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Payoff Distribution in Robust Coalitional Games
on Time-Varying Networks

Aitazaz Ali Raja and Sergio Grammatico , Senior Member, IEEE

Abstract—In this article, we consider a sequence of
transferable utility coalitional games, where the actual
coalitional values are unknown but vary within known
bounds. As a solution to the resulting family of games,
we formalize the notion of “robust core.” Our main contri-
bution is to design two distributed algorithms, namely 1)
distributed payoff allocation and 2) distributed bargaining,
which converge to a consensual payoff distribution in the
robust core. We adopt an operator-theoretic perspective to
show convergence of both algorithms executed on time-
varying communication networks. An energy storage opti-
mization application motivates our framework for “robust
coalitional games.”

Index Terms—Distributed algorithms, dynamic games,
energy systems, game theory, multiagent systems.

I. INTRODUCTION

COALITIONAL game theory provides a framework to
study the behavior of selfish and rational agents when they

cooperate effectively. This willingness to cooperate arises from
the aspiration of gaining a higher return, compared to that for
behaving as individuals [1].

Specifically, a transferable utility (TU) coalitional game con-
sists of a set of agents and a value/characteristic function that
provides the value of each of the possible coalitions [1]. Mul-
tiagent decision problems modeled by TU coalitional games
arise in many application areas, such as demand-side energy
management [2] and energy storage (ES) sharing [3], in various
areas of communication networks [4] and as the foundation of
coalitional control [5].

One key problem studied by coalitional game theory is the
distribution of the value generated by cooperation. Along this
research direction, several solution concepts have been proposed
with special attention to criteria like stability and fairness. In
payoff distribution, stability means that none of the agents has
an incentive to defect the coalition. Perhaps, the most studied
solution concept in coalitional games that ensures the stability

Manuscript received June 30, 2021; accepted August 29, 2021. Date
of publication September 16, 2021; date of current version May 26,
2022. This work was supported in part by the Dutch Research Council
through Research Project P2P-TALES under Grant 647.003.003 and
in part by the European Research Council through Research Project
COSMOS under Grant 802348. Recommended by Associate Editor G.
Como. (Corresponding author: Aitazaz Ali Raja.)

The authors are with the Delft Center for Systems and Control,
Delft University of Technology, 2628 CD Delft, The Netherlands (e-mail:
a.a.raja@tudelft.nl; s.grammatico@tudelft.nl).

Digital Object Identifier 10.1109/TCNS.2021.3113269

of a payoff is the core. The second criterion, i.e., fairness,
means that the payoff for an agent should reflect its contribution
to or impact in the game. A seminal work on the axiomatic
characterization of fairness is that of Shapley [6], where the
unique value satisfying the fairness axioms is, in fact, known as
the Shapley value, which depends on the marginal contribution
of each agent. The latter depicts the impact each agent has on the
collective value of the coalition. Other related solution concepts
are also proposed in the literature, e.g., the nucleolus and the
kernel [7].

In this article, we consider the problem of finding a payoff
distribution that encourages cooperation, i.e., belongs to the
core [8]. Now, to evaluate such a payoff, the value of each
possible coalition is required, which seems implausible in many
practical applications, mainly because an agent cannot be certain
about the values that collaborations may generate. However, one
can assume that an agent does hold a belief about the value of
some possible collaborations via informed estimation or mere
experience. In practice, this brings uncertainty to the coalitional
values and, consequently, to the core set. It follows that one
should consider solutions that are robust to uncertainty on the
coalitional values. In this article, we do that via the notion of
robust core.

The robustness aspect in coalitional games falls into the
framework of dynamic TU coalitional games, which has been
studied in the literature. Among others, Filar and Petrosjan [9]
analyzed the time consistency of the Shapley value and the core
under the temporal evolution of the game. Then, Lehrer and
Scarsini [10] characterized three versions of core allocations for
a dynamic game, where the worth of the coalitions varies over
time according to the previous allocations. In both papers, the
coalitional values at the current time are determined endoge-
nously and depend on previous events. In [11], Kranich et al.
consider a finite sequence of exogenously defined coalitional
games, where the agents receive a payoff at each stage of the
sequence, and consequently, the final utility of an agent depends
on the whole stream of payoffs.

Robust coalitional games are the subclass of dynamic TU
coalitional games, where the coalitional values are unknown
and exogenous. In [12], Bauso and Timmer characterized robust
allocation rules for the dynamic coalitional game, where the
average value of each coalition is known with certainty, while
at each instant, the coalitional value fluctuates within a bounded
polyhedron. The static version of their setup, called cooperative
interval games, is presented by Alparslan-Goek et al. [13], where
the coalitional values are considered yet to be uncertain within
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some bounded intervals. In their setup, they have introduced the
interval solutions, which assign a closed real interval as a payoff
to each agent instead of a single real value. In [14], Nedich
and Bauso have presented a distributed bargaining algorithm for
finding a solution in the core under the framework of robust
games and dynamic average games. Inspired by the motivation
of cooperative interval games and the setup in [14], in this article,
we consider the value generated by each coalition to vary within
certain bounds.

Motivational example: Let us consider the energy optimiza-
tion application inspired by [2], which justifies a dynamic robust
coalitional game model. Consider a group of N prosumers,
each of whom owns a renewable energy source (RES) and ES.
Together, they form an energy coalition I, where the partici-
pating agents operate their ES systems collectively to minimize
their total energy cost. When the energy coalition has excessive
energy, they can store it in an ES for later utilization, and any
additional energy can be sold to a retailer. The retailer buys
energy and remunerates, a few hours ahead of the delivery
time. The coalition considers the corresponding remuneration
for optimizing their ES operation and consequently minimizing
the associated cost function.

Now, the cost saving as a result of the collaborative operation
should be distributed in such a way that each prosumer is satisfied
by its share and, hence, the coalition remains intact. To achieve
this, the agents assert their position by presenting the estimated
cost saving of possible energy subcoalitions S ⊆ I, which they
could have been part of and use them to define acceptable
payoffs, namely, payoffs in the core. Since there is uncertainty in
the RES generation, the cost savings v(S) of each subcoalition
S ⊆ I is uncertain. How the agents share this saving under such
uncertainty is a part of the solution generated by an iterative
payoff distribution method.

Let bti represent the charge or discharge of energy by the ES of
prosumer i at time t. Furthermore, denote the net energy demand
of prosumer i by qti and let pts and ptb be an electricity sell price
and buy price at time t, respectively. Let proj≥0(x)(proj≤0(x))
denote the projection onto the non-negative (nonpositive) or-
thant. Then, the energy cost function of any energy subcoalition
S ⊆ I for a time period of length K is given as

FS(b) :=
∑K

t=1

{
ptb

( ∑
i∈S proj≥0(q

t
i + bti)

)

+pts

(∑
i∈S proj≤0(q

t
i + bti)

)}

where b ∈ RNK contains the ES charge and discharge profiles
of all the N agents over the K time steps.

