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Community-Based Influence Maximization Using Network

Embedding in Dynamic Heterogeneous Social Networks
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Influence maximization (IM) is a very important issue in social network diffusion analysis. The topology of

real social network is large-scale, dynamic, and heterogeneous. The heterogeneity, and continuous expansion

and evolution of social network pose a challenge to find influential users. Existing IM algorithms usually

assume that social networks are static or dynamic but homogeneous to simplify the complexity of the IM

problem. We propose a community-based influence maximization algorithm using network embedding in

dynamic heterogeneous social networks. We use DyHATR algorithm to obtain the propagation feature vectors

of network nodes, and execute k-means cluster algorithm to transform the original network into a coarse

granularity network (CGN). On CGN, we propose a community-based three-hop independent cascade model

and construct the objective function of IM problem. We design a greedy heuristics algorithm to solve the IM

problem with (1 − 1
e )−approximation guarantee and use community structure to quickly identify seed users

and estimate their influence value. Experimental results on real social networks demonstrated that compared

with existing IM algorithms, our proposed algorithm had better comprehensive performance with respect to

the influence value, more less execution time and memory consumption, and better scalability.
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1 INTRODUCTION

Social networking refers to the use of internet-based social media sites to maintain connections
with people. Virus marketing is to use existing social networks to promote products on social
media platforms, and it uses public enthusiasm and interpersonal networks to spread marketing
information like viruses. The word-of-mouth effect has been confirmed to be effective in rapidly
propagating information at a low cost. Hence, how to find the top-k most influential users in the so-
cial networks, called seeds, and estimate the influence of these seeds, is an important research topic
in academic and industrial community which has been described as the influence maximization

(IM) problem [6, 25]. The IM analysis methods usually assess the diffusion among nodes based on
the network topology and determine the influence of seeds by computing the propagation proba-
bility of edges throughout the network. Many IM algorithms focus on how to adapt to large-scale
network and improve their running efficiency [12, 19, 27]. The topology of social networks are con-
stantly changing, such as nodes increase, edges increase, and edge relationship change. To solve
this problem, researchers have started to incorporate the dynamism of network structure into the
design of IM algorithms [1, 3, 11, 17, 18, 22, 24, 31]. With the development of social network, there
are multiple node types and edge types in the network. For example, in the early rules of social net-
works, the spread of information was primarily based on the friendship connections between users,
and the topology relationship was limited to Node-Node. However, nowadays, users have the abil-
ity to comment or respond to posts from strangers. It means that the way of information spreads
has evolved into Node-Item-Node. Therefore, researchers have begun to focus on exploring IM al-
gorithms in heterogeneous networks [15, 28]. As current social networks have the characteristics
for large-scale, dynamic, and heterogeneous, to solve IM algorithms has more challenging.

To solve the above problem, we present an IM algorithm using dynamic heterogeneous net-

work embedding (DHNE) and community diffusion. This IM algorithm can be applied on dy-
namic heterogeneous networks with over tens of millions of edges. By utilizing the DyHATR al-
gorithm [33], we are able to learn the heterogeneous and dynamic propagation characteristics of
nodes from the original network, and generate a propagation feature vector for each node in the
network. Then, we apply the k-means cluster algorithm to obtain the community structure and
establish a coarse-grained network (CGN). On CGN, we propose a community-based three-hop
independent cascade (IC) model, and design a greedy heuristic IM algorithm. We use commu-
nity structure to quickly identify seed users and estimate their influence value. The contributions
of this article are as follows.

(1) We propose a DHNE-based community diffusion model. The model uses network embedding,
which represents dynamic heterogeneous propagation features using low-dimensionally
dense feature vectors, to enhance the accuracy of community diffusion. Additionally, the
proposed model uses the community structure to reduce its spatial complexity.

(2) We propose a DHNE-based community influence maximization (DHNE-CIM) algo-
rithm with the (1 − 1

e
)− approximation guarantee to improve the efficiency of seed search

and influence estimation.
(3) Experimental results on three large-scale dynamic heterogeneous networks demonstrated

that our proposed algorithm had better comprehensive performance with respect to
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influence value, more less execution time and memory requirement, and better scalability
than existing IM algorithms.

The remainder of the article is organized as follows. In Section 2, we summarize related work.
In Section 3, we give the problem statement. In Section 4, we introduce the proposed DHNE-based
community diffusion model in detail. In Section 5, we describe the DHNE-CIM algorithm. Section 6
reports the experimental results. Section 7 concludes the artcile.

2 RELATED WORK

Kempe et al. [13] formally defined the IM problem. They proved that although IM problem is NP-
hard, if the influence propagation function satisfies non-negativity, monotonicity, and submodu-
larity, the greedy framework can be used to solve the IM problem with the (1− 1

e
−ε )-approximate

ratio, where e is the base of the natural logarithm and ε is the sampling error. Kempe et al. also
proposed two classic IM propagation models, namely the linear threshold (LT) model and the
independent cascade (IC) model. For classical IM problem, researchers proposed some effective
IM algorithms, such as CELF [16], CELF++ [10], TIM [30], and IMM [29]. With development of
social networks, the continuously increasing number of users has resulted in very large-scale of
social networks. Some researchers utilize community structures to optimize diffusion models and
IM algorithms to compute IM problem for large-scale social network. Belak et al. [2] designed a
cross-community influence strategy to achieve coarse-grained spread for social networks. To sig-
nificantly accelerate IM calculation at the group level, Eftekhar et al. [7] proposed a coarse-grained
diffusion model. Ji et al. [12] proposed a community diffusion model using network embedding to
solve the IM problem of large-scale networks with millions of nodes. Based on supervised learning
and reinforcement learning, Manchanda et al. [19] proposed a two-stage optimization framework
called GCOMB to solve the IM problem with constraints on a super large network with billions of
nodes. The above algorithms mainly focus on addressing how to improve the execution efficiency
of IM problem, but they are only applicable to static social networks.

