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Mixed-Integer Nonlinear Programming for
Energy-Efficient Container Handling:

Formulation and Customized
Genetic Algorithm

Jianbin Xin , Member, IEEE, Chuang Meng, Andrea D’Ariano, Dongshu Wang , and Rudy R. Negenborn

Abstract— Energy consumption is expected to be reduced while
maintaining high productivity for container handling. This paper
investigates a new energy-efficient scheduling problem of auto-
mated container terminals, in which quay cranes (QCs) and lift
automated guided vehicles (AGVs) cooperate to handle inbound
and outbound containers. In our scheduling problem, operation
times and task sequences are both to be determined. The under-
lying optimization problem is mixed-integer nonlinear program-
ming (MINLP). To deal with its computational intractability,
a customized and efficient genetic algorithm (GA) is developed
to solve the studied MINLP problem, and lexicographic and
weighted-sum strategies are further considered. An ε-constraint
algorithm is also developed to analyze the Pareto frontiers.
Comprehensive experiments are tested on a container handling
benchmark system, and the results show the effectiveness of the
proposed lexicographic GA, compared to results obtained with
two commonly-used metaheuristics, a commercial MINLP solver,
and two state-of-the-art methods.

Index Terms— Automated container terminals, energy effi-
ciency, mixed-integer nonlinear programming, genetic algorithm.

I. INTRODUCTION

OVER 60% of worldwide deep-sea general cargo is trans-
ported by containers [1], and global container market

demand is projected to increase by around 3% in 2020 and
2021 [2]. As a freight transport hub, a container terminal
serves as the interface between different transport modali-
ties and provides flexibility and scalability to cover various
geographical areas [3], [4]. As a result, the performance of
container terminals is crucial to freight transport.

During container terminal operations, several challenges
need to be addressed by operators both for customers and
society. The first challenge is the terminal facing incremental
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arrival and departure containers with container ships. The
volume of the container ship has reached 23,000 TEU in 2019,
and this number is predicted to grow further in the near future
[4], [5]. If no proper measures are taken, the turnaround time
of a container vessel could increase considerably. In such
circumstances, the handling capacity must be maximized to
reduce the turnaround time of a container vessel.

Meanwhile, the container terminal industry is under sig-
nificant pressure to meet not only economic but also envi-
ronmental criteria [6], [7]. CO2 emissions resulting from the
energy consumption at containers terminals are required to be
reduced. In addition to using electric machines [8], an effective
way is to reduce the great amount of energy consumed in the
terminal. It is noticed that the yearly electricity consumption of
a typical container terminal can be up to 45,000 MWh with a
yearly throughput of 4,260,000 TEU [9]. Ideally, the terminal
operators expect to improve energy efficiency of the opera-
tions, i.e., using less energy to achieve the level of service.
Therefore, reducing energy consumption without deteriorating
the handling capacity of container terminals becomes a great
challenge for researchers in the domain of transportation and
logistics.

Motivated by the challenge from the industry, we investigate
a new energy-aware scheduling problem of automated con-
tainer terminals at the operational level. We aim to minimize
the operational energy consumption as much as possible,
while keeping a high handling capacity. The energy reduction
also further decreases the terminal operation costs, which
is beneficial to terminal operators. For this research prob-
lem, we consider the completion time (makespan) and the
kinetic energy consumption of transporting containers as the
objectives and present a new mathematical formulation to min-
imize the energy consumption straightforwardly. The underly-
ing optimization problem is computationally intractable, and
an efficient algorithm is also developed to handle complex
instances.

The remainder of this paper is structured as follows: In
Section II, the related literature is reviewed and the con-
tributions are highlighted, Section III presents the problem
statement and formulates the mathematical optimization prob-
lem of terminal operations. In Section IV, a dedicated meta-
heuristic algorithm is proposed for solving the formulated
optimization problem. Section V presents the case studies to
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test the proposed approach and analyzes the compared results.
Section VI concludes this paper and gives future research
directions.

II. LITERATURE REVIEW

A. Related Work

A container terminal represents a transport hub, exchang-
ing containers between different transport modalities (vessel,
barge, train, and truck) [10]. As automation could notice-
ably increase throughput and decrease the costs of container
terminals [11], the research on automated container termi-
nals has become a hot topic in recent years. For automated
container terminals, three types of planning problems are
categorized: strategic, tactical, and operational [12]. Strategic
planning problems study the terminal layout and the machine
selection [13], [14]. Tactical problems concentrate on the
capacity level of machines, and the necessary machine num-
ber for completing operations efficiently is investigated [15].
Regarding the operational problems, the detailed operations
for transporting containers by the pieces of machines are
determined.

The operational level relates to the most complex processes
of the terminal, covering from the quayside area connect-
ing the waterway to the landside area linking the hinter-
land. Since container vessels are the major customers of the
terminal, much attention has been paid in quayside-related
operations [12], including long-term decision planning
(e.g., berth allocation [16]) and short-term decision planning
(e.g., quay crane scheduling [17]).

For the short-term planning problem of container terminals,
the quayside operations of Quay Cranes (QCs) and related
machines are scheduled to reduce the turnaround time of
each vessel staying at the terminal. In automated container
terminals, Automated Guided Vehicles (AGVs) are commonly
used for transporting containers between the quayside and the
landside [18], [19]. As the AGV requires close cooperation
with QCs and Yard Cranes (YCs) when unloading and loading
containers, the scheduling problems of QCs are typically
integrated with the operations of AGVs and YCs [20], [21].
In [20], the integrated scheduling problem of QCs, AGVs,
and YTs is studied for an export terminal to minimize the
makespan of the total loading operations. The work [21]
includes the path planning of AGVs into the integrated
scheduling problem and formulates the overall problem as a
bi-level programming. For non-automated terminals, the AGV
is replaced by a Yard Truck (YT). The operations of the yard
truck are similar to the AGVs, while the scheduling problem
of QCs, and YTs, and YCs is also integrated to minimize the
makespan of the container handling process [22].

Recently, newly developed lift AGVs are introduced in
newly-built automated container terminals (e.g., APM terminal
MV2, 2015). Unlike conventional AGVs, a lift AGV has
two active lifting platforms, which enable the vehicle to lift
and place containers independently on transfer racks in an
interchange zone in front of the stacking cranes [23]. Using
the lift AGVs, the interactive operation between each AGV
and each YC can be decoupled for improving the operation
efficiency [11]. It is noted that the handshake between the lift

AGVs and the QCs is needed, and this operation is different
from a straddle carrier, which moves a container independently
between the corresponding quayside and stack [24]. In this
paper, we focus on the integrated operations by using QCs
and lift AGVs.