For a given coalition S, the coalitional energy cost for the
time period of length K is defined as

c(S) := min
b

FS(b) (1)

and the cost saving during this period v(S) as the difference
between the sum of the costs of the coalitions of the individual
agents in S and the cost of the coalition itself, namely

v(S) :=
∑

i∈S{ci} − c(S). (2)

Note that the cost c(S) is unknown but bounded from above
when each agent i ∈ S has RES generation equal to the installed
capacity, which gives the minimum value of net energy con-
sumption qmin

i for the whole period K, and from below when
there is no generation, hence qmax

i . Due to these bounds, the
cost saving v(S) is also bounded. Let c(S) be the coalitional
cost corresponding to qmax

i , and let ci be the individual cost
corresponding to qmin

i , i ∈ S; then, v(S) ≤
∑

i∈S{ci} − c(S).
Here, the uniform bound on the coalitional values and the fixed
value of grand coalition, for a period of length K allows us
to consider the setup of robust games presented in [14]. We
refer to [3] and [15] for other engineering problems that can be
modeled as robust coalitional games.

Contribution: We propose two payoff distribution algorithms
within the framework of robust coalitional games.

1) We formalize the notion of robust core, a set of payoffs
that stabilizes a grand coalition under variations in the
coalitional values (see Section II).

2) We develop a distributed payoff allocation algorithm,
where, given the bounds on the coalitional values, agents
communicate and negotiate only locally, i.e., with their
neighbors, over a time-varying and repeatedly connected
communication network. We show that the proposed al-
gorithm converges to a common payoff allocation in the
robust core (see Section III).

3) We generalize the distributed bargaining protocol in [14]
and prove its convergence to a mutually agreed payoff
in the robust core. We assume similar communication
requirements for the bargaining protocol as for the al-
location process, but less information on the coalitional
bounds is available to the agents (see Section IV).

4) We introduce some tools from operator theory (para-
contraction, nonexpansive operators, and Krasnoselskii–
Mann fixed-point iterations) to the domain of coalitional
games, which allows us to generalize existing results and,
in turn, to propose faster algorithms. This approach rep-
resents a new general analysis framework for coalitional
games.

Notation: R and N denote the set of real and natural numbers,
respectively. Given a mapping M : Rn → Rn, fix(M) := {x ∈
Rn | x = M(x)} denotes the set of its fixed points. Id denotes
the identity operator. For a closed set C ⊆ Rn, the mapping
projC : Rn → C denotes the projection ontoC, i.e.,projC(x) =
argminy∈C ‖y − x‖. An overprojection operator is denoted
by overprojC := 2projC − Id. For a set S, the power set is
denoted by 2S . A⊗B denotes the Kronecker product between
the matrices A and B. IN denotes an identity matrix of di-
mension N ×N . For x1, . . . , xN ∈ Rn, col((xi)i∈(1,...,N)) :=

[x	
1 , . . . , x

	
N ]	. For a norm ‖ · ‖p on Rn and a norm ‖ · ‖q

on Rm, the mixed vector norm ‖ · ‖p,q on Rmn is defined
as ‖x‖p,q = ‖col(‖x1‖p, . . . , ‖xm‖p)‖q . dist(x,C) denotes the
distance of x from a closed set C ⊆ Rn, i.e., dist(x,C) :=
infy∈C‖y − x‖. For a closed set C ⊆ Rn and N ∈ N, CN :=∏N

i=1 Ci.
Operator-theoretic definitions: A mapping T : Rn → Rn is

nonexpansive, if ‖T (x)− T (y)‖ ≤ ‖x− y‖, for all x, y ∈ Rn.
A continuous mappingM : Rn → Rn is a paracontraction, with
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respect to a norm ‖ · ‖ on Rn, if ‖M(x)− y‖ < ‖x− y‖, for
all x, y ∈ Rn such that x /∈ fix(M), y ∈ fix(M).

II. BACKGROUND ON COALITIONAL GAMES

Let us first provide a brief mathematical background on coali-
tional game theory and then describe two payoff distribution
processes, namely: 1) the payoff allocation and 2) bargaining.

In dynamic context, a coalitional game consists of a set of
agents, indexed by I = {1, . . . , N}, who cooperate to achieve
selfish interests. This cooperation at each time k ∈ N results in
the generation of utility, as defined by a value function vk.

Definition 1 (Coalitional game [14, Sec. II-A]): Let I =
{1, . . . , N} be a set of agents. For each time k ∈ N, an in-
stantaneous coalitional game is a pair Gk = (I, vk), where
vk : 2I → R is a value function that assigns a real value vk(S) to
each coalition S ⊆ I. A dynamic coalitional game is a sequence
of instantaneous games, i.e., G = (I, (vk)k∈N). �

For an instantaneous game, an instantaneous value of a coali-
tion has to be distributed among the member agents of the
coalition so that each agent receives a certain payoff.

Definition 2 (Payoff vector): Let I = {1, . . . , N} be a set of
agents and S ⊆ I be a coalition in an instantaneous coalitional
game Gk = (I, vk), k ∈ N. Then, for each i ∈ S, the element
xk
i of a payoff vector xk ∈ R|S| represents the share of agent i

of the value vk(S). �
Within the game, we assume that each agent i ∈ I acts ratio-

nally and efficiently. This means that the payoff vector, given in
Definition 2, proposed by an agent must belong to its bounding
set as defined next.

Definition 3 (Bounding set [14, Sec. II-B]): For an instanta-
neous game Gk = (I, vk), k ∈ N, the set

X k
i :=

{
x ∈ RN |

∑
j∈I xj = vk(I),

∑
j∈S xj ≥ vk(S), ∀S ⊂ I s.t. i ∈ S

}

(3)
denotes the bounding set of an agent i ∈ S. �

Since an agent agrees only on a payoff vector in its bounding
set, we can conclude that a mutually agreed payoff shall belong
to the intersection of the bounding sets of all the agents. Inter-
estingly, this intersection corresponds to the core, the solution
concept that relates to the stability of a grand coalition, i.e.,
a coalition of all agents. The idea of stability, in this context,
is based on the disinterest of each agent in defecting a grand
coalition. Let us formalize the concept of core for instantaneous
coalitional games, as in Definition 1.