Dynamic evolution is a significant feature of real social networks. Therefore, researchers have
studied how to perform IM analysis on the dynamic social networks. Aggarwal et al. [1] defined
the initial graphG0 and evolution graphGt in time interval [t , t+h] to represent the dynamic social
network, and calculated the influence value and backtracked the seed set. To mine multiple seed
sets at different times, Chen et al. [3] designed an upper bound interchange (UBI) greedy algo-
rithm with 1/2-approximation guarantee. To analyze the influence of evolving networks, Ohsaka
et al. [22] proposed a reachability tree-based technique and a sketching method with a real-time
fully-dynamic index data structure to solve dynamic IM problem. To accelerate calculation, Meng
et al. [20] proposed an efficient incremental algorithm to solve the dynamic IM problems in dy-
namic IC model, and Nesrine et al. [11] designed an incremental IM algorithm for dynamic social
networks. With further study of dynamic network influence maximization (DIM), more al-
gorithms for solving complex DIM problems have been proposed. Min et al. [21] constructed a
topic-based time-sensitive dynamic propagation model, and designed a topic-based time-aware
greedy algorithm and a topic-based time-aware heuristic algorithm to find seed set. Qin et al. [24]
proposed a dynamic IM algorithm based on community-topic features. Yerasani et al. [35] fur-
ther considered the budget constraint on the DIM problem and proposed a memetic algorithm to
identify the most influential users at different time intervals. The above works mainly focused on
solving the problem of DIM, and some ones began to focus on the problem of complex DIM.

In recent years, researchers have found that social networks are composed of multiple kinds
of entities coexisting, and users frequently engage in several types of interactions. Therefore, the
diversity of node and edge types is considered in designing IM algorithms. Kermani et al. [14]
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proposed a novel competitive influence model to incorporate users heterogeneity, message con-
tent, and network structure. To solve the problem of multiple behavior edges among users, Feng
et al. [8] designed an Inf2vec algorithm, which learns the node vectors from user behavior edges to
represent social influence information and searches for seeds through vector relationships. To ad-
dress the existence of heterogeneous nodes in social networks, such as user nodes and message
nodes, Deng et al. [5] proposed a measuring influence model to capture the influence of heteroge-
neous social networks. Facing the situation that the network contains multiple types of nodes and
multiple types of edges, Wang et al. [32] developed an improved algorithm to find the most influen-
tial users in the heterogeneous networks. To solve the IM problem on multiple heterogeneous net-
works, Kuhnle et al. [15] designed a multiplex IM algorithm with a heterogeneous diffusion model.
Existing heterogeneous influence maximization (HIM) algorithms were mainly focused on
static network. When the heterogeneous network structure changes over time, the existing HIM
algorithms must recalculate all data.

To sum up, the existing IM methods are mostly focused on large-scale static homogeneous net-
works, static heterogeneous networks, and dynamic homogeneous networks. In this article, we
focus on addressing IM problem in large-scale, dynamic, and heterogeneous social networks.

3 PROBLEM STATEMENT

In real social network, there are multiple types of nodes and edges, and the relationships among
nodes in the network change over time. Therefore, real social networks are dynamic and hetero-
geneous. The dynamic heterogeneous social network is defined as follows.

Definition 1 (Dynamic Heterogeneous Social Network (DHSN)). Reference [36] can be defined
as a set of sequential time snapshots within T time steps, denoted as G = {G1,G2, . . . ,GT }. Each
snapshot is a heterogeneous social network, denoted asGt = (V t ,Et ,ϕ,φ), whereV t and Et denote
the set of nodes and set of edges at t th time step, respectively,ϕ : V t → ΓV is the node type mapping
function, v ∈ V t corresponds to a specific type in ΓV , φ : Et → ΓE is edge type mapping function,
e ∈ Et corresponds to a specific type in ΓE , |ΓV | + |ΓE | > 2, t = 1, 2, . . . ,T .

The classical IM problem aims to identify a set of k most influential users in social network,
called seed set, and to estimate the influence value of seed set. However, it is too complicated to
directly use the edge diffusion information in DHSN to solve the dynamic heterogeneous influence
maximization problem, so we use a mapping function f (·) to compress the high-dimensional prop-
agation characteristics of nodes in the original space into a set of low dimensional node vectors

Y t = {yt
v = f (v ) |v ∈ V t ,yt

v ∈ Rd } [23, 36], where Y t ∈ R |V t |×d are dynamic heterogeneous latent
feature representation ofV t , t = 1, 2, . . . ,T . The mapping process of nodes is network embedding,
and the network embedding-based (NE-based) DHIM is defined as follows.

Definition 2 (NE-based Dynamic Heterogeneous Influence Maximization (NE-based DHIM)). Given
a DHSN G = {G1,G2, . . . ,GT }, Gt = (V t ,Et ,ϕ,φ), a set of latent feature representation of nodes
Y t = {yt

v = f (v ) |v ∈ V t ,yt
v ∈ Rd }, a user seed set St ⊆ V t , a positive integer k , and an information

diffusion model Ω(Y t ), which capture the stochastic process of St spreading information on Gt ,
NE-based DHIM aims to find ak-size seed set St∗ ⊆ V t , which can maximize the number of affected
nodes under the diffusion model Ω with parameter Y t , and the DHIM problem can be formulated
to solve St∗ as follows.

St∗ = arg maxσG,Ω(Y t ) (S
t ), St ⊆ V t ,Y t ∈ R |V t |×d , |St | = k, t = 1, 2, . . . ,T , (1)

where σG,Ω(Y t ) (S
t ) represents the influence value of St . We omit the subscript of σG,Ω(Y t ) (S

t ) and
simplified it as σ (St ) when the context is clear.
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Fig. 1. Framework of DHNE-based community diffusion model.

4 PROPOSED MODEL FRAMEWORK

To solve the NE-based DHIM problem, we propose a DHNE-based community diffusion model.
The framework of our model is shown in Figure 1, where HAN is hierarchical attention network
and RNN is recurrent neural network.

The model first uses DHNE algorithm DyHATR [33] to learn the latent diffusion feature rep-
resentation of network nodes (Figure 1(a)). Then, the model cluster nodes in the latent feature
space to find communities, and use the cluster center vector as the embedding representation of
community (Figure 1(b)). Finally, the DHNE-CIM algorithm is used to track and identify the seed
set and calculate the influence value of the seed set at each time step (Figure 1(c)). Table 1 lists the
important symbols used in the proposed model.

4.1 Dynamic Heterogeneous Social Network Embedding

Network embedding is a way to represent high-dimensional sparse network with low-dimensional
dense vector space, and it not only captures the heterogeneous topology of the network, but also
captures the evolution of the network topology. We use the algorithm DyHATR [33] to learn em-
bedding representation for DHSN.