For scheduling container terminals, the objective in
[20]–[22] focuses on the completion time indices, while energy
consumption needs to be better studied. The importance of
energy saving is highlighted in the works proposed by [6], [25]
for more energy-efficient container operations and saving the
operation cost further. To improve energy efficiency, several
works [26]–[28] have been investigated. In [26], the energy
consumption of all tasks and the total operation delays are
unified into one objective function to be optimized when
scheduling the integrated operations of QCs, YTs, and YCs;
the influence of the route choices on the energy consumption
is addressed. The energy consumption is also considered for
scheduling the YTs in [27], [28]. A weighted bi-objective
problem is studied in [27] to balance the efficiency and energy
consumption. In [28], a single objective scheduling problem of
yard crane is investigated for the minimal energy consumption
by deciding the crane distribution and movements between
different yard blocks.

Energy consumption optimization does not only depend on
the vehicle routes [26], [28], but also relies on operation times
of machines [9], [29]. In [9], [29], the shortest makespan is
achieved at reduced kinetic energy consumption by optimizing
the operation times in a simplified way. The nonlinear energy
consumption is minimized without considering the detailed
representation of energy consumption and the influence of
task orders. Meanwhile, the optimized schedule in [9], [29]
is limited to the case of a single QC and the transitions
of transporting containers between different QCs are not
considered. To obtain more energy-efficient operations for the
case of multiple QCs, an integrated mathematical formulation
and an efficient algorithm are required to minimize both the
detailed energy consumption and the makespan.

B. Contributions of This Work

This paper investigates an operational energy-aware
scheduling problem for automated container terminals. The
contributions of this paper are given as follows:

• A new methodology is proposed to minimize energy con-
sumption while maintaining a competitive makespan for
completing operations at automated container terminals.
These operations are performed by multiple quay cranes
and multiple vehicles cooperatively. Task sequences and
operation times are considered as decision variables and
the optimization problem is formulated as an MINLP.
To the best of our knowledge, this research problem has
not been investigated yet in the literature.

• A customized and efficient genetic algorithm (GA)
is developed for solving the considered MINLP, for
which typical solution methods suffer from computational
intractability. A new encoding scheme and customized
algorithm procedures are proposed. This metaheuris-
tic also builds up the key elements of the algorithm
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TABLE I

RECENT REPRESENTATIVE SCHEDULING METHODS FOR AUTOMATED CONTAINER TERMINALS AT THE OPERATIONAL LEVEL

framework to obtain the Pareto frontier by using the
ε-constraint method. The proposed GA is comprehen-
sively tested and compared with several approaches on
a new set of instances extended from a given benchmark
of the container terminal system.

As this paper builds on our previous work [9], [29], we need
to clarify the potential improvements. First of all, this paper
models energy efficiency accurately to better reduce energy
consumption, while the previous works use a simplified way
to maximize the transport time. Secondly, this paper considers
multiple QCs, including loading and unloading operations
simultaneously, while the earlier works consider the case of
a single QC with unloading operations only. Finally, the opti-
mization problem formulated here is MINLP, which is more
challenging to be solved than the MIP, as provided by the
models in [9], [29].

The distinctive features of this paper are given in Table I in
comparison with the existing scheduling methods of container
terminals in the literature (CP: Constraint Programming; IP:
Integer Programming). Our approach minimizes the kinetic
energy straightforwardly when scheduling integrated pieces of
machines together.

III. HYBRID FLOW SHOP REPRESENTATION

This section introduces the research problem to be inves-
tigated for optimizing the makespan and energy consumption
at the same time. The first part defines the studied research
problem. Afterward, the mathematical model is described for
the integrated operations in the terminal and the objective
function is discussed.

A. Problem Statement

This paper focuses on the integrated operations of QCs and
lift AGVs. As the handshake between the QC and the lift AGV
is needed [11], the quayside operations can be described as a
hybrid flow shop. The hybrid flow shop has a number of stages,
and each task has to pass through these stages [30]. Each stage
involves several identical machines for processing a part of a
task in parallel. Each task is being processed by the same
sequence of machines and handled for a certain processing
time in each stage. As two types of machines are used for the
quayside operations in each stage, the scheduling problem is
described as a two-stage hybrid flow shop.

Fig. 1. Sequence of moving containers by using QCs and lift AGVs.

Important assumptions concerning the investigated schedul-
ing problem are as follows:

• Inbound and outbound containers are both considered.
An outbound container is available when an inbound one
is unloaded by the lift AGV at a particular stack.

• Each task is performed only by one machine (QC or
AGV) in each stage.

• The size of the containers is considered to be the same,
which is 20 feet.

• The destinations of all inbound containers in the stack
are known in advance.

• The position constraints of containers are ignored when
loading or unloading them in the vessel, as the scope of
applications is restricted to vessels with a small number
of containers.

• The service time for transferring a container at each
transfer point is ignored.

• The locations of inbound containers and outbound con-
tainers handled by the same QC and the stack are
assumed to be very close, and the transition time between
handling an outbound container and an inbound container
is neglected.

B. Model of Operations

In our two-stage flow shop formulation, a task is defined as a
complete process of moving a specific inbound container from
the vessel to its unloading point in the stack and then moving a
specific outbound container back to the vessel from the same
stack. A task is performed by two types of equipment (QC
and lift AGV). We define i and j as the indexes of inbound
containers, while we use k to mark outbound containers.

The considered container transport operations for task i are
defined in Fig. 1. P1

i is described as the location of the inbound
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TABLE II

LIST OF VARIABLES AND PARAMETERS FOR MODELING THE TWO-STAGE FLOW SHOP

container i in the vessel. P2
i is defined as the transfer point,

where the inbound container i is moved from a particular
QC to a particular lift AGV (P2

i applies for the inbound
container j ). P3

i is defined as the transfer point where the
inbound container i is unloaded from a particular lift AGV
to the buffer area in the stack. Fig. 1 also shows that in the
proposed paradigm one task involves three operations, denoted
by O1

i , O2
i and O3

i . These three operations are described in
detail below.