Definition 4 (Instantaneous core): The core C of an instan-
taneous coalitional game Gk = (I, vk), k ∈ N, is the following
set of payoff vectors:

C(vk) :=
{
x ∈ RN |

∑
i∈I xi = vk(I),

∑
i∈S xi ≥ vk(S), ∀S ⊆ I

}

=
⋂N

i=1 X k
i

(4)

with X k
i as in (3), which is also the intersection of the individual

bounding sets. �
Each payoff allocation that belongs to the core stabilizes the

grand coalition, which implies that no agent or coalition S ⊂ I
has an incentive to defect from the grand coalition.

In this article, we consider a similar class of dynamic coali-
tional games as in [14], where an instantaneous value of each
coalition vk(S) belongs to a finite set bounded by a minimum
and a maximum value, i.e., v(S) ≤ vk(S) ≤ v(S). This restric-
tion of values on vk gives rise to a family of games that we
collectively regard as a robust coalitional game.

Definition 5 (Robust coalitional game): Let I =
{1, . . . , N} index a set of agents. A robust coalitional
game R = (I,V) is a set of instantaneous coalitional games
(I, vk) with vk ∈ V := {u1, u2, . . . , un} with |V| < ∞, for
all k ∈ N, where each ul is a value function such that
u(S) ≤ ul(S) ≤ u(S) for all S ⊂ I and ul(I) = u(I). �

In words, a robust coalitional game (I,V) is a family of a finite
number of instantaneous coalitional games such that the value
of the grand coalition I is fixed. This setup adequately addresses
the practical scenario of negotiations, where, after the formation
of the grand coalition, its value becomes certain. However, to
compute a core payoff in (4), anticipated values of subcoalitions
are also required, which involves uncertainty. We note that our
formulation of robust coalitional game is called “robust game”
in [14]. Next, we formalize the core of a robust coalitional game
as the robust core.

Definition 6 (Robust core): For a robust coalitional game
R = (I,V), the robust core is the intersection of all the possible
instantaneous core sets, i.e.,

C0 :=
⋂

v∈V C(v). (5)

�
Remark 1: Let R = (I,V) be a robust coalitional game.

If there exists v ∈ V such that for all k ∈ N, vk(I) = v(I)
and vk(S) ≤ v(S) for any coalition S ⊂ I, then C0 = C(v) and
thus C0 ⊆ C(vk) for all vk ∈ V . Consequently, if C0 = ∅, then
C(vk) = ∅ for all k ∈ N. �

In the following, we deal with the grand coalition only;
therefore, we use the core as the solution concept. We note from
(4) that the core C(vk) is closed and convex. Furthermore, the
robust core C0 in (5) is assumed to be nonempty throughout this
article. Nonemptiness implies that even under the variations in
coalitional values, a mutually agreeable payoff exists.

Assumption 1: The robust core is nonempty, C0 = ∅. �
Next, we discuss a possible strategy for finding a payoff that

belongs to core C0 in (5) of a robust game. Since centralized
methods for finding a payoff x ∈ C0 do not capture realistic
scenarios of interaction among autonomous selfish agents, we
propose distributed methods that allow agents to autonomously
reach a common agreement on a payoff distribution. We note
that our analysis and methods can be adapted for games with
empty cores by defining a quasi-core (ε-core) set [16].

Remark 2: Given ε > 0, the ε-core is the set Cε(v) := {x ∈
RN |

∑
i∈I xi = v(I),

∑
i∈S xi ≥ v(S)− ε, ∀S ⊆ I}. Thus,

the core in Definition 4 is an ε-core with ε = 0. The ε-core
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models the cost of coalition formation, where ε is a minimum
threshold for a gain in coalitional value, below which it is not
rational for a coalition S ⊂ I to defect the grand coalition. �

The two payoff distribution methods which we focus on are
distributed payoff allocation and distributed bargaining. The
former is an iterative procedure, in which, at each step, an
agent i proposes a payoff distribution xi ∈ RN by averaging
the proposals of neighboring agents and by introducing an
innovation factor. This procedure aspires to reach a mutually
agreed payoff among agents. In a bargaining process, to propose
a payoff distribution xi ∈ RN , an agent i, after averaging the
proposals of all agents, makes it compliant to its own interest.
Bargaining procedure also aspires to reach a mutually agreed
payoff. Thus, in both methods, the proposed payoff distributions
(xi)i∈I must eventually reach consensus.

Definition 7 (Consensus set): The consensus set A ⊂ RN2

is defined as

A := {col(x1, . . . ,xN ) ∈ RN2 | xi = xj∀i, j ∈ I}. (6)

�
In the following, we consider the problem of iteratively

computing a mutually agreed, payoff vector in the core, i.e.,
xk → x̄ ∈ A ∩ CN . We address this problem via distributed
algorithms under the payoff allocation and bargaining frame-
works. Both algorithms, starting from any initial payoff proposal
x0, converge to some consensual payoff in the robust core in (5).

III. DISTRIBUTED PAYOFF ALLOCATION

In coalitional games, the agents cooperate because they fore-
see a higher individual payoff compared to noncooperative
actions. A payoff that can sustain such cooperation, referred
as a stable payoff, shall satisfy the criteria in (4). Thus, the
goal of a payoff allocation process is to let the agents achieve
a consensus on a stable payoff in a distributed manner. During
the allocation process, each agent proposes a payoff for all the
involved agents based on the previous proposals of his neighbors
and an innovation term.

In this section, we propose a payoff allocation in the context
of robust coalitional games, where the value function v, at each
iteration k, takes a value within the given bounds. We model
our setup in a distributed paradigm, where each agent estimates
the coalitional values independently; hence, different agents can
assign different values to the same coalition. In the context
of a robust coalitional game (I,V), this distributed evaluation
of the coalitional values implies that at each negotiation step,
an agent can choose any value function v from a family V ,
without central coordination. However, the determination of the
family V is application specific and generally involves a central
evaluation before the distributed negotiation process. We prove
that even under the distributed evaluation of the value function
and variation of the coalitional values, the proposed algorithm
converges to a stable payoff distribution. In particular, our goal
is to construct a distributed fixed-point algorithm, using which
the agents can reach consensus (6) on a payoff distribution in
the robust core (5).