Given a DHSN G = {G1,G2, . . . ,GT }, Gt = (V t ,Et ,ϕ,φ), DyHATR first captures network het-
erogeneous information at each time step by HAN model. The model HAN first divides Gt into
several type-specific sub-networks according to edge type, uses node-level attention model with
multi-head mechanisms to learn weight coefficient of node pair(v,u) in the r th type at t th snapshot

α r t
v,u , and unifies the multi-type node relationship as user node embedding ĥr t

v [33]:

α r t
v,u =

exp(τ (a�r · [W r · xv | |W r · xu ]))∑
k ∈N r t

v exp(τ (a�r ·[W r ·xv | |W r ·xk ]))
,

ĥr t
v = τ

��
�

∑
u ∈N r t

v

α r t
v,u ·W r · xu

��
� ,

(2)
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Table 1. The Important Symbols and Their Meanings in Proposed Model

Symbol Description

G dynamic heterogeneous social network
T total number of time steps
t the t th time step, and t = 1, 2, . . . ,T
Gt the snapshot of G at time step t
V t the node set of the network snapshot at time step t
Et the edge set of the network snapshot at time step t
ϕ the node type mapping function
φ the edge type mapping function
ΓV the collection of node type
ΓE the collection of edge type
St a user set of time step t
St∗ the seed set of time step t

σG,Ω(Y t ) (S
t ),σ (St ) influence value of St

Y t latent feature representation set of nodes at time step t
Ω information diffusion model
f (·) the mapping function from the original network space to

the network latent feature space
p (yt

v ,y
t
u ) the diffusion proximity between nodes v and u ∈ V t

ct
i a community in Gt

zt
ci

the center vector of community ct
i

M the number of communities
k the size of seed set
m the number of candidate communities
l the number of seeds in each candidate community
H t the coarse granularity network of Gt

ct
int the diffusion entrance in first-hop diffusion

N (ct
int ) the neighbor communities of ct

int

CCt the candidate community set in Gt

q
′t
ci

the influence probability of first-hop diffusion

q
′′t
ci ,s

the influence probability of second-hop diffusion

q
′′′t
s,v the influence probability of third-hop diffusion

where τ (·) is the activation function, | | indicates the concatenation operation, r represents the edge
type, t indicates the time step, xv represents the initial feature vector of node v ,W r is conversion
matrix of the r th edge type, N r t

v is the set of sampled neighbors of node v for the r th edge type in
t th snapshot, a�r indicates the transposition of parameterized weight vector of attention function

in the r th edge type, ĥr t
v is embedding of node v for the r th type edge in t th snapshot. Because

the multi-head node-level attention model has θ attention-heads, it is necessary to aggregate the

learning results of all attention-heads by formula Equation (5), where ĥθ
v is a simplified symbol of

ĥr t
v , and the aggregating result is hr t

v [33]:

hr t
v = concat (ĥ1

v , ĥ
2
v , . . . , ĥ

θ
v ), (3)

where hr t
v ∈ RL , and L � |V t | is the dimension of each node embedding learned by node-level

attention model.
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Further, the model HAN uses edge-level attention model to aggregate node embeddings under
all edge types to generate embedding representation of node v in the t th snapshot ht

v [33]:

βr t
v =

exp(q� · τ (W · hr t
v + b))∑ |ΓE |

k=1
exp(q� · τ (W · hkt

v + b))
,

ht
v =

|ΓE |∑
r=1

βr t
v · hr t

v ,

(4)

where βr t
v is normalized weight coefficient of node v for the r th edge type at the t th snapshot,W

is learning weight matrix, b is bias vector, q� indicates transposition of the edge-level attention
parameter vector. After learning, the model HAN outputs node embedding set at each time snap-
shot, {ht

1,h
t
2, . . . ,h

t
|V t | },h

t
v ∈ RF , F � |V t |, t = 1, 2, . . . ,T , where F is the dimension of each node

embedding learned by edge-level attention model.
Finally, DyHATR algorithm uses the RNN model to connect multiple snapshots in consecutive

time, and learns evolutionary mode of network from snapshot sequence. The gated-recurrent-

unit (GRU) [4] in RNN is configured as follows [33]:

ut = τ (Wu · [ht
v | |yt−1

v ] + bu ),

r t = τ (Wr · [ht
v | |yt−1

v ] + br ),

ỹt
v = tanh(Wy · [ht

v | |(r t 	 yt−1
v )] + by ),

yt
v = (1 − ut ) 	 yt−1

v + ut 	 ỹt
v ,

(5)

where ut ∈ Rd is update gate vector, r t ∈ Rd is reset gate vector, Wu ,Wr ,Wy ∈ Rd×2F and

bu ,br ,by ∈ Rd represent training parameter matrixes and bias vectors, respectively. The outputs
of the RNN model are the final embedding representation of DHSN, denoted as Y t = {yt

v |v ∈
V t ,yt

v ∈ Rd }, t = 1, 2, . . . ,T , where d is the dimension of the final embedding vector.

4.2 Diffusion Model and Influence Estimation

We combine DHNE with the classical IC model to design a community diffusion model. There are
three definitions related to the diffusion model.

Definition 3 (Diffusion Proximity). Represents the similarity of propagation features between
two nodes. Given a DHSN G = {G1,G2, . . . ,GT }, Gt = (V t ,Et ,ϕ,φ) and its latent feature repre-
sentation Y t = {yt

v |v ∈ V t ,yt
v ∈ Rd }, t = 1, 2, . . . ,T , the diffusion proximity between nodes v and

u ∈ V t ,p (yt
v ,y

t
u ) can be defined as follows:

p (yt
v ,y

t
u ) =

1

2

(
1 −

yt
v · yt

u��yt
v
�� × ��yt

u
��
)
. (6)

Diffusion proximity is normalized cosine distance. The larger the diffusion proximity, the greater
the influence probability between two nodes.

Definition 4 (Community). is a set of nodes with similar propagation features to each other. The
community in Gt can be denoted as ct

i , 0 ≤ i ≤ M , i is the community number and M is the
number of communities in the network snapshot. If the nodes in the network have community
tags, we take the average vector of community nodes as the community center. If the nodes in the
network do not have community tags, we identify the communities by clustering algorithm, and
take the cluster center as the community center. The center vector of community ct

i is denoted as
zt

ci
, 0 ≤ i ≤ M, t = 1, . . . ,T .
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Fig. 2. Skeleton of DHNE-based community diffusion model.

Definition 5 (Coarse Granularity Network (CGN)). is a network with community as the unit. CGN
is denoted as H t , where H t = {ct

i |0 ≤ i ≤ M }, t = 1, 2, . . . ,T .

Our diffusion model is a community-based three-hop IC model on CGN. The first hop is inter-
community diffusion, and the second and the third hops are intra-community diffusion. A skeleton
of our proposed DHNE-based community diffusion model is shown in Figure 2. The model findsm
candidate communities through the first-hop diffusion, finds l seeds in each candidate community
via the second-hop diffusion, and calculates the influence value of k = m × l seeds through the
third-hop diffusion.