In Stage 1, the operation O1
i contains the QC motion from

P2
i to P1

i and the QC motion from P1
i back to P2

i . For the QC
motion from P2

i to P1
i , a specific outbound container is loaded

after that each QC starts unloading inbound containers. For
each QC, before unloading the first inbound container, there
is no outbound container to be processed. For the QC motion
from P2

i to P1
i , the inbound container i is unloaded. As we

focus on energy-efficient scheduling of lift AGVs, for the sake
of simplicity, these two successive motions for each task are
included in one operation (O1

i ). The processing time of O1
i

(defined as tqc
i ) mainly depends on the location of inbound

container i , as each outbound container does not require a
fixed location in the vessel.

Stage 2 comprises operations O2
i and O3

i , which respectively
denote the lift AGV’s motion from P2

i to P3
i with inbound

container i and the AGV motion back from P3
i to P2

j with
outbound container k, after unloading inbound container i .
P3

i and P2
j are the origin and destination of the outbound

container k, if task j is processed after task i by a particular
lift AGV. We assume that the stacking schedule is optimized
for locating a particular container in the stack area.

Let there be n tasks of moving an inbound container from
the vessel to the stack and then moving an outbound container
from the stack back to the vessel. Let � be the set of tasks
(|�| = n). The hybrid flow shop has time relationships among
the processes of each task by every machine in each stage. For
a machine at a certain stage, this machine has a time constraint
on every two successive tasks. For a certain task processed

in successive stages, the task also has time constraints for
guaranteeing the stage sequence. Two dummy tasks 0 and n+1
are introduced to model the initial task and the final task.
We then define �1 = � ∪ {0} and �2 = � ∪ {n + 1}. These
time constraints can be described as follows:

ai + R(1 − x0 j ) ≥ 0 ∀ j ∈ � (1)

a j + R(1 − xi j ) ≥ bi ∀i ∈ �,∀ j ∈ � (2)

ai + tqc
i ≤ bi ∀i ∈ �, (3)

b j + R(1 − yi j ) ≥ ci + tout
i ∀i ∈ �,∀ j ∈ � (4)

bi + t in
i ≤ ci ∀i ∈ �, (5)

tout
i + R(1 − yi j ) ≥ ti j ∀i ∈ �,∀ j ∈ �2 (6)

c ≥ ci + tout
i ∀i ∈ �, (7)

where Inequality (1) initializes the first task handled by the
QC. Inequality (2) gives the relation among tasks i and j
handled by a particular QC. Inequality (3) ensures that task i
is processed by an AGV after a QC. Inequality (4) links tasks
i and j handled by a particular AGV. Inequality (6) ensures
that O3

i is handled after O2
i by a particular AGV. Inequality (6)

gives the constraint of operation time tunload
i for the transition

between task i and task j . Inequality (7) defines the makespan
c to finish all operations. A summary definition of all relevant
variables and parameters is given in Table II.

For each machine in every stage, it should be guaranteed
that there is exactly one preceding task and one succeeding
task. For this reason, decision variables xi j and yi j have
additional equality constraints. For the first task j ( j ∈ �)
in each stage, xi j and yi j (i ∈ �, j ∈ �, i �= j) must be
zero; for the last task i (i ∈ �) in each stage, xi j and yi j

(i ∈ �, j ∈ �, i �= j) must be zero. Each outbound container
is assigned to a special task. With these sets �1 and �2 we
define:

∑
j∈�2

xi j = 1, ∀i ∈ � (8)
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∑
i∈�1

xi j = 1, ∀ j ∈ � (9)

∑
j∈�

x0 j = m1, (10)

∑
i∈�

xi(n+1) = m1, (11)

∑
j∈�2

yi j = 1, ∀i ∈ � (12)

∑
i∈�1

yi j = 1, ∀ j ∈ � (13)

∑
j∈�

y0 j = m2, (14)

∑
i∈�

yi(n+1) = m2, (15)

∑
k∈�

zik = 1, ∀i ∈ � (16)

∑
i∈�

zik = 1, ∀k ∈ �, (17)

where Equalities (8) and (9) guarantee that, for each task in
Stage 1, there is exactly one preceding task and one succeeding
task assigned. Equalities (10) and (11) guarantee that m1 QCs
are employed. Equalities (12) and (13) enforce that, for each
task in Stage 2, there is just one preceding task and one
succeeding task assigned. Equalities (14) and (15) ensure that
in total m2 lift AGVs are used. Equalities (16) and (17) certify
the matching of task i and outbound container k.

With constraints (1)-(17), the integrated operations involv-
ing QCs and lift AGVs are modeled as a two-stage hybrid
flow shop. In this hybrid flow shop, the completion time of
task i in each stage and the task sequences by every machine
in each stage are decision variables. The makespan c is defined
within those decision variables. The optimization problem will
be extended by considering the energy consumption of the lift
AGVs, as discussed in the next subsection.

C. Objective Function and Problem Formulation

This section formulates the bi-objective optimization prob-
lem in the lexicographical form and weighted-sum form.
The objective of makespan c is represented by JC. Another
objective defined as JE represents the kinematic energy con-
sumption of AGVs. Here we show how JE is calculated in
details.

In general, for a certain distance s at a constant speed
v without a slope, the vehicle energy consumption E is
computed approximately as follows:

E ≈ 1

2
mv2 + mgCr s, (18)

where m is the total vehicle weight (kg), g is the gravity
coefficient, and Cr is the coefficient of rolling resistance. The
two parts represent the energy consumed for the acceleration
and the rolling resistance of the vehicle. It is noted that, since
the lift AGV is a heavy vehicle (at least 30,000 kg), the energy
of air drag is significantly small and this part is neglected when
computing E .