A. Distributed Payoff Allocation Algorithm

Consider a set of agents I = {1, . . . , N} who synchronously
propose a distribution of utility at each discrete time step k ∈
N. Specifically, each agent i ∈ I proposes a payoff distribution
xk
i ∈ RN , where the jth element denotes the share of agent j

proposed by agent i at iteration k ∈ N.
Let the agents communicate over a time-varying network

represented by a graph Gk = (I, Ek), where (j, i) ∈ Ek means
that there is an active link between the agents i and j at iteration
k, and they are then referred as neighbors. Therefore, the set
of neighbors of agent i at iteration k is defined as N k

i := {j ∈
I|(i, j) ∈ Ek}. We assume that at each iteration k, an agent i ob-
serves only the proposals of its neighboring agents. Furthermore,
we assume that the union of the communication graphs over a
time period of length Q is connected. The following assumption
is typical for many works in multiagent coordination, e.g., [17,
Assump. 3.2].

Assumption 2 (Q-connected graph): For all k ∈ N, the
union graph (I,∪Q

l=1E l+k) is strongly connected for some inte-
ger Q ≥ 1. �

The edges in the communication graphGk are weighted using
an adjacency matrix W k = [wk

i,j ], whose element wk
i,j repre-

sents the weight assigned by agent i to the payoff distribution
proposed by agent j, xk

j . Note that, for some j, wk
i,j = 0 implies

that j /∈ N k
i ; hence, the state of agent i is independent of that of

agent j. We assume the adjacency matrix to be doubly stochastic
with positive diagonal, as assumed in [17, Assump. 3.3] and [18,
Assump. 2, 3].

Assumption 3 (Stochastic adjacency matrix): For all k ≥
0, the adjacency matrix W k = [wk

i,j ] of the communication
graph Gk satisfies following conditions.

1) It is doubly stochastic, i.e.,
∑N

j=1 wi,j =
∑N

i=1 wi,j = 1.
2) its diagonal elements are strictly positive, i.e., wk

i,i >
0, ∀i ∈ I.

3) ∃ γ > 0 such that wk
i,j ≥ γ whenever wk

i,j > 0. �
Assumptions 2 and 3 ensure that the agents communicate

sufficiently often to each other and have sufficient influence on
the resulting allocation. We further assume that the elements of
communication matrix W k take values from a finite set; hence,
finitely many adjacency matrices are available.

Assumption 4 (Finitely many adjacency matrices): The
adjacency matrices {W k}k∈N of the communication graphs
belong to W , a finite family of matrices that satisfy Assumption
3, i.e., W k ∈ W for all k ∈ N. �

This assumption on the adjacency matrices allows us to
exploit important results from the literature regarding fi-
nite families of mappings for proving convergence of our
algorithms.

In our setup, at iteration k, each agent i proposes a payoff
allocation xk+1

i , for all agents j ∈ I, as a convex combina-
tion of its estimate xk

i and an innovation term. To generate
the latter, agent i first takes an average of the observed es-
timates of its neighbors xk

j , j ∈ N k
i , weighted by an adja-

cency matrix, and then applies an operator T k
i on the evaluated

average.
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Specifically, we propose the following update rule for each
agent i ∈ I:

xk+1
i = (1− αk)x

k
i + αkT

k
i

(∑N
j=1 w

k
i,jx

k
j

)

that is, in collective compact form,

xk+1 = (1− αk)x
k + αkT

kW k(xk) (7)

where (αk)k∈N ∈ [ε, 1− ε] for some ε ∈ (0, 1/2], T k(x) :=
col(T k

1 (x1), . . . , T
k
N (xN )), and W k := W k ⊗ IN represents

an adjacency matrix.
In (7), we require the operator T k

i to be nonexpansive and its
fixed-point set to include the robust core in (5). For example, T k

i

can be the projection onto the core, i.e., T k
i = projC(vk).

Assumption 5 (Nonexpansiveness): For all k ∈ N, the op-
erator T k in (7) is such that T k ∈ T , where T is a finite family
of nonexpansive operators such that

⋂
T∈T fix(T ) = CN

0 , with
C0 being the robust core in (5). �

Let us elaborate on this assumption in context of a robust
coalitional game R = (I,V), as in Definition 5. Here, for all
k ∈ N, we assume that an instantaneous core C(vk) in (4)
generated by the value function vk ∈ V is the fixed-point set
of an operator T k

i for all i ∈ I, which implies that fix(T k) =
CN (vk). Consequently, the intersection of the fixed-point sets
of the operators T k ∈ T corresponds to the robust core in (5),
i.e.,

⋂
T∈T fix(T ) =

⋂
v∈V CN (v) = CN

0 . Furthermore, we note
that having a finite family of nonexpansive operators implies
that the value function vk can only take finitely many values
within a specified set. This limitation does not pose a significant
hindrance in practical scenarios, first, because the number of
discrete values inside bounded intervals can be arbitrarily large
and, second, because the most common interpretation of value
is in a monetary sense, which is always rounded off to some
currency division.

Next, we assume that each T k ∈ T appears at least once in
everyQ iterations of (7), withQ being the integer in Assumption
2, which can be arbitrarily large.

Assumption 6: Let Q be the integer in Assumption 2.
The operators (T k)k∈N in (7) are such that, for all n ∈ N,⋃n+Q

k=n {T k} = T , with T as in Assumption 5. �
This assumption ensures that the resulting robust core in (5)

corresponds to all the value functions that belong to the family
V . Under Assumptions 1–6, we can guarantee the convergence
of the state in iteration (7) to some payoff in the set A ∩ CN

0 , as
formalized in the following statement.

Theorem 1 (Convergence of payoff allocation): Let As-
sumptions 1–6 hold and the step sizes satisfy αk ∈ [ε, 1−
ε] for all k ∈ N, for some ε > 0. Then, starting from any x0 ∈
RN2

, the sequence (xk)∞k=0 generated by the iteration in (7)
converges to some x̄ ∈ A ∩ CN

0 , with A as in (6) and C0 being
the robust core (5). �

B. Convergence Analysis

To prove the convergence of the payoff allocation process in
(7), we build upon a well-known result on time-varying nonex-
pansive mappings, presented by Browder in [19]. To proceed, let

us first define the notion of admissible sequence and then recall
Browder’s result.

Definition 8 (Admissible sequence [19, Def. 5]): A function
j : N>0 → D ⊆ N>0 is said to be an admissible sequence of
integers inD if for each integer r ∈ D, there existsm(r) ∈ N>0

such that the image under the function j of m(r) successive in-
tegers contains r, i.e., r ∈ {j(n), j(n+ 1), . . . , j(n+m(r))},
for all n ∈ dom(j). �

For example, every p-periodic sequence, i.e., {jk}k∈N where
jk+p = jk, is admissible with m(r) = p for all r ∈ ran(j) and
a sequence {jk = k}k∈N is a nonadmissible sequence.