For the network snapshot Gt , we set the largest community as the diffusion entrance in first-
hop diffusion, and denote it as ct

int . The first-hop diffusion is the spread from ct
int to its neighbor

communities N (ct
int ). The calculation of N (ct

int ) is as follows:

N (ct
int ) =

{
ct

i |max (p (zt
cint
, zt

ci
),m − 1),∀ct

i ∈ H t \ct
int

}
, (7)

where p (zt
cint
, zt

ci
) means the diffusion proximity from the entrance community center to each

community center. We calculate the diffusion proximity to search them−1 communities that have
the closest diffusion relationship with ct

int , and add them into N (ct
int ). ct

int ∪ N (ct
int ) constitutes

candidate community set, denoted as CCt , where |CCt | = m,m ≤ |H t |. The influence probability
of first-hop diffusion, q′tci

, can be calculated as follows:

q′tci
= p (zt

int , z
t
ci

),∀ct
i ∈ H t \ct

int . (8)

The second-hop diffusion is the spread from the candidate community centers to their adjacency
nodes. After the second-hop diffusion, the seed set St can be obtained

St
ci
= {v |max (p (zt

ci
,yt

v ), l ),∀v ∈ ct
i ,∀ct

i ∈ CCt },
St = ∪c t

i
∈CC t St

ci
.

(9)

We look for l nodes with the greatest diffusion proximity to zt
ci

and add them into the candidate

seed set St
ci

. The influence probability of second-hop diffusion, q′′tci ,s , can be calculated as follows:

q′′tci ,s = p (zt
ci
,yt

s ),∀ct
i ∈ CCt ,∀s ∈ St

ci
. (10)
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The third-hop diffusion is the spread from the seeds in candidate community to other inactive
nodes within the same community. The influence probability of each node inside the candidate
communities, q′′′ts,v , are calculated as follows:

q′′′ts,v =
∑

v ∈c t

i
\S t

ci

p (yt
s ,y

t
v ),∀s ∈ St

ci
. (11)

Then, the influence value σ (St ) under community-based dynamic heterogeneous diffusion
model is calculated as follows:

σ (St ) =
∑

c t

i
∈CC t

∑
s ∈S t

ci

∑
v ∈c t

i
\S t

ci

q′tci
q′′tci ,s

q′′′ts,v . (12)

Our model finds seeds by coarse-grained propagation at community level, and the influence
value of seed set is directly estimated by formulas Equation (12). The model does not use the time-
consuming single-node diffusion and Monte Carlo simulation, so that it can effectively reduce the
time and spatial complexity of IM calculation. Next, we prove the approximation guarantee of
solving IM problem using our model.

Kempe et al. [13] proved that if the influence propagation function satisfies non-negativity,
monotonicity, and submodularity, then the greedy method can be used to solve IM problem with

the (1− 1
e

)−approximation guarantee. Because σ (·) : R |V |
t×d → R is non-negative and monotonic,

we only need to prove the submodularity of σ (·), and we can use the greedy-based algorithm to
approximately solve the NE-based DHIM problem with (1 − 1

e
)−approximation guarantee.

Submodularity: σ (·) is submodular if and only if σ (St ∪ {x }) − σ (St ) ≥ σ (Rt ∪ {x }) − σ (Rt )
holds for two seed sets St and Rt , St ⊆ Rt ,x ∈ c .

Proof.

σ (St ∪ {x }) − σ (St ) = q′tc q
′′t
c,x

∑
v ∈c\(S t∪{x })

q′′′tx,v ,

σ (Rt ∪ {x }) − σ (Rt ) = q′tc q
′′t
c,x

∑
v ∈c\(Rt∪{x })

q′′′tx,v .

Because St ⊆ Rt , c\(Rt ∪ {x }) ⊆ c\(St ∪ {x }). Hence, q′tc q
′′t
c,x

∑
v ∈c\(S t∪{x }) q

′′′t
x,v ≥

q′tc q
′′t
c,x

∑
v ∈c\(Rt∪{x }) q

′′′t
x,v That is to say, σ (·) is submodular. �

5 ALGORITHM

In this section, we give a specific description of the DHNE-CIM algorithm mentioned in the frame-
work of DHNE-based community diffusion model. The inputs of DHNE-CIM algorithm include
DHSNG, numberT of time steps, numberM of communities, numberm of candidate communities,
number l of seeds in each candidate community, dimension d of embedding vector, and number
r of types in heterogeneous network. The final output of DHNE-CIM algorithm consists of k-size
seed set St and their corresponding influence values σ (St ) for T time steps, where k = m × l and
t = 1, . . . ,T . At each time step, DHNE-CIM algorithm first executes DyHATR algorithm [33] to
calculate the embedding representation Y t for input network Gt and generates the CGN H t by
running k-means clustering algorithm on Y t . Secondly, DHNE-CIM algorithm chooses the initial
diffusion community ct

int from H t . Then, DHNE-CIM algorithm determines m candidate commu-
nities and searches l seeds in each candidate community. Finally, the influence value of seed set
σ (St ) is calculated.

During the embedding stage, the algorithm DyHATR [33] is executed to learn the embedding
representation of DHSN. At each time step, DyHATR uses the HAN [34] model to aggregate the
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ALGORITHM 1: DHNE-CIM

Input: G,T ,M,m, l ,d, r
Output: S1, S2, . . . , ST and σ (S1),σ (S2), . . . ,σ (ST )
// 1.Embedding stage: calculate the embedding representation of DHSN

1 (Y 1,Y 2, . . . ,YT ) ← DyHATR (G,T ,d, r );

// Community discovery and generating CGN

2 for t = 1; t ≤ T ; t + + do

// Cluster Y t into M classes by k-means algorithm, H t is CGN and Z t is

community center matrix

3 {H t ,Z t } ← k −means (Y t ,M );

4 end

// 2.IM calculation stage

5 for t = 1; t ≤ T ; t + + do

// 1st-hop diffusion

6 f ← ∅, St ← ∅,σ (St ) ← 0.0;

7 for i = 0; i ≤ |H t | − 1; i + + do

// Initialize the propagation entrance community

8 if isMax ( |ct
i |) then

9 int ← i;

10 ct
int ← H t [int];

11 end

12 end

13 zt
cint
← Z t [int]; // Find the entrance community from H t by community index

14 Find out N (ct
int ) according to formula Equation (7);

15 CCt ← ct
int ∪ N (ct

int );

