind source separation and is based on linear
algebraic concepts. We start with presenting the method from [1],
but from a different perspective, such that our proposed algorithm
can be better understood. Next, we propose a more robust method,
which is also based on linear algebraic concepts and has relatively
low computational complexity. The simulations demonstrate that our
method is more accurate compared to the reference algorithm [1] and
of much lower complexity compared to the state-of-the-art SCFA
method from [18], while having a comparable performance.

2. PRELIMINARIES

2.1. Signal model

We consider R acoustic point sources observed by a microphone ar-
ray consisting of M microphones with an arbitrary geometric struc-
ture under the assumption that the signal-to-noise ratio (SNR), i.e.,
the SNR due to the diffuse noise, is relatively high, the late rever-
beration is neglectable and the number of microphones is larger than
the number of the sources (i.e., M > R). In the short-time Fourier
transform (STFT) domain, the signal received at the m-th micro-
phone can be modelled as

ym (i, k) =

R∑
r=1

amr (β, k) sr (i, k), (1)

where i is the time-frame index, k is the frequency bin index and
amr (β, k) is the m-th element of the RTF vector ar (β, k) corre-
sponding to source sr in time segment β at microphone m. In this
work, we differentiate between time segments (indexed by β) and
time frames (indexed by i). Each time segment consists of multiple
time frames. We assume that the RTF vector is constant during a
time segment (thus during multiple time frames that fall within one
segment) and a1r = 1 for r = 1, ..., R, which means that the first
microphone is selected as the reference microphone. Stacking the
M microphone STFT coefficients into a vector, we have

y (i, k) =

R∑
r=1

ar (β, k) sr (i, k) ∈ CM×1. (2)

We assume that all the sources are mutually uncorrelated for each
frame of a time segment, which leads to the following second-order
statistical signal model

Py (i, k) =

R∑
r=1

pr (i, k)ar (β, k)aHr (β, k) ∈ CM×M , (3)
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where pr (i, k) = E
[
|sr (i, k)|2

]
is the power spectral density

(PSD) of the r-th source at the reference microphone. The co-
variance matrix can be rewritten in the following matrix form

Py (i, k) = A (β, k) P (i, k) AH (β, k) , (4)

where the RTF matrix is given by

A (β, k) = [a1 (β, k) , · · · ,aR (β, k)] (5)

and the PSD matrix is given by

P (i, k) = diag [p1 (i, k) , · · · , pR (i, k)] . (6)

The main goal of this paper is to estimate the RTF matrix A us-
ing estimated covariance matrices {Py (i, k)} with i = 1, · · · , N ,
where N is the number of time frames in a time segment.

2.2. Covariance Matrix Estimation

In addition to time frames and time segments, we now also define
sub time-frames. Each time frame consists of Ns overlapping sub-
frames indexed by ns with equal length Ts, where the sub-frame
length is much smaller than the time frame length such that Ns is a
large integer. Assuming the signal is stationary across a time frame,
we can estimate the covariance matrix per time frame i based on the
sample covariance matrix using the sub-frames’ samples, i.e.,

P̂y (i, k) =
1

Ns

Ns∑
ns=1

y (ns, k) y(ns, k)H , (7)

where y (ns, k) is the STFT coefficient vector. Notice that within
the time frames of one time segment, the RTF matrix is a constant
matrix and the PSDs of the sources are assumed to be non-stationary,
which means that the signal powers can change over the frames.

3. RTF ESTIMATION

In Section 3.2, we propose an improved algorithm to estimate the
RTF matrix. The starting point is the method presented in [1], which
is originally meant for blind source separation. Since the RTF is
defined per frequency, from now on, frequency indices are neglected
for ease of notation.

We first write the covariance matrices Py (i) into the form

Py (i) = Ã (i) ÃH (i), for i = 1, · · · , N, (8)

where Ã (i) = A
√

P (i) and the diagonal matrix
√

P (i) is the
unique non-negative square root of P (i). Note that A equals the
normalized version of matrix Ã (i) where the columns of A (i) are
normalized with respect to their first element, which is the square
root of the PSD of each corresponding source. Hence, estimation of
A and P (i) can be converted into the estimation of Ã (i) for any
time frame i. With this conversion, the covariance matrices for all
the other time frames in the same segment can be represented by
Ã (i). That is

Py (j) = AP (j) AH

= A
√

P (i)
√

P−1 (i)P (j)
√

P−1 (i)
√

P (i)AH

= Ã (i) P̃ (j) ÃH (i), for j = 1, · · · , N,

(9)

where P̃ (j) =
√

P−1 (i)P (j)
√

P−1 (i) is a diagonal matrix.