Lemma 1 (see[19, Th. 5]): Let (Ur)r∈D,D ⊆ N>0, be a
(finite or infinite) sequence of nonexpansive mappings such
that C =

⋂
r∈D fix(Ur) = ∅. Let (αk)k∈N be a sequence where

αk ∈ [ε, 1− ε] for some ε ∈ (0, 1/2], and let (jk)k∈N be an
admissible sequence of integers in D. Then, the sequence
(xk)k∈N>0

generated by

xk+1 := (1− αk)x
k + αkUjk(x

k)

converges to some x̄ ∈ C. �
Next, we recall some useful properties of nonexpansive and

paracontraction operators.
Lemma 2 (Doubly stochastic matrix [20, Prop. 5], [21,

Prop. 3]): If W is a doubly stochastic matrix, then the linear
operator defined by the matrix W ⊗ In is nonexpansive. More-
over, if the operator (W ⊗ In)(·) satisfies Assumption 3, then it
is also a paracontraction with respect to the mixed vector norm
‖ · ‖2,2. �

The fixed-point sets of nonexpansive and paracontraction
operators relate to their compositions as follows.

Lemma 3 (Composition of nonexpansive operators [22,
Prop. 4.49]): Let T1, T2 : Rn → Rn be nonexpansive operators
with respect to the norm ‖ · ‖. Then, the composition T1 ◦ T2 is
also nonexpansive with respect to the norm ‖ · ‖. Moreover, if
either T1 or T2 is a paracontraction and fix(T1) ∩ fix(T2) = ∅,
then fix(T1 ◦ T2) = fix(T1) ∩ fix(T2). �

Lemma 4 (Composition of paracontracting operators [20,
Prop. 1]): Suppose M1,M2 : Rn → Rn are paracontractions
with respect to same norm ‖ · ‖ and fix(M1) ∩ fix(M2) = ∅.
Then, the composition M1 ◦M2 is a paracontraction with re-
spect to the norm ‖ · ‖ andfix(M1 ◦M2) = fix(M1) ∩ fix(M2).

�
The lemmas provided above are convenient operator-theoretic

tools that help us in keeping our proofs elegantly brief. Using
these tools, let us prove the following lemma, which we exploit
later in the proof of Theorem 1.

Lemma 5: Let T 1, . . . ,T q be a set of nonexpansive opera-
tors with

⋂q
r=1 fix(T r) = C. Let the composition of the adja-

cency matrices that satisfy Assumption 3, i.e., WqWq−1 · · ·W1

represent a strongly connected graph. Let W r := Wr ⊗ IN .
Then,

⋂q
r=1 fix(T rW r) = A ∩ C, whereA is the consensus set

in (6). �
Proof: By Lemmas 2 and 3, fix(T rW r) =

fix(T r) ∩ fix(W r) hence,
⋂q

r=1 fix(T rW r) = fix(T r) ∩
fix(W r) ∩ · · · ∩ fix(T 1) ∩ fix(W 1). By Lemmas 2 and
4,

⋂q
r=1 fix(W r) = fix(W q · · ·W 1), where, by the
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Fig. 1. Illustration of the payoff allocation proposed by an agent i, as
in (8) where ŷk

i := overprojC(vk)x̂
k
i .

Perron–Frobenius theorem, fix(W q · · ·W 1) = A. Since⋂q
r=1 fix(T r) = C, we conclude that

⋂q
r=1 fix(T rW r) =

A ∩ C. �
Given these results, we are now ready to prove Theorem 1.
Proof: (Theorem 1). Let us define the operatorU f := T fW f

with T f ∈ T and Wf ∈ W , where W f := Wf ⊗ IN . We note
that, by Assumptions 4 and 5, there are only finitely many such
operators, and therefore, we can define the operator family U :=
{Uf}Ff=1. Let l : U → N be a function such that l(Uf ) gives
the maximal length of the sequence, which contains the operator
Uf . Furthermore, letD = {f | l(Uf ) < ∞} ⊆ {1, . . . F}, i.e.,
the set of indices of the operators that occur at least once in
a finite-length interval. Since F is finite, there always exist an
integer representing the length of sequences, in which each index
f ∈ D appears at least once, thereby fulfilling the admissibility
condition in Definition 8. Thus, by Lemmas 1 and 3, the iteration
in (7) converges to some x̄ ∈

⋂
f∈D fix(Uf ).

LetKL be the interval of a sequence containingL consecutive
operators from the family {U f}f∈D such that

⋂
k∈KL

fix(Uk) =⋂
f∈D fix(Uf ). As we can choose an arbitrarily long interval,

without loss of generality, let L ≥ Q, with Q being the integer
in Assumptions 2 and 6. Then, it holds that

⋂
k∈KL

fix(Uk) ⊆⋂
k∈KQ

fix(Uk) because, having a longer interval of operators
can either reduce the intersection set or leave it unchanged.
Finally, by Lemma 5,

⋂
k∈KQ

fix(Uk) = A ∩ CN
0 . �

C. Discussion

Let us now visualize a proposal of an agent i in (7) by employ-
ing an overprojection operator, i.e., T k

i = overprojC(vk), which
is a nonexpansive operator; see [22, Prop. 4.2]. For brevity, let
x̂k
i :=

∑N
j=1 w

k
i,jx

k
j . Then, the proposal of an agent i reads as

xk+1
i = (1− αk)x

k
i + αkoverprojC(vk)x̂

k
i (8)

where αk ∈ [ε, 1− ε] for some ε ∈ (0, 1/2].
In Fig. 1, we illustrate an arbitrary instance of (8), where

the proposed payoff allocation xk+1
i does not belong to the

instantaneous core C(vk), and hence, it is not an acceptable
payoff, even for agent i. Nevertheless, as stated in Theorem 1,
repeated payoff allocations by all agents will eventually reach
an agreement on the payoff in the robust core C0. Note that, in a

payoff allocation process, intermediate allocation proposals can
be irrational, and therefore, the adoption of this process by a
rational agent shall be motivated, e.g., via mechanism design,
where a central authority incentivize a cooperative behavior
among agents to derive the process towards equilibrium.

We remark that the number of possible coalitions grows
exponentially in N , i.e., 2N , hence so does the computations
required to evaluate the core by an individual agent. This feature
is inherent in coalitional games, where the aim is to democratize
systems by providing agents with decision autonomy [14], [23].

IV. DISTRIBUTED BARGAINING PROTOCOL

In this section, we propose a bargaining protocol under a typ-
ical negotiation framework and a distributed paradigm, similar
to the payoff allocation in Section III. Specifically, at iteration k,
each agent i ∈ I proposes a payoff distribution that belongs to
its negotiation set, referred to as the bounding set X k

i in (3).
The intersection of negotiation sets represents the set of all
plausible deals, i.e., the core and mutual agreement of agents
on one such deal concludes the bargaining process. This struck
deal corresponds to the final payoff distribution.