Based on equation (19) for a single AGV operation,
the energy consumption calculation can be extended for mul-
tiple operations. Regarding the inbound AGV operations, their
total energy (defined as J in

E ), is given as follows:

J in
E ≈

n∑
i=1

1

2
min

i (
si

t in
i

)2 +
n∑

i=1

min
i gCr si , (19)

where si is the distance of the lift AGV when handling
inbound container i . min

i is the weight of inbound container i .
Here, the distance-over-time ratios si/t in

i represent the average
velocity of each AGV during operation O2

i .
The outbound AGV operations are more complex than

the inbound operations, because each inbound container has
a particular destination in the stack, while every outbound
one has an unknown destination in the quayside. Further-
more, a particular outbound container is assigned for inbound
container i arriving in the stack. Considering these above
constraints, the related total energy of the outbound AGV
operations, which is defined as J out

E , is formulated as follows:

J out
E ≈

n∑
i=1

1

2

∑
k∈�

zikmout
k (

∑
j∈�2

si j yi j

tout
i

)2

+
n∑

i=1

∑
k∈�

zikmout
k gCr

∑
j∈�2

si j yi j , (20)

where si j is the distance of outbound container k between
inbound container i and inbound container j for each AGV.
The function

∑
j∈�2

si j yi j gives the distance for outbound
container k, since there is one outbound container assigned to
task i . The term

∑
k∈� zik mout

k represents the chosen mout
k for

task i .
With J in

E and J out
E , the total consumption for operating

AGVs JE is computed by summing up these two functions
as follows:

JE = J in
E + J out

E . (21)

From (19), we can see that J in
E is a convex term. However,

it is observed from (20) that J out
E is a non-convex nonlinear

function, because the Hessian matrices of zik y2
i j (t

out
i )−2 and

zik yi j are both not positive definite.
For the energy-efficient scheduling, we consider two strate-

gies (lexicographical and weighted-sum) to optimize the two
objectives JC and JE. For the lexicographical strategy, the opti-
mization problem is formulated as follows:

min
x,y,z,t,a,b,c

JE (22)

subject to JC ≤ J ∗
C, (23)

t in
i ≥ t in

i,min, (24)

and subject to the equalities and inequalities (1)-(17),
where t in

i,min is the minimal operation time for O2
i ,

aT = [a1, a2, · · · , an], bT = [b1, b2, · · · , bn], cT =
[c1, c2, · · · , cn], xT is a vector comprised of all the elements in
the set of indices {xi j }i∈�1, j∈�2,i �= j , yT is a vector comprised
of all the elements in the set of indices {yi j }i∈�1, j∈�2,i �= j , zT

is a vector comprised of all the elements in the set of indices
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{zik}i∈�,k∈� , and tT is the vector of {t in
i } and {tout

i }. J ∗
C denotes

the minimal makespan subject to constraints (1)-(17) and (24).
For the weighted-sum strategy, the detailed optimization

problem is given as follows:
min

x,y,z,t,a,b,c
JC + λJE (25)

subject to constraints (1)-(17) and (24). λ is the weighting
factor in which the chosen unit can be used for normalization.
To highlight the importance of JC, a small positive value of λ
is adopted in our experiments.

The above two problems are both non-convex MINLP,
which is considered difficult to be solved. In the next section,
we propose a dedicated algorithm to address this computa-
tional challenge.

IV. CUSTOMIZED GENETIC ALGORITHM

In this section, a customized genetic algorithm is developed
to efficiently solve the non-convex MINLP problem formu-
lated in Section III. The non-convex MINLP is known to be
NP-hard [31], and commercial MINLP solvers, like Baron
[32], cannot provide high-quality solutions in a reasonable
time. We propose to solve the MINLP using an advanced
genetic algorithm.

Genetic algorithms are considered as an effective
metaheuristic approach for solving constrained optimization
problems. Compared to other metaheuristics (like variable
neighborhood search and tabu search), GA’s efficiency has
been verified by the large number of works related to
scheduling problems of container terminal [20] and works
dealing with MINLP problems [33]. The GA has a relatively
simple algorithmic structure, but this metaheuristic has a
good ability to diversify the search in the feasible region
of the search space. Therefore, the GA is regarded as our
core method to design a highly customized algorithm for
efficiently solving the considered MINLP problem.

For container terminals, GAs have been developed for
addressing the energy-aware scheduling problem, and the
related optimization problem is limited to Mixed Integer
Programming (MIP) [26], [27]. As we model the detailed
vehicle energy-saving operation, the resulting MINLP problem
is more challenging; so far, no dedicated algorithm has been
developed. The following parts give the encoding scheme and
the customized algorithmic procedures used by the proposed
GA for solving the MINLP problem modeled as a hybrid flow
shop formulation.

A. Encoding

In GAs, a population (a set of possible solutions) needs to
be initialized and further optimized. The encoding scheme for
each solution is highly relevant for the solution quality. For
energy-efficient scheduling problems of container terminals,
the encoding scheme of exiting GAs is designed for the
solution to MIPs only [26], [27], and this encoding scheme
cannot be used for MINLPs. In this part, we develop a new
encoding scheme for constructing the solutions suitable for the
considered MINLP.

Fig. 2. Composition of the solution X .

TABLE III

ENCODING OF THE COMPOSED X IN FIG. 2

In the developed encoding scheme, we consider a
mixed sequence-time encoding scheme, which includes task
sequences completed by different types of machines and
operation times of AGVs for each task.

The overall encoded solution is defined as X , and the
composition is illustrated in Fig. 2. The solution X contains
four parts: XQC, X in

AGV, Xout
AGV, and X t

AGV. The first three parts
(XQC, X in

AGV, and Xout
AGV) correspond to task sequences (binary

decision variables in Table II) and the last part (X t
AGV) relates

to operation times of inbound and outbound tasks performed
by the AGVs (integer decision variables in Table II).

XQC lists the task orders performed by each QC. X in
AGV,

which consists of Xorders
AGV and Xbreaks

AGV gives the sequenced tasks
for each AGV. X in

AGV lists the order between all the tasks
without separation, while Xbreaks

AGV provides the positions of
breaking tasks to terminate a task order for a particular AGV.
The number of elements in Xbreaks

AGV is m2 − 1. Xout
AGV gives the

assigned ordered outbound tasks for each task. X t
AGV contains

the operation times of inbound and outbound tasks; the parts of
inbound and outbound tasks are denoted by X t,in

AGV and X t,out
AGV.