3.1. Joint Diagonalization Method

We first summarize in this section the joint diagonalization method
from [1] to put our work in perspective. This method was originally
proposed for blind source separation and used in, e.g., [1, 19], to
estimate the mixing matrix instead of the RTF matrix. Therefore,
although the estimation steps are the same as in [1], we summarize
this method when used in a different context to better understand our
proposed method that we present in Section 3.2.

The method in [1] focuses on estimating Ã (1). Then, matrices
Py (i) in the segment can be represented by Ã (1) using

Py (i) = Ã (1) P̃ (i) ÃH (1), for i = 2, · · · , N, (10)

where

P̃ (i) =
√

P−1 (1)P (i)
√

P−1 (1) (11)

is diagonal. Notice that Py (1) = Ã (1) ÃH (1).
Consider the singular value decomposition (SVD) of Ã (1), i.e.,

Ã (1) = UΣVH , (12)

where U is anM×R complex sub-unitary matrix (i.e., UHU = I),
Σ is aR×R diagonal matrix and V is a complex valuedR×R uni-
tary matrix. The estimation of Ã is decomposed into the estimation
of the three matrices U, Σ and V.

The estimates of U and Σ can be obtained from Py (1). Using
the SVD of Ã (1) in (8), Py (1) can be expressed as:

Py (1) = Ã (1) ÃH (1)

= UΣVHVΣUH

= UΣ2UH .

(13)

Since U is a sub-unitary matrix and Σ2 is a diagonal matrix, (13)
is an eigenvalue decomposition of the matrix Py (1). Hence we can
calculate U and Σ by taking the EVD of Py (1).

The estimation of V can be solved by using estimated U, Σ,
and the covariance matrices for all other time frames in the same
segment. Taking the SVD of Ã (1) in (10), Py (i) for i = 2, · · · , N
can be expressed as

Py (i) = Ã (1) P̃ (i) ÃH (1)

= UΣVHP̃ (i) VΣUH .
(14)

Now we construct a new set of matrices Pw (i) using U and Σ

Pw (i) = Σ−1UHPy (i) UΣ−1

= VHP̃ (i) V.
(15)

As V is an orthogonal matrix, it can be obtained by computing the
eigenvectors of the matrices {Pw (i)}, with i = 2, · · · , N.

If N = 2, we can estimate V by taking the EVD of Pw (2).
In case of equal eigenvalues, the corresponding eigenvectors are not
unique. Hence, in order to obtain the correct estimate of V, we
need to assume that the diagonal matrix P̃ (i) has distinct diagonal
elements, which means that the following inequalities should be sat-
isfied for every two sources r1 and r2,

pr1(2)

pr1(1)
6= pr2(2)

pr2(1)
, (16)

where pr(i) denotes the PSD of the rth source in the ith time frame.
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If N > 2, the estimation of V becomes a joint diagonaliza-
tion problem: find a unitary matrix V such that

{
VPw (i) VH

}
with i = 2, · · · , N is a set of diagonal matrices or has minimal off-
diagonal elements. The Jacobi-like algorithm proposed in [20] can
be used to solve this joint diagonalization problem, which reduces
the original joint diagonalization problem into finite sub-problems
having closed-form solutions (see [20] for more details). To make
sure the joint diagonalization problem has a satisfying solution, we
also need to make an assumption on the PSDs of the sources: for ev-
ery source r1, there exists one time frame i0 such that the following
inequality holds for any other source r2:

pr2(i0)

pr2(1)
6= pr1(i0)

pr1(1)
for any r2 6= r1. (17)

Finally, we estimate Ã (1) by multiplying the estimated U, Σ

and V as in (12). Normalizing Ã (1), we eventually obtain the es-
timate of the RTF matrix A. Note that having estimated Ã (1), we
can also estimate the individual source PSDs. To do so, we use the
diagonal elements of VPw (i) VH to estimate P̃ (i). Using the def-
inition Ã (1) = A

√
P (1) in combination with (11) we obtain the

PSDs of all sources for all time frames in the segment.
This algorithm is summarized in Algorithm description 1.

Algorithm 1: Joint Diagonalization Method (JOINT)

Input: Estimated P̂y (i) , for i = 1, · · · , N,
Output: A and P (i) for i = 1, · · · , N,

1 Estimate U and Σ from EVD of P̂y (1).
2 Construct new matrices Pw (i) for i = 2, · · · , N .
3 Estimate V and P̃ (i) for i = 2, · · · , N using the

Jacobi-like algorithm [20].
4 Estimate Ã (1) by multiplying U, Σ and V.
5 Estimate A by normalizing Ã (1) with its first row.
6 Estimate P (i) for i = 1, · · · , N using the first row of

Ã (1) and P̃ (i) for i = 2, · · · , N .