// 2ed-hop diffusion

16 for each community ct
i in CCt do

17 Calculate q′tci
according to formula Equation (8);

18 St ← Calculate St
ci

according to formula Equation (9);

19 for each community s in St
ci

do

20 Calculate q′′tci ,s according to formula Equation (10);

// 3rd-hop diffusion

21 for each community v in ct
i \S

t
ci

do

22 in f ← in f + q′tci
q′′tci ,sq

′′′t
s,v ;

23 end

24 end

25 σ (St ) ← σ (St ) + in f ;

26 end

27 end

28 return S1, S2, . . . , ST and σ (S1),σ (S2), . . . ,σ (ST );

features from several type-specific sub-networks, and uses the RNN [26] model to learn the evolv-
ing features. The required time and space of running DyHATR areO (n2), where n is the number of
nodes in the network. Next, DHNE-CIM executes algorithm k-means algorithm to cluster the em-
bedding network Y t , and its required time and space are O (n). The IM calculation stage required
time and space are O (k × c ) ≈ O (n), respectively, where k is the number of seeds, and c is the
number of nodes in each community.
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Table 2. Required Time, Space, and Approximation Ratio of the Five Algorithms

Time Complexity Space Complexity Time Complexity Space Complexity Approximation
Algorithm in Embedding in Embedding of IM algorithm of IM algorithm Ratio

Stage Stage

DHNE-CIM O (n2) O (n2) O (n) O (n) 1 − 1/e
GroupIM [12] O (m′ + n O (m′ + n O (m′loд(m′) O (m′loд(m′) 1 − 1/e

+nloдn) +nloдn) +n2 +m × c ) +n2 +m × c )
Inf2vec [8] O (n) O (n) O (n2) O (n2) 1 − 1/e

DIM [22] - - O (
(m′+n) log n)

ε3 ) O (
(m′+n) log n)

ε3 ) 1 − 1/e − ε
KSN [15] - - O (

(m′+n) log n)
ε2 ) O (

(m′+n) log n)
ε2 ) (1−ε )(1−1/e−ε )

(o+1)r

“-” denotes that algorithms DIM and KSN do not need embedding processing.

According to Reference [9], if σ (·) is non-negative, monotonic, submodular, and σ (∅) = 0, for

Ŝt obtained by the greedy strategy-based IM algorithm, σ (Ŝt ) ≥ (1 − (1 − 1
k

)k ) × σ (St∗) holds.

Because 1 − 1
e
< (1 − (1 − 1

k
)k ),k > 0, and limk→∞ (1 − (1 − 1

k
)k ) = 1 − 1

e
. So, the approximation

ratio of algorithm DHNE-CIM is (1 − 1
e

).
Table 2 shows the time-space complexity and approximation ratio of our proposed algorithm

DHNE-CIM with other four existing algorithms GroupIM [12], Inf2vec [8], DIM [22], and KSN [15],
where n is the number of nodes in network, m′ is the number of edges in the network, m and c
are the number of candidate communities and the number of nodes in each candidate community
in algorithms DHNE-CIM and GroupIM, respectively, o is the number of nodes overlapping in
multiple networks and r is the number of edge types in algorithm KSN, respectively. Algorithms
DIM and KSN do not need embedding processing, so we use “-” to fill in the “Time Complexity in
Embedding Stage” and “Complexity in Embedding Stage” columns in Table 2.

The three algorithms DHNE-CIM, Inf2vec, and GroupIM are NE-based IM algorithms, so they
need to execute embedding processing. DHNE-CIM learns dynamic heterogeneous information,
Inf2vec learns static heterogeneous information, and GroupIM learns static homogeneous infor-
mation. So, during the embedding stage, the time-space complexity of algorithms DHNE-CIM is
higher than that of algorithms Inf2vec and GroupIM. For the propagation stage, because O (n) <

O (
(m′+n) log n

ε2 ) < O (
(m′+n) log n

ε3 ) < O (n2),the time-space complexity of DHNE-CIM is the lowest

among the five algorithms, Furthermore, (1−ε )
(o+1)r (1− 1

e
− ε ) < (1− 1

e
− ε ) < (1− 1

e
), where 0 < ε < 1,

r > 2. Therefore, the approximation ratio of algorithm DHNE-CIM is the same as that of algorithms
Inf2vec and GroupIM, and higher than that of algorithms DIM and KSN.

6 EXPERIMENT

We conducted experiments on the high-performance parallel cluster system of Guangxi Univer-
sity.1 The computing node used in the experiment is configured as a 40-core CPU, each of which
contains two Intel Xeon Gold 6,230, 192 GB memory, and two Tesla 4 GPU cards. The operating
system is CentOS 7.4. The three algorithms DHNE-CIM, GroupIM, and Inf2vec were implemented
in Python language, the two algorithms DIM and KSN were implemented in C++ language.

6.1 Datasets

To compare the performance of algorithm DHNE-CIM with other four existing algorithms, we
chose three open-source dynamic heterogeneous social network datasets. The first two datasets
are SX-Supper2 and Higgs-Twitter3 provided by Stanford University. The third dataset is from

1hpc.gxu.edu.cn.
2https://snap.stanford.edu/data/sx-superuser.html.
3https://snap.stanford.edu/data/higgs-twitter.html.
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Table 3. Statistics of Network Datasets Used

Dataset Node Edge Node Type Edge Type T

SX 194,085 1,443,339 1 3 10
Higgs 456,625 14,855,842 1 3 10
Tencent 2,320,895 50,655,143 1 3 10

Table 4. Ability of Algorithms That Adapt to Large-Scale DHSN

Algorithms Large-scale Dynamic Heterogeneous

DHNE-CIM yes yes yes
GroupIM yes no no
Inf2vec no no yes
DIM no yes no
KSN no no yes

social network Tencent-Weibo4 presented in KDD2012. Table 3 shows the key characteristics of
the three datasets, where Node and Edge denote the number of nodes and the number of edges
in the dataset respectively, Node Type is the number of node types contained in the dataset, Edge

Type indicates the number of edge types in the dataset, and T represents the number of time
steps.

6.2 Evaluation Indicators

We use four indicators, namely influence value, execution time, memory capacity used, and scala-
bility, to evaluate the performance of the IM algorithms in the large-scale dynamic heterogeneous
network environment.

(1) Influence value: It is the approximate solution of influence function σ (·), which is an indica-
tor to evaluate the quality of seeds found by IM algorithm. In an IM algorithm, k influential
nodes are selected as seeds for a given propagation model, and influence value of seeds cor-
responds to the total expectation of network nodes successfully influenced by seeds.