X t,in
AGV includes the set of decision variables t in

i , while X t,out
AGV

contains the set of decision variables tout
i . The elements of

X t
AGV are all integers.
We use a sample solution in Table IV to exemplify the

constructed encoding used by the algorithm. This solution
gives the schedule of 2 QCs and 2 AGVs for processing
4 inbound containers (tasks 1-4) and 4 outbound containers
(tasks 5-8) at two stacks. The task sequences are as follows:
QC1: 1→2, QC2: 3→4, AGV1: 1→3 (the one listed in
Xbreaks

AGV ), AGV2: 2→4. The outbound containers 6, 7, 5,
and 8 are operated after the inbound containers 1-4, respec-
tively. Implicitly, the overall container sequence are: AGV1:
1→6→3→5, AGV2: 2→7→4→8. The operation times for
the inbound containers are as follows: t in

1 = 25, t in
2 = 25,

t in
3 = 28, and t in

4 = 26. The operation times for the outbound
containers are as follows: tout

1 = 30, tout
2 = 24, tout

3 = 32, and
tout
4 = 27.
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TABLE IV

ILLUSTRATIVE EXAMPLE OF THE ENCODED SOLUTION X

B. Energy-Efficient Algorithm

1) Choices of Operators: In this part, we detail the opera-
tors of the developed GA for solving the MINLP based on the
two-stage flow shop representation presented in Section III.
This flow shop scheduling problem can be decomposed as
two multiple traveling salesman problems (mTSPs). For each
mTSP in each stage, we construct the strategies of selection
and mutation of GAs. The crossover strategy is not considered
in the algorithm as this strategy results in longer computation
and may deteriorate the solution quality [34].

Regarding the selection, the top-ranking method is
employed. At each iteration, the best 1/8 solutions are selected
from the entire population as the elites and retained until the
next iteration.

For the mutation used in this paper, three operators, namely,
flip, swap, and slide, are considered in the proposed algorithm.
The flip mutation works by randomly choosing two positions
in the chromosome and reversing the order in which the
values appear between those positions. The swap operator
randomly swaps the values of two positions in the solution
chromosome. For the slide operator, two positions in the
chromosome are randomly selected, and the contents between
these two positions move one position to the left. These three
operators can be described as follows [34]:

f li p(π, p1, p2) � π ′(p1 : p2) = π(p1,−1, p2), (26)

swap(π, p1, p2) � π ′(p1) = π(p2), π
′(p2) = π(p1), (27)

slide(π, p1, p2) � π ′(p1 : p2) = [π(p1 + 1 : p2), π(p1)],
(28)

where π is a segment of the chromosome, and π is a
permutation. For this paper, π can be XQC, Xorders

AGV , Xout
AGV

and X t
AGV. p1 and p2 represent two positions of the segment.

2) Main Procedures: Algorithm 1 presents the pseudocode
of the lexicographic GA developed for solving the MINLP.
In Algorithm 1, i ter , i ter1 and i termax denote the itera-
tion index, the maximum number of iterations to minimize
the makespan, and the total maximum number of iterations,
respectively. F(X) is the fitness function of solution X .
The designed algorithm is expected to provide high-quality
solutions while satisfying the constraints of the considered
MINLP problem.

In the designed lexicographic GA, for minimizing the
single objective JC, the fitness function F(X) is calculated
as F(X) = JC + p(X). p(X) is the penalty function to deal

Algorithm 1 The Lexicographic GA for the Considered
MINLP
1: i ter = 0
2: initialize P(i ter)
3: while i ter ≤ i termax do
4: if i ter ≤ i ter1 then
5: for p = 1 to Np do
6: evaluate the fitness F(X) = Jc + p(X)
7: end for
8: record the minimal c as c∗
9: else

10: for p = 1 to Np do
11: evaluate F(X) = Je + p(X) under c ≤ c∗
12: end for
13: end if
14: select 1/8 of P(i ter) with the lowest fitness as P1(i ter)
15: for p = 1 to Np/8 do
16: flip P1,QC(i ter) or Porders

1,AGV (i ter), flip Pout
1,AGV(i ter)

and P t
1,AGV(i ter), and keep Pbreaks

1,AGV(i ter), to construct

P2(i ter)
17: swap P1,QC(i ter) or Porders

1,AGV (i ter), swap

Pout
1,AGV(i ter) and P t

1,AGV(i ter), and keep

Pbreaks
1,AGV(i ter), to construct P3(i ter)

18: slide P1,QC(i ter) or Porders
1,AGV (i ter), slide

Pout
1,AGV(i ter) and P t

1,AGV(i ter), and keep Pbreaks
1,AGV(i ter), to

construct P4(i ter)
19: random Pbreaks

1,AGV (i ter) and keep the other parts of

P1(i ter) to construct P5(i ter)
20: flip P1,QC(i ter) or Porders

1,AGV (i ter), flip Pout
1,AGV(i ter)

and P t
1,AGV(i ter), and random Pbreaks

1,AGV(i ter), to construct

P6(i ter)
21: swap P1,QC(i ter) or Porders

1,AGV (i ter), swap

Pout
1,AGV(i ter) and P t

1,AGV(i ter), and random Pbreaks
1,AGV(i ter),

to construct P7(i ter)
22: slide P1,QC(i ter) or Porders

1,AGV (i ter), slide

Pout
1,AGV(i ter) and P t

1,AGV(i ter), and random

Pbreaks
1,AGV(i ter), to construct P8(i ter)

23: end for
24: P(i ter + 1) = P1(i ter) ∪ P2(i ter) ∪ P3(i ter)∪

P4(i ter) ∪ P5(i ter) ∪ P6(i ter) ∪ P7(i ter) ∪ P8(i ter)
25: i ter = i ter + 1
26: end while

with the speed constraint and is defined as follows:

p(X) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, vmin ≤ si

t in
i

≤ vmax,

and vmin ≤
∑

j∈�2
si j yi j

tout
i

≤ vmax

R, otherwise.

(29)

where R is the same parameter as given in Table III. When
selecting the best solutions as elites, for the next iteration,
the solutions that are not satisfied with the speed constraints
will be abandoned due to its high penalty.
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Fig. 3. Illustrating the composition of population P for each iteration.

For minimizing the single objective JE, F(X) is computed
as F(X) = JC + p(X). In the proposed algorithm, JC is
computed by the constraints (1)-(7) and JE is evaluated by
the equations (19)-(21).

P(i ter) is the entire population at iteration i ter . P1(i ter)–
P4(i ter) are the populations used for the elite, flip, swap, and
slide operations, respectively, without changing the breaking
tasks. P5(i ter)– P8(i ter) are the populations used for the elite,
flip, swap, and slide operations, respectively, when updating
the breaking tasks. Their sizes are considered as one-eighth
of the entire population. These eight parts are illustrated
in Fig. 3. The algorithm stops when the maximal number of
the iterations has been reached.