3.2. Robust Joint Diagonalization

The algorithm introduced in Section 3.1 focuses on estimating the
RTF matrix A using the estimated covariance matrices P̂ (i) for
i = 1, · · · , N . However, instead of using the individual matrices
P̂ (i) as done in the first step in Algorithm 1, we can also choose to
estimate the RTF matrix from any linear combination of estimated
covariance matrices in segment β . By using an average of estimated
covariance matrices instead of a single estimated Py (1) in step 1
from Algorithm 1, we are able to significantly reduce the estimation
error on estimating A if we are able to also select the best estimated
covariance matrices to form this average. To see this, let us first look
at the error on the estimated covariance matrix ∆Py (i). This error
can be decomposed into:

∆Py (i) = A
(
P (i)− P̂ (i)

)
AH −E (i) , (18)

where the first part ∆P (i) =
(
P (i)− P̂ (i)

)
is indeed the es-

timation error between the sampled covariance matrix and the true
covariance matrix of sources, and the second part E (i) is due to the
late reverberation component and the microphone self noise compo-
nent, which can be assumed to be positive definite.

It is well known that the estimation error between a sampled co-
variance matrix and the true covariance matrix can be reduced by
increasing the number of samples. Hence, to decrease ∆P (i), we
can average covariance matrices for as many time frames as possible
in a time segment. However, the second error matrix E (i) might
increase when using more time frames. The question now is, which
estimated Py (i) for i = 1, · · · , N, should we average to replace
P̂y (1) in step 1 from Algorithm 1 to reduce the estimation error.
Notice that the rank of the true covariance matrix Py (i) is R, the
rank of the estimated covariance matrix P̂y (i) isM and we have as-
sumed thatM > R. Therefore theR+1 largest eigenvalue λR+1 (i)

of P̂y (i) can be used to evaluate how large the error matrix E (i) is.
Based on the analysis of the estimation error of covariance ma-

trices, the next steps of the robust joint diagonalization algorithm are
as follows: Take the EVD for the N estimated covariance matrices
P̂y (i) from a segment and reorder the time frame index such that
λR+1 (i) is in an ascending order. Use the first estimated covariance
matrix (i.e., the one with the smallest error E) to do Algorithm 1
and obtain the first estimates of the RTF matrix Â1 and PSDs of the
R sources

{
P̂1 (i)

}
. Use these estimates to calculate the following

weighted cost function:

C (1) =

N∑
i=1

1

λ̂2
R+1 (i)

∥∥∥P̂y (i)− Â1P̂1 (i) ÂH
1

∥∥∥
2
, (19)

where ‖ · ‖2 denotes the matrix 2-norm. Next, average the first two
estimated covariance matrices from the ordered sequence and use
this in combination with Algorithm 1 to obtain the second estimates
of the RTF matrix and PSDs of the R sources, and calculate the cost
function:

C (2) =

N∑
i=1

1

λ̂2
R+1 (i)

∥∥∥P̂y (i)− Â2P̂2 (i) ÂH
2

∥∥∥
2
, (20)

In each next iteration, we include an additional covariance matrix
from the ordered sequence in the average and use the averaged co-
variance matrix in combination with Algorithm 1 to estimate the
RTF matrix and PSDs of R sources until all the N covariance ma-
trices are averaged and N cost function values are calculated. We
then select the minimum cost function value with respect to iteration
q, and use the estimate of the RTF matrix in the qth iteration as the
final estimate of the RTF matrix.

The algorithm steps are given in algorithm two. Since both the
joint diagonalization method and our proposed method are based on
linear algebra, computational costs of both algorithms are relatively
low. Note that the computational cost of the proposed algorithm is
about N times higher than for Algorithm 1.

4. EXPERIMENTS

The performance of the proposed methods is evaluated in the con-
text of noise reduction with four microphones and three sources each
with a duration of 25 s. The acoustic setup is depicted in Fig. 1.
Each speech signal is convolved with a room impulse response in
the time domain. The room impulse responses are generated us-
ing the image method [21]. To simulate a nearly non-reverberant
noisy signal, we set the reflection coefficients of the six walls as
[0.5,−0.25, 0.1,−0.5, 0.25,−0.1] in the first scenario (the rever-
beration time is about 0.04 s). Besides, we also evaluate the per-
formance of our proposed methods in a second scenario where the
reverberation time of the room impulse response is 0.2 s. The sam-
pling frequency is fs = 16 kHz. The microphone self-noise is a
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Algorithm 2: Robust Joint Diagonalization (PROP)
Input: Estimated Py (i) , for i = 1, · · · , N,
Output: A

1 Estimate λR+1 from EVD of Py (i) , for i = 1, · · · , N .
2 Reorder time frame index such that λR+1 is ascending.
3 for q = 1 : N do

4 Estimate U and Σ from EVD of
q∑
i=1

1
q
P̂y (i) = ÃÃH .