(2) Execution time: It represents the time to execute an IM algorithm, which searches for seeds
and estimates influence value.

(3) Memory capacity used: It denotes the maximum amount of memory consumed during the
execution of an IM algorithm

(4) Scalability: It is used to evaluate whether the IM algorithm has good expansion capability
with growth of social network. It refers to the required time that the IM algorithm recompute
the latest results along with dynamic growth of social network.

6.3 Algorithms in the Experiment

We selected four existing IM algorithms for experimental comparison. Among them, GroupIM [12]
is an IM algorithm using network embedding and community diffusion, Inf2vec [8] is a heteroge-
neous IM algorithm using network embedding, DIM [22] is a classical dynamic IM algorithm using
the sketching method, and KSN [15] is a multi-network heterogeneous IM algorithm based on the
classic IMM algorithm [29] and knapsack algorithm. Table 4 lists the key features of the five IM
algorithms.

4https://www.kaggle.com/c/kddcup2012-track1/data.
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6.4 Experiment Setting

The task of dynamic IM algorithm is to track influence value, execution time, memory capacity
used, and scalability at each time step. For each dataset, we create a sequence of T snapshots,
{G1,G2, . . . ,GT }, where Gt+1 = Gt + ΔG, |ΔG | = |G |/T , t = 1, 2, . . .T − 1.

Due to the inability of some algorithms in the experiment to handle large datasets, or lack of
dynamic adaptability or heterogeneous adaptability, we preprocessed the datasets according to
different situations. For the algorithms that cannot handle big datasets, we sampled the original
datasets to allow these algorithms to run on the sample sets. For the static IM algorithms, we re-
moved the temporal duplicate edges of the dataset. To implement homogeneous IM algorithms on a
heterogeneous network, we first partitioned the network into several homogeneous sub-networks
based on the types of edges. Next, we applied the homogeneous IM algorithm on each sub-network
and recorded the corresponding execution time, memory consumption, and influence value after
eliminating duplication. Finally, we aggregated these results to obtain the overall performance of
the algorithm on the entire heterogeneous network.

According to Reference [22], for algorithm DIM, parameter β was set to 32, w was set to
β (n +m) logn. According to Reference [8], for algorithm Inf2vec, influence context length L was
set to 50, 10 influence context paths were generated by each node, learning rate γ was set to 0.005,
window_size was set to 4, skip_size was set to 4, maximum number of iterations I was set to 10, influ-
ence embedding vector dimension d was set to 50, and subnet weight α was set to 0.25. According
to Reference [12], algorithm GroupIM used Skip-gram model to obtain the network embedding,
in which walk length L was set to 80, number of walks per node was set to 40, learning rate γ
was set to 0.005, window_size was set to 10, skip_size was set to 4, and influence embedding vector
dimension d was set to 128, and constant coefficient δ was set to 0.5. For algorithm DHNE-CIM,
influence embedding vector dimension d was set to 32.

6.5 Ablation Study

Our algorithm DHNE-CIM uses algorithm DyHATR in the network embedding stage. Algorithm
DyHATR has two important components, HAN and RNN. To study the contribution of each com-
ponent to the modeling capability, we conducted ablation experiments on SX-Super, Higgs-Twitter,
and Tencent-Weibo datasets, respectively. We obtained three network embeddings by HAN learn-
ing, RNN learning, and the complete model learning. These three network embeddings are used
to execute the DHNE-CIM algorithm to achieve the influence values for searching 10 seeds. We
labeled the experimental results as HAN-CIM, RNN-CIM, and DHNE-CIM, respectively. Figure 3
reports the ablation experimental results. We can see from Figure 3 that RNN-CIM performed bet-
ter than HAN-CIM on SX Supper and Tencent Weibo datasets, indicating that RNN component
plays a greater role, while HAN component plays a smaller role in DHNE-CIM algorithm on these
two networks. On dataset Higgs-Twitter, the HAN component plays a slightly greater role than the
RNN component. The influence values of DHNE-CIM algorithm using two components together
on the three networks are significantly more than the influence values of DHNE-CIM algorithm
using single component. It can be seen that the superposition of two components is necessary for
the DHNE-CIM algorithm.

6.6 Results and Discussion

The SX-Supper dataset has strong dynamics and weak heterogeneity. Firstly, we evaluated the
influence value, execution time, and memory capacity used of running the five algorithms DHNE-
CIM, GroupIM, Inf2vec, DIM, and KSN on the SX-Supper dataset. Table 5 shows their experimental
results for searching 10, 50, 100, 150, and 200 seeds on the final snapshot of SX-Supper dataset, with
the best performing results highlighted in bold.
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Fig. 3. Ablation study for DHNE-CIM running on three datasets.

From Table 5, we can see that the performance of running the five algorithms on the dataset
SX-Supper for a varying number of seeds. The influence value of our proposed algorithm DHNE-
CIM was significantly higher than that of algorithms GroupIM and Inf2vec which also use network
embedding. This is because GroupIM and Inf2vec cannot learn the dynamic features of topology.
Similarly, the influence value of algorithm DHNE-CIM was also significantly higher than that of
static heterogeneous algorithm KSN. The influence of algorithm DHNE-CIM was higher than that
of algorithm DIM. DIM is an IM algorithm that relies on a dynamic homogeneous model and lacks
heterogeneous topology features.

In terms of running speed, the experimental results show that the algorithm DHNE-CIM was
the fastest among five algorithms. DHNE-CIM, GroupIM, and Inf2vec are all based on the network
embedding model, in which the propagation features are converted into the form of node feature
vectors. Therefore, the execution time of these three algorithms did not increase significantly with
increase of the number of searching seeds. However, the two algorithms DIM and KSN are based on
the traditional edge probability diffusion model, their computing time are increased significantly
as increase of the number of searching seeds. Moreover, both algorithms DHNE-CIM and GroupIM
ran faster than algorithm Inf2vec. The reason is that algorithm DHNE-CIM and GroupIM are based
on community propagation, but algorithm Inf2vec is based on individual propagation. In addition,
we also find that the running speed of DHNE-CIM was faster than that of GroupIM. This is because
GroupIM uses an edge-based layer clustering algorithm to discover communities and its execution
time is related to the number of edges, while DHNE-CIM uses a node-based clustering algorithm
to discover communities and its execution time is related to the number of nodes. The number of
edges in social network is usually greater than the number of nodes, so algorithm DHNE-CIM ran
faster than algorithm GroupIM.