A. Distributed Bargaining Algorithm

For our distributed bargaining protocol, we use a similar setup
as the payoff allocation algorithm (see Section III-A). Briefly, we
consider a set of agentsI = {1, . . . , N}, each of whom proposes
a payoff distribution xk

i ∈ RN at each iteration k ∈ N. These
agents communicate over a sequence of time-varying network
graphs (Gk)k∈N , which satisfies Assumption 2, and the corre-
sponding adjacency matrices (W k)k∈N satisfy Assumptions 3
and 4.

During the negotiation, at each iteration k, an agent i first
takes an average of the estimates of neighboring agents xk

j , j ∈
N k

i , weighted by an adjacency matrix W k, and then applies an
operator Mk

i on the resulting average. Specifically, we propose
the following negotiation protocol for each agent i ∈ I:

xk+1
i = Mk

i

(∑N
j=1 w

k
i,jx

k
j

)

that is, in collective compact form,

xk+1 = Mk(W kxk) (9)

where Mk(x) := col(Mk
1 (x1), . . . ,M

k
N (xN )) and W k :=

W k ⊗ IN represents an adjacency matrix.
In (9), we require the operator Mk

i to be paracontraction,
not necessarily a nonexpansive operator as in (7). Utilizing a
paracontraction operator allows us to prove convergence of our
bargaining algorithm without the need of α-averaging with the
inertial termxk, as required for payoff allocation in (7). Further-
more, in (9), we also require the fixed-point set of Mk

i to be the
bounding set in (3), i.e., fix(Mk

i ) = X k
i . Therefore, fix(Mk) =⋂N

i=1 X k
i = C(vk), and for a robust coalitional game (I,V), it

holds that
⋂

vk∈V C(vk) = C0.
Assumption 7 (Paracontractions): For all k ∈ N, Mk in

(9) is such that Mk ∈ M, where M is a finite family of
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paracontraction operators such that
⋂

M∈M fix(M) = CN
0 , with

C0 being the robust core in (5). �
Similar to the payoff allocation setup, we also assume that

each Mk ∈ M appears at least once in every Q iterations of
(9), with Q being the integer in Assumption 2.

Assumption 8: Let Q be the integer in Assumption 2.
The operators (Mk)k∈N in (9) are such that, for all n ∈ N,⋃n+Q

k=n {Mk} = M, with M as in Assumption 7. �
Next, we formalize the main convergence result of the bar-

gaining protocol in (9).
Theorem 2 (Convergence of bargaining protocol): Let As-

sumptions 1–4, 7, and 8 hold. Then, starting from anyx0 ∈ RN2
,

the sequence (xk)∞k=0 generated by the iteration in (9) converges
to some x̄ ∈ A ∩ CN

0 , with A as in (6) and C0 being the robust
core (5). �

B. Convergence Analysis

We prove the convergence of the bargaining protocol in (9)
by building upon a result related to the time-varying paracon-
tractions, presented in [24].

Lemma 6 (see[24, Th. 1]): Let M be a finite family of
paracontractions such that

⋂
M∈M fix(M) = ∅. Then, the se-

quence (xk)k∈N generated by xk+1 := Mk(xk) converges to a
common fixed point of the paracontractions that occur infinitely
often in the sequence. �

In the following lemma, we provide a technical result about
the composition of paracontractions, which we exploit later in
the proof of Theorem 2.

Lemma 7: Let Q be the integer in Assumption 2.
Let M1, . . . ,MQ be paracontraction operators with⋂Q

r=1 fix(M r) =: C and let WQWQ−1 · · ·W1 be the
composition of the adjacency matrices, where Wr ∈ W ,
with W as in Assumption 4. Let W r := Wr ⊗ IN . Then, the
composed mapping x �→ (MQWQ ◦ · · · ◦M1W 1)(x):

i) is a paracontraction with respect to norm ‖ · ‖2,2;
ii) fix(MQWQ ◦ · · · ◦M1W 1) = A ∩ C;

where A is the consensus set in (6). �
Proof: (i) It follows directly from Lemmas 2 and 4.
(ii) By Lemmas 2 and 4, fix(MQWQ ◦ · · · ◦M1W 1) =

fix(MQ) ∩ · · · ∩ fix(M1) ∩ fix(WQ) ∩ · · · ∩ fix(W 1).
Again, by Lemmas 2 and 4,

⋂Q
r=1 fix(W r) = fix(WQ · · ·W 1)

and since the compositionWQ · · ·W 1 is strongly connected, by
the Perron–Frobenius theorem, fix(WQ · · ·W 1) = A. Finally,
as

⋂Q
r=1 fix(M r) = C, fix(MQWQ ◦ · · · ◦M1W 1) =

A ∩ C. �
Given these preliminary results, we are now ready to present

the proof of Theorem 2.
Proof: (Theorem 2) Let us define the subsequence of

xk for all k ∈ N as zt = x(t−1)Q for each t ≥ 2, with Q being
the integer in Assumptions 2 and 8. Then

zt+1 = M tQ−1W tQ−1 ◦ · · · ◦M (t−1)QW (t−1)Qzt (10)

for t ≥ 2. It follows from assertion 1 of Lemma 7 that the maps
x �−→ (M tQ−1W tQ−1 ◦ · · · ◦M (t−1)QW (t−1)Q)(x), t ≥ 2
are all paracontractions. Also, under Assumption 4, there can
be only finitely many such maps. Furthermore, by assertion 2 of

Lemma 7, the set of fixed points of each map isA ∩ CN . Thus, by
Lemma 6, the iteration in (10) converges to some z̄ ∈ A ∩ CN .�

C. Discussion

In our proposed bargaining process in (9), let Mk = projXk ,
for all k ∈ N, which is a paracontraction [22, Prop. 4.16]. Then,
the resulting iteration, i.e., xk+1 = projXk(W kxk), reduces
to the bargaining protocol presented in [14]. In that setup, the
communication graphs and adjacency matrices also satisfy our
Assumptions 2 and 3, respectively. The bargaining algorithm
in [14] lies within our bargaining framework, but with the
exception that, in our setup, the value function vk can only
take finitely many values in a bounded set. We emphasize that
our framework provides an agent with the flexibility to choose
a paracontraction operator, not necessarily a projection. This
allows an agent to propose a payoff on the boundary or in the
interior of its bounding set.

Finally, we note that in the bargaining process, each agent
requires the coalitional value bounds of his coalitions only to
evaluate the bounding set, hence lower information requirement
compared to the payoff allocation in Section III.