5 Construct new matrices Pw (i) for i = 2, · · · , N .
6 Estimate V and P̃ (i) for i = 2, · · · , N using the

Jacobi-like algorithm [20].
7 Estimate Ã (1) by multiplying U, Σ and V.
8 Estimate A by normalizing Ã with its first row.
9 Estimate P (i) for i = 1, · · · , N using the first row of

Ã and P̃ (i) for i = 2, · · · , N .
10 Use the estimate to calculate the cost function Eq. (19)

11 Find the minimum cost function value with respect to the
qth estimate of A and use it as the final estimate of the
RTF matrix.

zero-mean uncorrelated Gaussian process with variance σ2
v , such

that the SNR due to the self-noise is equal to the values as specified
in Fig. 2 per microphone. The noisy speech signal is converted into
the STFT domain using a square-root Hann window with a length of
800 samples (i.e. 50 ms) and an overlap of 50%. The FFT length
is 1024. Note that the true RTF matrix is calculated using the 1024-
length FFT coefficients of the first 800 samples of the room impulse
responses. Each time segment consists of N = 8 time frames and
each time frame consists of Ns = 40 sub frames. For comparison,
we used the SCFA method from [18] and the original joint diagonal-
ization method from [1] as a reference as SCFA and JOINT, respec-
tively. The proposed method will be referred to as PROP.

The RTF estimation error is evaluated by the Hermitian angle
[22].

R∑
r=1

B∑
β

K/2+1∑
k=1

acos

(
|aH

r (β,k)âr(β,k)|
‖aH

r (β,k)‖
2
‖âr(β,k)‖2

)
RB (K/2 + 1)

(rad) , (21)

whereK and B are the number of frequency bins and time segments,
respectively. In Fig. 2(a), we show the estimation performance in the
nearly no reverberation case (with subscript ‘nr’), and T60 = 0.2s
(with subscript ‘r’). For both scenarios, PROP and SCFA have a sim-
ilar and much better performance compared to JOINT. For the nearly
no reverberation case, SCFA has a somewhat better performance
than PROP, because SCFA can model microphone self-noise and can
better reduce the model mismatch error caused mainly by the diffuse
noise. However, for the T60 = 0.2s and high SNR case, PROP
has a slightly better estimation performance than SCFA, because the
model mismatch error now is mainly caused by the late reverbera-
tion component, which is not considered in the referenced version
of SCFA. For the T60 = 0.2s case, we also evaluated the noise re-
duction performance in combination with three minimum variance
distortionless response (MVDR) beamformers [23], where we use
each time one of the three estimated RTFs as the target and the re-
maining two sources as interferers. We then calculate the segmental-
signal-to-noise-ratio (SSNR) and average this over the three sources.
Note that for the SSNR calculation, we omit the sub frames in which
the signal energy is zero. In addition to the methods PROP, JOINT
and SCFA we also show the performance when using the true RTF.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

3.49 3.51

2.48

2.5

Fig. 1: Acoustic scene. The three red circles denote the sources. The
cross in the center denotes the set of microphones. A zoom-in of that
set of four microphones is provided in the little square.
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JOINT
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Fig. 2: RTF estimation error and SSNR vs SNR

As shown in Fig. 2(b), the SSNR for each method increases as the
SNR increases. PROP has an almost similar performance compared
to SCFA, while both PROP and SCFA improve over JOINT with
slightly less than 1 dB in terms of SSNR. In Table 1 we show the

Table 1: Computation time comparison.

method SCFA PROP JOINT
Normalized run time 1 0.0163 0.0024

normalized computation time for all methods after averaging the run
time over all scenarios. As expected, the runtime for PROP is about
N = 8 times larger than for JOINT, but PROP is significantly less
complex than SCFA.

5. CONCLUSIONS
We considered the problem of estimating the RTF for multiple
sources jointly. We proposed a robust method which averages
covariance matrices for as many time frames as possible without
suffering too much from model mismatch errors caused by late
reverberation and microphone self noise. Experiments show that
the RTF estimation performance of the proposed method is similar
to the SCFA method, but at a significantly lower complexity, and
much better than the joint diagonalization method from [1]. Note
that SCFA can also be used to estimate the RTF matrix for larger
reverberation times, which we will address in future research.
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