For memory consumption, the DHNE-CIM used the least memory capacity among the five algo-
rithms, and the algorithms GroupIM and Inf2vec used the second and the third smallest memory
capacity. This indicates that the memory consumption of the NE-based IM algorithms was less than
that of those IM algorithms based on the traditional edge probability diffusion model, such as DIM
and KSN. This is because the memory capacity consumed by the NE-based algorithms was only
related to the number of embedding vectors. Algorithm DHNE-CIM calculated IM at community
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Table 5. Performance of Running Five Algorithms on the SX-Supper Dataset

Number of Algorithms Influence Execution time Memory capacity
seeds velue (s) used(MB)

DHNE-CIM 120,202.05 88.21 23.48

GroupIM 7,909.78 225.18 128.50
10 Inf2vec 127.15 11,430.85 218.57

DIM 17,277.92 40,214.00 476.30
KSN 22,588.90 25,339.83 11,520.00

DHNE-CIM 120,202.17 89.58 23.48

GroupIM 8,409.78 225.20 128.50
50 Inf2vec 2,000.29 11,430.85 218.57

DIM 19,531.39 40,556.00 476.30
KSN 22,927.40 141,789.60 37,826.80

DHNE-CIM 120,202.28 124.05 23.48

GroupIM 9,409.78 226.03 128.50
100 Inf2vec 8,754.73 11,430.85 218.57

DIM 21,017.79 45,046.00 476.30
KSN 23,139.50 501,666.04 64,929.80

DHNE-CIM 120,202.32 154.45 23.48

GroupIM 10,909.78 226.09 128.50
150 Inf2vec 206,05.34 11,430.85 218.57

DIM 22,105.68 45,069.00 476.30
KSN 23,289.50 1,063,517.78 118,462.00

DHNE-CIM 120,202.95 162.65 23.48

GroupIM 12,909.78 226.10 128.50
200 Inf2vec 37,665.24 11,430.85 218.57

DIM 22,979.33 45,091.00 476.30
KSN 23,549.00 1,907,512.68 136,978.00

The best performing results highlighted in bold.

level, and its memory usage was lower than that of algorithm Inf2vec using individual nodes em-
bedding. Although both algorithms DHNE-CIM and GroupIM calculated IM in community level,
the memory consumption of clustering algorithm used in GroupIM was more than that of cluster-
ing algorithm used in DHNE-CIM. In addition, the memory consumption of running dynamic IM
algorithms was less than that of running static IM algorithms. This is because the memory usage of
the dynamic IM algorithms is proportional to the amount of network variation. When the network
structure updated, the dynamic algorithms only calculated the part of changed, while the static al-
gorithms needed to recalculate the entire network, resulting in more memory consumption. KSN
was a static IM algorithm based on traditional edge probability diffusion model. Compared to al-
gorithm KSN, our algorithm DHNE-CIM represented the network heterogeneous information as
feature vectors of nodes, and estimated the influence value by the community structure and vec-
tor calculation, so its memory usage did not be increased as increase of the number of searching
seeds.

Unlike the SX-Supper dataset, the dataset Tencent-Weibo has only heterogeneous duplicated
edges but do not have temporal duplicated edges. Table 6 shows the experimental results of run-
ning the five IM algorithms on the final snapshot of dataset Tencent-Weibo,with the best perform-
ing results highlighted in bold.

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 8, Article 119. Publication date: June 2023.



119:16 X. Qin et al.

Table 6. Performance of Running Five Algorithms on the Dataset Tencent-Weibo

Number of Algorithms Influence Execution time Memory capacity
seeds velue (s) used(MB)

DHNE-CIM 1,236,072.43 196.68 146.82

GroupIM 11,982.92 1,119.07 470.92
10 Inf2vec 109.38 210,070.06 932.79

DIM 2,768.34 1,017,432.00 3,141.41
KSN 1,819.70 3,306.21 15,620.70

DHNE-CIM 1,450,359.22 307.82 146.82

GroupIM 12,482.92 1,120.07 470.92
50 Inf2vec 2,714.74 210,070.06 932.79

DIM 3,294.17 1,017,561.00 3,141.41
KSN 2,374.25 22,251.50 15,342.70

DHNE-CIM 1,476,892.54 352.95 146.82

GroupIM 13,482.92 1,119.56 470.92
100 Inf2vec 10,279.11 210,070.06 932.79

DIM 3,748.80 1,017,710.00 3,141.41
KSN 3,046.57 65,345.16 22,451.60

DHNE-CIM 1,489,682.61 377.92 146.82

GroupIM 14,982.92 1,121.03 470.92
150 Inf2vec 22,128.03 210,070.06 932.79

DIM 4,121.89 1,017,861.00 3,141.41
KSN 8,482.50 121,567.62 25,955.30

DHNE-CIM 1,495,349.74 530.10 146.82

GroupIM 16,982.92 1,119.45 470.92
200 Inf2vec 38,222.19 210,070.06 932.79

DIM 4,445.94 1,018,044.00 3,141.41
KSN 15,567.00 197,215.67 29,626.70

The best performing results highlighted in bold.

From Table 6, we can see that for the dataset Tencent-Weibo with strong heterogeneity and
weak dynamics, our algorithm DHNE-CIM still had the highest influence value among five
algorithms for a varying number of seeds, but the performance of other four algorithms had
fluctuated. NE-based IM algorithms GroupIM and Inf2vec, and static heterogeneous IM algorithm
KSN had better performance than dynamic homogeneous algorithm DIM. This indicates that our
algorithm DHNE-CIM was more robust than other four algorithms.

For the execution time and memory capacity used, we can see from Table 6 that our algorithm
DHNE-CIM required the least amount among the five algorithms.

Unlike the previous two datasets SX-Supper and Tencent-Weibo, dataset Higgs-Twitter has a
large number of dynamic duplicated edges and heterogeneous duplicated edges. Table 7 shows
the experimental results of running the five IM algorithms on the final snapshot of the dataset
Higgs-Twitter. Higgs-Twitter,with the best performing results highlighted in bold.