V. NUMERICAL SIMULATIONS

In this section, we present numerical illustrations of two
realistic scenarios modeled as coalitional games with uncertain
coalitional values. In the first scenario, we present a collab-
oration among three firms for providing abstract services; in
the second scenario, we simulate the motivational application
introduced in Section I. Our goal for presenting the former is to
illustrate the robust core and to differentiate between the struc-
ture of payoff allocation and bargaining processes during the
negotiation stages. Therefore, we use only three agents (firms)
to be able to illustrate the outcome graphically in dimension
2. Furthermore, in the second simulation scenario, we demon-
strate a more comprehensive application, namely, cooperative
ES optimization in a smart grid framework.

A. Illustrative Example

Consider three firms I = {1, 2, 3}, which individually pro-
vide certain services to their customers. These firms can improve
their efficiency by collaborating activities and, hence, generate a
higher value. This collective value is a remuneration of services
agreed upon by a customer and the coalition of firms in advance.
To make this collaboration viable, all three firms have to agree
upon their share of the generated value. The resulting scenario is
a coalitional game among firms, a solution to which is an agreed
payoff distribution in the core.

The core allocation in (4) depends on the value of all possible
subcoalitions. In our example, the firms know with certainty
about their individual values v({i}) and the value of the grand
coalition v(I), i.e., the final contract. However, the subcoalitions
are never formed, and hence, their values are unknown. We
assume that the values of the subcoalitions are random within
a bounded interval. Under the above conditions, the coalitional
game among the three firms takes the form of a robust coalitional
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TABLE I
COALITIONAL VALUES FOR THE ILLUSTRATIVE EXAMPLE

Fig. 2. Three instances of the core set, C0, C′, C′′, and final payoff
allocation x̄.

game. Thus, we can apply the robust payoff distribution methods
proposed in Sections III and IV.

The coalitional values of this coalitional game among firms
are given in Table I. For example, at each iteration k, the value
function of the coalition {1, 2}, i.e., v({1, 2}), takes its value
randomly from the set {2, 3, 4} with uniform probability. The
possibility of realizing only an integer value, with uniform
probability, satisfies the assumption of finite operator families
in Theorems 1 and 2 and also ensures that the resulting se-
quence satisfies Assumption 6. Furthermore, we consider a fixed
strongly connected communication graph, which, therefore, sat-
isfies Assumptions 2–4. For the initial proposals, we assume that
each agent allocates the entire value of coalition to itself, e.g.,
the initial proposal by firm 1 will be x1(1) = [ 8 0 0 ]	. Next,
we evaluate the payoff distributions generated by the payoff
allocation algorithm in (7) and the bargaining protocol in (9).

1) Distributed Payoff Allocation: For implementation, we
choose an overprojection operator, which is nonexpansive, and
the step size αk = 0.5 for all k ∈ N. The resulting iteration
for each agent i is as in (8). In Fig. 2, we depict two arbitrary
instances of the core set C′, C′′ and the robust core C0 in (5).
The allocation process in (7) converges to consensus on the
payoff allocation, x̄ = [2.4, 3, 2.6], which belongs to the robust
core, i.e., A ∩ CN

0 . An allocation in the robust core ensures that
even under uncertainty on coalitional values, the collaboration
will emerge as the only rational choice. We note that, in the
payoff allocation process, each firm does not need to have
deterministic information of the core, which is weaker from the
usual assumption of coalitional games [23]. In fact, here, the
firms only know the bounds on coalitional values.

2) Distributed Bargaining Protocol: We implement the it-
eration in (9), by using the projection operator, which is a
paracontraction, and therefore, it satisfies the assumptions of
Theorem 2. In Fig. 3, we show an arbitrary negotiation step
during the bargaining process. Here, a firm i agrees with the
payoff distribution only if it belongs to its bounding set Xi.
Thus, any mutually agreed payoff distribution must belong to
the intersection of bounding sets, i.e., C =

⋂
i∈I Xi. Because

Fig. 3. Instance of bargaining process showing the bounding sets of
the agents, X1, X2, X3, and the robust core C0 =

⋂
i∈I Xi. x̄ is the final

payoff vector.

of the uncertainty in the values of subcoalitions, the bounding
sets vary with iterations resulting in an instantaneous core as in
(4). The bargaining process in (9) ensures convergence to the
intersection of the instantaneous cores, i.e., the robust core C0
in (5). Thus, in our example, the resulting payoff distribution
x̄ = [2.33, 2.833, 2.833] belongs to the set A ∩ CN

0 .
Compared with the payoff allocation process, the knowledge

requirement for the firms in the bargaining protocol is even
weaker. Here, the firms are required to know the bounds on
the values of their own subcoalitions only, which is a reasonable
assumption for a cooperation scenario.

B. Cooperative ES Optimization

In this subsection, we simulate the cooperative ES optimiza-
tion problem described in Section I as a motivational example.
We partially adapt the optimization setup from [2] and, addi-
tionally, introduce uncertainty in the RES generation.

1) Problem Setup: Consider N prosumers in an energy
coalition I, each equipped with RES generation and ES system.
Our goal is to cooperatively optimize ES systems, by consid-
ering them as a single collective storage, for minimizing the
coalitional cost in (1) and, distribute the resulting cost savings,
i.e., coalitional value in (2) among prosumers. Moreover, the
share of each prosumer, i.e., the payoff should belong to the
robust core in (5). We compute the coalitional value of each
coalition S ⊆ I for a time period of length K by solving a
linear optimization problem. We assume that the ES system of
each prosumer i has an energy capacity of ei ≥ 0, a charge and
discharge limit, bi ≥ 0 and bi ≥ 0, respectively, and a charge
and discharge efficiency ηch

i and ηdc
i ∈ (0, 1), respectively. We

also consider an initial state of charge for each ES, SoC0
i ∈ [0, 1],

where 1 represents a fully charged battery. We denote the amount
of energy stored and released from agent i’s ES during time t by
bt+i and bt−i , respectively.