In addition to the lexicographic GA, we also consider a
weighted-sum formulation, in which JC and JE are given
in the weighted-sum formulation as the formula (25). The
procedures of the weight-sum GA can be easily implemented
by replacing lines 4-13 in Algorithm 1 with evaluate the fitness
F(X) = JC + λJC + p(X). The weighted objective JC + λJC
is jointly incorporated into the fitness F(X). These two GA
configurations will be evaluated in the next section.

C. Computation of the Pareto Frontier

This subsection proposes an algorithm for computing the
Pareto frontier between the makespan and energy consumption
via the ε-constraint method. The ε-constraint method can
be efficiently used for computing non-dominated solutions
[35]. Here, we propose an iterative procedure based on the
ε-constraint method and the developed GA in the previous
section. At each iteration, we solve a single-objective opti-
mization problem via the proposed GA for the bi-objective
optimization problem. In the bi-objective problem, one per-
formance indicator is optimized directly in the objective
function, while the other performance indicator is indirectly
optimized by inserting an additional bound constraint in the
single-objective formulation.

Algorithm 2 describes the main steps of the proposed
ε-constraint method. At each iteration i ter , the values of
J ∗

C(i ter) and J ∗
E (i ter) are computed individually. The pro-

posed ε-constraint method at first initializes the number
of iterations i ter and finds the optimal values of the two

Algorithm 2 The ε-Constraint Method
1: i ter = 0
2: min JC subject to constraints (1)-(17), and set β1 =

J ∗
C(i ter), ϕ2 = J ′′

E (i ter)
3: min JE subject to constraints (1)-(17), and set β2 =

J ∗
E (i ter)

4: insert the pair (β1,ϕ2) in the Pareto solution set �
5: while β2 < ϕ2 do
6: i ter = i ter + 1
7: min JC subject to constraints (1)-(17) plus the constraint:

JE < ϕ2, and set β1 = J ∗
C(i ter), ϕ2 = J ′′

E (i ter)
8: insert the pair (β1,ϕ2) in the Pareto solution set �
9: end while

10: return the Pareto solution set �

single-objective optimization problems. The value of the pri-
mary single-optimization problem (β1, ϕ2) is inserted into the
solution set � . After the initialization, a new single optimiza-
tion problem is iteratively solved by adding an additional
constraint on the value of the secondary indicator JE. For
each iteration, a new solution pair (β1, ϕ2) is added into the
solution set � . When the value of J ′′

E (i ter) is equal to J ∗
E (iiter),

the entire iterative process is terminated.

V. CASE STUDIES

This section discusses the computational results obtained
with the numerical experiments carried out to assess the pro-
posed GA for solving the considered energy-efficient schedul-
ing problem. The first part introduces the benchmark system
of the container handling system and the experimental setting.
Then, the proposed GA configurations are compared with two
commonly-used metaheuristics, two state-of-the-art scheduling
methods, and a commercial solver.

A. Instances Generation and Settings

1) Benchmark: To evaluate the performance of the proposed
method for improving energy efficiency, we consider the
benchmark system proposed in [36]. The benchmark system
includes a small container vessel, a quayside transport area,
and 8 stacking blocks with 5 QCs and 10 lift AGVs, as shown
in Fig. 4. For setting up the problem, a company specialized in
advice on the design and simulation of terminals has provided
the container terminal layout and insightful information on the
studied problem. The parameter settings have been determined
considering the physical capabilities of each piece of equip-
ment (e.g., weight, velocity). Additional fundamental features
can be found in [36].

Key parameters are given as follows: for lift AGVs, vmax is
set to be 6 m/s; min

i and mout
i are randomly generated between

[40,60] (tons) including a dead AGV weight 35 tons. These
parameters are suggested by [23].

To compare the different methods above, we extend the set
of benchmark instances with more complex instances than
the ones tested in [36]. The configurations of the proposed
instances are given in Table V. For each configuration, ten
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Fig. 4. Benchmark system of an automated container terminal [36].

TABLE V

SETTINGS OF THE NUMERICAL EXPERIMENTS EXTENDED FROM [36]

experiments are conducted to have a general comparison.
In each experiment, the container locations in the vessel and
the storage place are randomly generated.

The proposed lexicographic and weighted-sum GA are
compared with two standard commonly-used metaheuristic
algorithms, i.e., variable neighborhood search (VNS) and tabu
search (TS), to select the most proper metaheuristic that suits
the aim to reduce the energy consumption while keeping a
competitive makespan. The tested VNS and TS are briefly
described as follows:

• The implemented VNS in this paper is the basic version
of VNS [37], which combines deterministic and random
changes of neighborhoods. This algorithm consists of
two phases: the shaking phase for the global search
and the improvement phase for the local search. The
encoding is the same as the proposed GA to construct
the neighborhood. For the global search, one of the
seven operations presented in Algorithm 1 (Lines 16-22)
is randomly selected. For the local search, the seven

operations in Algorithm 1 (same as above) are selected
to modify the neighborhood solutions by following the
sequencing strategy in Algorithm 1. The local search
stops when the first improvement is achieved.

• Tabu search is a deterministic metaheuristic based on
local search. The implemented TS follows the generic
algorithmic procedures presented in [38]. The tabu list
is used to escape from the local optimum and initially,
the list is empty. The encoding is set the same as the pro-
posed GA and the VNS. For generating the candidate list
(similarly to the population of the GA), the neighborhood
solutions of a candidate solution are modified by adopting
one of the seven operations presented in Algorithm 1
(Lines 16-22) randomly chosen, and the probability for
selecting each operation is equal. Regarding the aspiration
criterion, if the tabu list contains all the seven operations,
the operation with the best solution is removed from the
tabu list. Here, no advanced intensification and diversifi-
cation strategies are used.

In addition to the above metaheuristic algorithms, the fol-
lowing three state-of-the-art methods for solving the consid-
ered MINLP are also included for a further comparison:

• A two-phase method, which is a commonly-used heuristic
to decompose the complexity of MINLPs [39]. The first
phase solves an MILP formulation, in which task orders
are optimized for the minimal makespan. The second
phase solves a convex nonlinear programming (NLP),
in which the operation times are optimized by following
the obtained task orders of the first phase.