As can be seen in Table 7, for the dataset Higgs-Twitter, our algorithm DHNE-CIM had the best
ability to capture network propagation feature, and obtained the largest influence value among
the five algorithms. This is because algorithm DHNE-CIM used DHNE to capture the dynamic
and heterogeneous characteristics of nodes, and obtain more propagation features than other
four algorithms. Algorithm GroupIM could not capture dynamic information and heterogeneous
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Table 7. Performance of Running Five Algorithms on the Dataset Higgs-Twitter

Number of Algorithms Influence Execution time Memory capacity
seeds velue (s) used(MB)

DHNE-CIM 155,944.24 90.34 30.46

GroupIM 12,384.96 938.95 120.32
10 Inf2vec 117.98 7,699.25 175.72

DIM 17,248.09 27,366.00 232.16
KSN 1,520.61 8,376.2 6,074.05

DHNE-CIM 155,944.26 116.77 30.46

GroupIM 12,884.96 939.22 120.32
Inf2vec 2,227.95 7,699.25 175.72

50 DIM 23,657.68 27,420.00 232.16
KSN 2,099.04 28,312.72 13,603.00

DHNE-CIM 155,944.27 133.28 30.46

GroupIM 13,884.96 940.65 120.32
100 Inf2vec 9,005.57 7,699.25 175.72

DIM 27,773.61 27,507.00 232.16
KSN 2,499.61 78,239.33 18,744.20

DHNE-CIM 155,944.27 129.83 30.46

GroupIM 15,384.96 941.31 120.32
150 Inf2vec 19,177.68 7,699.25 175.72

DIM 30,354.35 27,637.00 232.16
KSN 2,831.18 168,699.09 23,321.30

DHNE-CIM 155,944.27 151.33 30.46

GroupIM 17,384.96 943.04 120.32
200 Inf2vec 33,688.51 7,699.25 175.72

DIM 32,232.59 27,790.00 232.16
KSN 3,109.73 229,815.69 28,167.10

The best performing results highlighted in bold.

information in the network, and it only used community diffusion to keep influence value. Al-
though heterogeneous features are embedded into node feature vectors, the algorithm Inf2vec
cannot obtain temporal features in the network. Algorithm DIM obtained the propagation features
from dynamic edges, so it had advantage when running on the dataset Higgs-Twitter. However,
due to the loss of heterogeneous characteristics, the influence value of DIM was lower than that of
the algorithm DHNE-CIM. The influence value of algorithm KSN is the worst because it can only
obtain network heterogeneous features but cannot capture network temporal features. Therefore,
KSN has lost many diffusion features on the dataset Higgs-Twitter.

We can also see that for the dataset Higgs-Twitter, algorithm DHNE-CIM required the short-
est execution time among the five algorithms. Although algorithm DHNE-CIM extracted more
propagation feature types from the network than the other four algorithms, its execution speed
was the fastest. This is because DHNE-CIM completed dynamic heterogeneous features extraction
from the network in embedding processing stage, and used community propagation and vector-
calculation-based influence estimation method in IM calculation stage. Therefore, the efficiency of
algorithm DHNE-CIM was greatly improved.

In addition, for the dataset Higgs-Twitter, the memory consumption of algorithm DHNE-CIM
was less than that of the other four algorithms.
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Fig. 4. Required embedding time of running algorithms DHNE-CIM, Inf2vec and GroupIM on three datasets.

In summary, algorithm DHNE-CIM achieved better performance and robustness on three
datasets than other four algorithms on the whole. Algorithm DHNE-CIM can be used for IM com-
puting of large-scale DHNS with low computing cost in practical applications.

Algorithms DHNE-CIM, Inf2vec, and GroupIM all need network embedding. Figure 4 shows
their embedding time. From Figure 4, we can see that the required embedding time of algorithm
DHNE-CIM was longest, Inf2vec ranked the second, and algorithm GroupIM required the shortest
embedding time. The reason is that the algorithm DHNE-CIM needed to learn dynamic evolution
features and heterogeneous features from network snapshot sequence G1 to GT , while algorithm
Inf2vec just learned the heterogeneous features of GT , and algorithm GroupIM only learned the
static homogeneous relationship between nodes without the differences in edge types.

DHNE-CIM and GroupIM are both NE-based community diffusion IM algorithms. In reference
[12], algorithm GroupIM uses the Skip-gram model to learn network embeddings. To further com-
pare the performance of two similar IM algorithms, we use the network embedding obtained from
the DyHATR algorithm as input for GroupIM. Then, we compare the influence value produced
by DHNE-CIM and DyHATR-GroupIM. The comparison results on three datasets are shown in
Figure 5. The influence value of algorithm DHNE-CIM is significantly higher than that of algorithm
GroupIM. It can be seen that algorithm DHNE-CIM performs better than algorithm GroupIM. The
main reason is that algorithm DHNE-CIM used the diffusion proximity from seeds to each node
in the community to accurately calculate the influence probability within the community, while
algorithm GroupIM approximately treated the influence probability of all nodes in the community
as the same.

Finally, we evaluated the scalability of five algorithms on three datasets, respectively. We run five
algorithms on 10 consecutive snapshots of each dataset to search for 100 seeds and record required
time on snapshot G1,G5 and G10. The purpose was to observe which IM algorithm had better
adaptability when the network scale increased from G1 to G10, where Gt+1 = Gt + ΔG, |ΔG | =
|G |/10, t = 1, 2, . . . , 9. The experimental results are shown in Figure 6.

As can be seen from Figures 6(a)–6(c), the maximal increase in execution time of algorithm
DHNE-CIM was within 200 seconds, while the maximal increase in execution time of algorithms
DIM, KSN, Inf2vec, and GroupIM were about 7.9 hours, 44 hours, 2.1 hours, and 940 seconds
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Fig. 5. Influence values of running the algorithm DHNE-CIM and GroupIM.

Fig. 6. Scalability for five IM algorithms running on three datasets.
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respectively. Both algorithms Inf2vec and GroupIM establish the node embedding matrix based
on the maximal scale ofG10 to adapt to growth fromG1 toG10. Therefore, even if the network size
was very small, their running time are also very long. It illustrates that the scalability of algorithm
DHNE-CIM is the best among the five algorithms.

7 CONCLUSION

In this article, we proposed a DHNE-based community diffusion model and influence maximization
algorithm. Its main idea is to obtain the propagation feature vector matrix of nodes by perform-
ing network embedding algorithm to solve the feature representation problem in large-scale dy-
namic heterogeneous social networks, and utilize k-means algorithm to identify communities and
search seeds and compute influence values in large-scale dynamic heterogeneous social networks
by using community structure and vector calculations. The experiments show that our algorithm
performs better on real social networks and has better robustness and scalability than existing
algorithms.

In practical applications, users often navigate multiple platforms simultaneously in social net-
works. This means that social networks have complex multiplex structure. However, this struc-
ture poses a challenge for influence maximization, as the topological structures and information
expressions differ between networks. In future research, there are several challenges to overcome,
including identifying overlapping users, defining the diffusion model, and calculating the total
influence value of seed set in multiplex dynamic heterogeneous networks.
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