Next, let us denote the vectors representing charge and dis-
charge energies of all prosumers by b− and b+. Moreover, be-
cause of the difference in buying and selling prices of electricity,
let us divide the coalitional net load into a positive part L+,
which corresponds to the energy bought from the grid, and a
nonpositive part L−, which represents the energy sold to the
grid. These four vectors are the decision variables of our ES
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Fig. 4. (a) Sampled average of the trajectories of dist(xk,A ∩
CN0 )/dist(x0,A ∩ CN0 ) for distributed allocation algorithm with operator
projC(vk) for α = 1/5, 4/5 and overprojC(vk) for α = 1/5, 4/5. (b) Sam-
pled average of selected trajectories with spread of samples shown by
shaded region.

optimization problem that computes the coalitional cost c(S)
for each coalition S ⊆ I as follows:

min
b+, b−,
L+, L−

K∑
t=1

{
ptb

∑
i∈S

Lt+
i + ptS

∑
i∈S

Lt−
i

}
(11a)

s.t. Lt−
i ≤ 0 ≤ Lt+

i (11b)∑
i∈S

(bt+i + bt−i + qti) ≤
∑
i∈S

Lt+
i (11c)

∑
i∈S

(bt+i + bt−i + qti) =
∑
i∈S

(Lt+
i + Lt−

i ) (11d)

bi ≤ bt−i ≤ 0 ≤ bt+i ≤ bi (11e)

K∑
t=1

(
bt+i ηch

i + bt−i /ηdc
i

)
= 0 ∀i ∈ S (11f)

0 ≤ eiSoC0
i +

m∑
t=1

(
bt+i ηch

i + bt−i /ηdc
i

)
≤ ei

∀i ∈ S, ∀t ∈ [1,K]∀m ∈ [1,K]. (11g)

The constraints (11e)–(11g) are related to the physical limita-
tions of ES systems. Specifically, (11e) represents the limitation
on the rate of charge/discharge, (11g) represents ES capacity,
and (11f) ensures that the state of charge of each ES at the end
of the horizon K is same as the initial, i.e., SoCK

i = SoC0
i . For

further details, we refer to [2].
To proceed, we introduce uncertainty in the net energy con-

sumption qti , since the generation of RES is uncertain. However,
qti can only realize values from the interval [qmin

i , qmax
i ], as

Fig. 5. (a) Sampled average of the trajectories of dist(xk,A ∩
CN0 )/dist(x0,A ∩ CN0 ) for distributed bargaining with operator projXk

and TXk := (1− β)projXk (·) + βoverprojXk (·) for β = 1/5, 4/5. (b)
Sampled average of trajectories with spread of samples shown by
shaded region.

explained in Section I. Here, these bounds refer to the optimistic
and conservative forecasts.

2) ES Optimization as a Robust Coalitional Game: Let
us now put the optimization setup, presented above, in the
perspective of the payoff distribution problem. At the first stage,
the grand prosumer coalition I optimizes their energy operation
collectively via an aggregator over a time horizon of length K
and sells any expected excess of energy (available at each time
interval t) to the retailer. The coalition performs this process in
advance and gets remunerated by the retailer. The additional
value gained by the coalition as a result of the cooperation
is given by (2). At the second stage, the attained coalitional
value, i.e., v(I), is distributed among the agents so that the
payoff to each agent belongs to the robust core in (5). Thus, for
the payoff distribution, an aggregator computes the value v(S)
for all S ⊂ I by solving the optimization problem presented
above. To account for the uncertainty in the RES generation,
the aggregator computes the bounds on the coalitional values
as v(S) ≤ v(S) ≤ v(S), S ⊂ I and communicates the vector
v containing these bounds to all the agents, who in turn initiate
the payoff distribution process. We remark that a central entity is
not necessarily required for the evaluation of coalitional values,
except for the grand coalition.

This scenario with uncertainty requires a robust solution and
thus demonstrates the practicality of our payoff distribution
algorithms. Furthermore, since the core set is not a singleton,
it is possible that certain payoff vectors favor some specific
agents [16]. Consequently, a central computation of the payoffs
might be unacceptable for the prosumers. Instead, distributed
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mechanisms defer this responsibility on the prosumers as they
arrive at a mutual agreement by themselves.

3) Simulations Studies: For the numerical simulation, we
select a time horizon of K = 6 h and an interval t = 1 h. We
consider a coalition of six prosumers, where each prosumer i
is equipped with the battery of energy capacity ei = 7 kWh,
a maximum charge power bi = 3.5 kW, a maximum discharge
power bi = 3.5 kW, both charge and discharge efficiencies of
ηch
i = ηdc

i = 95%, and an initial state of charge SoC0
i = 50%.

We put the bounds of optimistic and conservative forecast on the
RES generation of each agent and randomly generate net con-
sumption scenarios. We then evaluate the coalitional value in (2)
for each scenario and compute the bounds v(S) and v(S), S ⊂
I. We then run 100 different trajectories of payoff distribution
processes. We assume, for each trajectory, that agents initially
allocate the whole value v(I) to themselves. Also, to make sure
that every prosumer’s payoff proposal receives adequate impor-
tance and sufficient exposure, during negotiation, we assume a
strongly connected communication graph among them, which
satisfies Assumptions 2 and 3. Furthermore, as the coalitional
value in cooperative energy optimization is in monetary terms,
the prosumers consider reasonably rounded of units (dollars,
cents, etc.), which results in a finite set of points between the
bounds v(S) and v(S), according to Assumption 6.

Moreover, for the distributed allocation process in (7), the
whole coalitional value vector v is communicated to the agents,
whereas, for the bargaining process in (9), only the value of
agent’s own coalitions is communicated. Finally, the agents
initiate a robust coalitional game to reach the consensus on a
payoff, which belongs to the robust core in (5). This payoff
guarantees the stability of the grand coalition, which, in turn,
has considerable operational benefits for the power grid [2].

We first report the numerical results for the distributed alloca-
tion process. In Fig. 4(a), we compute the average of the sample
trajectories obtained by 100 runs and report the normalized
distances dist(x(k), C0 ∩ A)/dist(x(0), C0 ∩ A), for the pro-
jection and overprojection operators, by varying the parameter
α. We can observe that an overprojection operator with higher
value of α results in faster convergence. In Fig. 4(b), we provide
the spread of the sample trajectories to depict the best and worst
convergence scenarios in our sample set.

Finally, we simulate the distributed bargaining process in (9)
and report the average of the sample trajectories. In Fig. 5(a),
we show the comparison of the normalized distances. We con-
duct the analysis by utilizing the projection operator and the
convex combination of projection and overprojection operators,
i.e., TXk := (1− β)projXk(·) + βoverprojXk(·) for varying β.
Both the operators are paracontraction operators [22]. Fig. 5(b)
shows the spread of the sample trajectories.

VI. CONCLUSION

In this article, we have addressed the problem of payoff distri-
bution in robust coalitional games over time-varying networks,
where the goal is to make players reach a consensus on the payoff
distribution that belongs to the robust core. We have shown that

distributed payoff allocation and bargaining algorithms, with
known coalitional value bounds and based on nonexpansive and
paracontraction operators, e.g., overprojections, and network
averaging converge consensually to the robust core, even with
varying coalitional values.
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