• Bi-objective MILP (B-MILP for short), in which the
optimization problem is simplified as an MILP [9], [29].
The makespan and the sum of operation times are con-
sidered as two objectives. The sum of operation times is
maximized to get a lower energy consumption, while the
overall makespan is minimized.

• Commercial solver Baron, which is regarded as an effi-
cient solver for MINLPs [32].

To compare the different methods above, multiple case
studies (involving various system scales) are considered. The
configurations of the case studies are given in Table V.
For each configuration, ten experiments are conducted to
have a general comparison. In each experiment, the container
locations in the vessel and the storage place are randomly
generated.

The following key performance indicators are used to eval-
uate the compared methods: the first one is makespan JC,
which is the completion time of all tasks; the second one is
the energy consumption JE, which is the sum of the consumed
kinetic energy for completing all the operations of lift AGVs;
the last one is the computation time required to compute the
best-found solution of the studied scheduling problem.

2) Algorithm Settings: For the proposed GAs, the maximum
number of iterations is set to 500, and its population is 200.
For a fair comparison, we use the maximum fitness evaluations
(MaxFEs), which is a common criterion to terminate different
metaheuristic algorithms [40]. The same MaxFEs value is
used when comparing the GA, VNS, and TS algorithms. The
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TABLE VI

COMPUTATIONAL PERFORMANCE USING DIFFERENT METAHEURISTIC METHODS. (UNIT: JC: SECONDS, JE: Kwh)

number of iterations for the VNS is 500 × 200 (there is no
population for the VNS). For the TS, the number of candidates
is 200, and the maximum number of iterations is 500.

In the weighted-sum formulation of the studied metaheuris-
tic algorithms (GA, VNS, and TS), the parameter λ is set to be
10−6 to prioritize the makespan. The maximum computation
time for the metaheuristics (GA, VSN, and TS) is set to be
600 seconds. For the lexicographic strategy of the GA, VNS,
and TS algorithms, the MaxFEs to individually compute the
two objectives are all set as half of the weighted-sum value.

For the two-phase method and the B-MILP method, it is
well-known that solving the makespan minimization prob-
lem is NP-hard [41], and we thus use a more compact
GA, without encoding operation times of AGVs, to solve
this single-objective MILP formulation, both for the B-MILP
method and the two-phase method. The commercial solver
Baron (version 19.3.24) is used for solving the considered
MINLP. The maximum computation time of Baron is set to
1 hour, as the solver may not return good quality solutions (if
any) in a short computation time.

The hardware for all experiments is an Intel i7-4200 proces-
sor (1.6GHz) with 4GB of memory. The optimization prob-
lems are modeled and solved in Matlab R2014.

B. Results of GA Against Other Metaheuristics

This part compares the experimental results of the
proposed GA with two commonly-used metaheuristics
(i.e., VNS and TS). These three metaheuristics are tested
on all the instances of Table V, both for the lexicographic
and weighted-sum formulations. For the sake of convenience,
the lexicographic GA and the weighted-sum GA are abbrevi-
ated as L-GA and W-GA. These abbreviations also applied to
VNS and TS. The makespan and energy consumption of the
proposed GA configurations are compared against the VNS
and TS configurations in Table VI. The computation times of
these metaheuristics are presented in Fig. 5.

In Table VI, the makespan JC and the energy consump-
tion JE are reported. It can be observed that for the three

Fig. 5. Computation times of different metaheuristics for solving the
formulated MINLP.

metaheuristics, the lexicographic strategy obtains shorter a
makespan than the weighted-sum strategy. The studied two
objectives both depending on these decision variables (task
orders and AGV transport times) are closely correlated, and the
weighted-sum strategy is thus less computationally efficient
than the lexicographic one. This explains why the lexico-
graphic strategy is better than the weighted-sum one. For
either the lexicographic strategy or the weighted-sum strategy,
the proposed GA outperforms the algorithms VNS and TS,
both on the makespan and the energy consumption. Due to
the combination of the designed encoding scheme and the
popularity diversity, the proposed GA is more efficient than the
tested VNS and TS, both in solving the MIP when minimizing
the makespan and in solving the MINLP when minimizing the
energy consumption.

Fig. 5 reports the computation times of three metaheuristics
both for the lexicographic and weighted-sum formulations.
Overall, these computation times are close to each other. The
proposed GA and the VNS have slightly shorter computation
times than algorithm TS, because TS may take extra steps to
deal with updating the tabu list to obtain the best candidate
solution.
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TABLE VII

COMPUTATIONAL PERFORMANCES OF CASE STUDIES USING START-OF-THE-ART METHODS. (UNIT: JC: SECONDS, JE: Kwh)

In summary, from the obtained results, the proposed L-GA
can be considered as the most promising metaheuristic, since it
achieves the shortest makespan and reduces energy consump-
tion considerably better than VNS and TS. In the next part,
the proposed L-GA is compared with three state-of-the-art
methods to further investigate its potential to reduce energy
consumption when scheduling AGVs in container terminals.

C. Results of GA Against Other Methods

The proposed L-GA method is now compared against three
state-of-the-art methods (the two-phase method, the B-MILP
method, and the MINLP solver Baron) that can be used
for computing energy-efficient terminal operations. The com-
parisons are performed for all the instances of Table V.
The operational performance of these methods is reported
in Table VII.

In general, the best solution provided by the solver Baron
is computed in 1 hour, but the solution quality is the worst
among the other approaches in Table VII. Within the given
maximum computation time, Baron cannot provide solutions
for all the instances (solutions cannot be obtained for the cases
of 5QC), while the other listed methods return solutions for
each instance. For the cases in which Baron always returns fea-
sible schedules, the corresponding makespan is the longest and
the energy consumption is the highest compared with the other
methods. As a result, we will focus on discussing the results
obtained by the proposed L-GA algorithm, the two-phase
method, and the B-MILP method.

In Table VII, the L-GA, the two-phase method, and the
B-MILP method provide energy-efficient solutions for all the
instances. The makespan computed by these approaches is
identical, because they use the same GA as the algorithm
core. However, the L-GA reports a better energy minimization
performance, than the two-phase and B-MILP methods, for
each instance. On average, the proposed L-GA reduces energy
consumption by 13% and by 26% against the two-phase
method and the B-MILP method, respectively. Compared to
the B-MILP method, the proposed L-GA adjusts the task

orders and the AGV’s speed properly following a detail energy
consumption representation and thus saves more energy. The
two-phase method separates optimizing the task order and
optimizing the AGV speed and, therefore, the energy reduction
is less than the proposed L-GA. In general, we conclude that
optimizing task orders and processing times simultaneously
might result in a considerable energy reduction compared to
optimizing them separately.

From the results of Table VII, we highlight the influence of
the number of vehicles on the performance indices JC and JE.
For the same setting of QCs and containers, when the number
of AGVs increases, the makespan decreases, since more AGVs
reduce the waiting time of the QCs to accelerate the container
exchanges between the QCs and the AGVs. When the number
of AGVs grows, the energy consumption of AGVs decreases,
because each AGV becomes less busy. Each AGV can thus
reduce energy by lowering its vehicle speed. These features
are common for each method in Table VII.

Now, we compare the consumed energy for loading and
unloading containers by the lift AGVs of three energy-efficient
methods in Fig. 6. J in

E and J out
E represent energy consumption

for transporting inbound and outbound containers, respec-
tively. It is observed from Fig. 6 that, when moving the
inbound and outbound containers, the proposed L-GA con-
sumes less energy than the B-MILP method, because the
L-GA method considers a significant more detailed model
than the B-MILP method. The advantage of the L-GA method
against the two-phase method for outbound containers cannot
be seen for small-scale cases, because each outbound task has
limited destination choices. Regarding the larger-scale cases,
the L-GA method slightly outperforms the two-phase method.

Fig. 7 compares the average time for computing their
best-found solutions of the proposed L-GA in comparison to
two-phase and B-MILP methods. The proposed L-GA method
and the B-MILP method all return their best solutions within
a reasonable computational time. When the instance scale
increases (for larger cases of 5QC), the two-phase method
requires a considerably longer computation time, because
solving the NLP of the second phase is time-consuming.
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Fig. 6. Averaged energy consumption of lift AGVs for loading and unloading
containers by adopting the proposed methods.

Fig. 7. Averaged computation times of the proposed GAs against the
two-phase and the B-MILP methods.

D. Analysis of Pareto Frontier

This part presents the Pareto frontier between minimization
of the makespan and the energy consumption for the studied
container handling system. This is obtained by using the
ε-constraint method in Algorithm 2. Fig. 8 shows one example
of the Pareto frontier for the instance 3QC-3. The computed
Pareto solution for this example is reported in Table VIII.

It can be clearly seen in Fig. 8 that, when obtaining the
makespan (471 seconds), the energy consumption of the lift
AGVs can be further reduced from about 6.25 KWh to about
5.30 KWh. This means that it is possible to further mini-
mize energy consumption while keeping the shortest possible
makespan. Fig. 8 also shows that, when the energy consump-
tion is lower than its minimum for the shortest makespan,
the makespan increases accordingly.

Fig. 8. Pareto frontier using the developed Algorithm 2 of one experiment
from Case 3QC-3.

TABLE VIII

COMPUTED PARETO SOLUTIONS FOR SCENARIO 5

Table VIII reports that the ε-constraint method identifies
12 non-dominated solutions (at iterations 3, 5, 6, 7, 12, 13, 14,
15, 16, 18, 21 and 22). For the minimal makespan (JC = 471),
energy consumption can be reduced considerably, compared
with the case when JE is not optimized. The solution at
iteration 3 becomes a turning point of the Pareto frontier
regarding the shortest makespan. As Algorithm 2 is based on
the developed GA, the computation time at different iterations
is quite close to each other, considering that at each iteration
a single objective optimization problem is solved by the same
GA configuration.

VI. CONCLUSION AND FUTURE RESEARCH

This paper investigates a new scheduling problem in auto-
mated container terminals, aimed at minimizing energy con-
sumption while maintaining a competitive makespan. In the
scheduling problem, both the task sequences and the operation
times are optimized, while a bi-objective optimization problem
is formulated based on a flow shop representation. Due to the
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Fig. 9. Gantt chart of 3QC-1 determined by the proposed L-GA for solving
the MINLP.

nonlinearity of the energy objective, the formulated problem is
a non-convex mixed-integer nonlinear programming (MINLP),
which suffers from computational intractability.

To address the computational challenge in solving the
MINLP, a dedicated and customized genetic algorithm is
developed considering the characteristics of the considered
problem. The lexicographic and weighted-sum strategies are
proposed to minimize energy consumption while keeping high
handing capacity. The two strategies are tested in a container
benchmark system, in comparison to a commercial MINLP
solver and two state-of-the-art methods. The numerical experi-
ment results show that the MINLP solver cannot provide a fea-
sible schedule for the majority of the investigated case studies,
whereas the developed lexicographic GA can quickly provide
good quality solutions. For either the lexicographic strategy
or the weighted-sum strategy, the proposed GA outperforms
the VNS and TS, in terms of both minimizing the makespan
and energy consumption. Specifically, at least 10% energy is
saved without increasing the makespan. The proposed GA
also reduces the energy consumption by 13% and by 26%,
on average, compared with the two-phase method and the
B-MILP method without deteriorating the makespan.

The considerable energy reduction using the proposed meth-
ods concludes that simultaneously optimizing task orders and
processing times might result in a significantly reduced energy
consumption than optimizing them separately. As a result,
logistics operations managers can have more energy-efficient
operations to satisfy the environmental requirement and fur-
ther reduce the operation costs. The energy consumption
reduction in container terminals requires closer and more
detailed coordination between different types of machines by
considering the difference among the tasks to be processed.
To achieve a high handling capacity using much less energy
consumption, container terminals need to be automatized
using more advanced and more flexible integration methods.
Different types of machines should be coordinated, and task
orders and operation times should be optimized simultaneously
based on fully used cargo information.

Further research should consider the coordination of oper-
ations with multiple vessels for a large-scale terminal.
Meanwhile, lower bound methods for the considered MINLP
problem will be investigated in our future works.

APPENDIX

ILLUSTRATIVE EXAMPLE

Fig. 9 gives a Gantt chart of 3QC-3 using the L-GA for
solving the MINLP. In this case, 24 tasks (24 inbound con-
tainers 1-24 and 24 outbound containers 25-48) are processed.
The numbers shown in the QC schedule correspond to each
task. For the AGV schedules, the number in the light gray grid
corresponds to the inbound container and the number in the
dark gray gird matches the outbound container.
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