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Theoretical Framework for A Succinct Empirical
Mode Decomposition

Yang Jin and Zili Li

Abstract—Empirical mode decomposition (EMD) lacks a
strong theoretical support although extensively applied. We
propose a theoretical framework for a succinct EMD in this work,
with the assumption of invariant extrema locations for one IMF
extraction. We define the envelope mean filter (EMF) and prove
that the filter matrix satisfies five properties. The sifting matrix is
convergent to an idempotent matrix. An IMF is the projection of
the input signal on the generalized eigenspace of the EMF matrix.
An IMF is orthogonal to the residual signal, but different IMFs
have no orthogonality. With numerical experiments on different
signals, our framework achieves similar results to the classic
EMD.

Index Terms—Empirical mode decomposition, adaptive signal
processing, time-varying filters, time-frequency analysis

I. INTRODUCTION

EMPIRICAL mode decomposition (EMD) [1] is an adap-
tive time-frequency analysis technique for processing

nonstationary and nonlinear signals. It has evolved in algo-
rithms [2]–[5] and presented superior performances in exten-
sive applications [6]–[8]. The intrinsic mode functions (IMFs)
acquired within naturally determined bandwidths represent the
oscillation modes and have physical meanings for Hilbert
transform. An IMF should satisfy that: (1) the numbers of
extrema and zero-crossings differ by 0 or 1, and (2) the local
mean determined by envelopes is 0. For a discrete signal y(t),
Huang et al. [1] developed the following sifting process to
extract an IMF:

1) Identify the local extrema of the input signal hi(t),
where h0(t) = y(t);

2) Calculates the upper and lower envelopes using the
extrema and then calculate the envelope mean M(t);

3) Update hi+1(t) = hi(t)−M(t);
4) Repeat the upper steps with i = 0, 1, 2, ... until hi+1(t)

becomes an IMF.
Although EMD is proposed on the basis of the Hilbert

transform, its data-driven algorithm lacks strong theoretical
support [9]–[11]. This is a significant issue of EMD. The
primary research decomposing the fractional Gaussian noise
[12] revealed the filter characteristic of EMD experimentally,
with similar findings in [13]–[16]. Yang et al. [17] demon-
strated that the cubic B-spline interpolation to formulate the
local envelopes is a low-pass filter. Indeed, the cubic spline
filter constitutes a time-varying signal processing system [18],
and the bandwidth narrows with iteration [19]. An alternative
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approach, namely partial differential equation [20]–[22], for
calculating the envelope-mean provides an analytical expres-
sion of EMD. However, these researches only concerned the
expression of envelopes and altering the envelope approach
[23]–[25] did not promote the theory further. To our best
knowledge, a theoretical framework that interprets the sifting
process and IMFs and proves multiple properties (e.g., conver-
gence and orthogonality) of EMD remains to be developed.

In our work, we propose a theoretical framework for a
succinct EMD. The difference with classic EMD is our
assumption that the locations of the extrema in the time
domain are invariant when extracting one IMF. The cubic
spline interpolation is discussed and several properties of the
envelope mean are proved. The convergence of the sifting
process and the orthogonality of IMFs are investigated. In
numerical experiments, we compare the decomposition results
under our framework with those of classic EMD.

II. THEORY

A. Envelope mean

A time-varying filter bank consists of the decimator, filters
and expander with their parameters altering with time [26]–
[28]. The envelope mean calculated from cubic spline inter-
polation is demonstrated as a time-varying filter [18]. Indeed,
there are multiple approaches (e.g., [5], [23]) to construct
envelopes that present similar time-varying filter properties,
and thus we define the envelope-mean filter (EMF) for EMD.

Definition 1: For a time series (tm, ym), m = 1, 2, ..., N ,
the signal envelopes are calculated by interpolating with all
maxima (tuk

, yuk
) (k = 1, 2, ..., Nu) and minima (tvl , yvl )

(l = 1, 2, ..., Nv). The EMF is a time-varying filter by
averaging the envelopes and the filter matrix Q should satisfy
the following properties:

1.1 Only the columns uk and vl contain non-zero values;
1.2 The summation of each row equals 1;
1.3 All entries qi,j , i, j = 1, 2, ..., N are dependent on tm,

uk and vl, and independent on any ym;
1.4 The geometric multiplicity of eigenvalue 0 is at least

N −Nu −Nv + 1;
1.5 All eigenvalues λ ∈ [0, 1].

The cubic spline envelopes construct such an EMF, and the
proof requires the expression of matrix Q. First, we consider
the upper envelopes using the maxima. Extracting the maxima
(tuk

, yuk
) from the signal (tm, ym) is a time-varying multirate

decimator [17], [18]. The general expression of natural cubic
spline interpolation [29]–[31] on (tuk

, yuk
) is
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where, Sk(t) is the interpolating function with tuk
≤ t ≤

tuk+1
, zuk

are the coefficients, ∆tuk
= tuk+1

− tuk
, and

zu1
= zuNu

= 0. Considering vectors Yu = {yuk
|

k = 1, 2, ..., Nu}, Zu = {zuk
| k = 1, 2, ..., Nu} and

S = {Sktm | m = 1, 2, ..., N}, Equations (1) and (2) are
rewritten in the matrix form.

S† = Â1Y
†
u + B̂Z†

u

CZ†
u = DY †

u

(3)

where † represents the transpose of matrices or vectors. Â1

(Eq. (4)) is a N ×Nu matrix with entries âm,k =
tuk+1

−tm

∆tuk
,

âm,k+1 =
tm−tuk

∆tuk
(m ∈ [0, uk+1], k = 1; m ∈ [uk, uk+1],

k = 2, ..., Nu − 2; m ∈ [uk, N ], k = Nu − 1) and
others equaling 0. B̂ is a N × Nu matrix with entries

b̂m,k =
(tuk+1

−tm)3

6∆tuk
− ∆tuk

(tuk+1
−tm)

6 , b̂m,k+1 =
(tm−tuk

)3

6∆tuk
−

∆tuk
(tm−tuk

)

6 (m ∈ [0, uk+1], k = 1; m ∈ [uk, uk+1],
k = 2, ..., Nu − 2; m ∈ [uk, N ], k = Nu − 1) and
others equaling 0. C is a Nu × Nu matrix with entries
c1,1 = cNu,Nu = 1, ck,k−1 =

∆tuk−1

6 , ck,k =
∆tuk−1

+∆tuk

3 ,
ck,k+1 =

∆tuk

6 and others equaling 0. D is a Nu × Nu

matrix with entries d1,1 = dNu,Nu
= 0, dk,k−1 = 1

∆tuk−1
,

dk,k = −( 1
∆tuk−1

+ 1
∆tuk

), dk,k+1 = 1
∆tuk

and others 0.

Â1 =



. . .
...

... . .
.

· · · tuk+1
−tm

∆tuk

tm−tuk

∆tuk
· · ·

· · · tuk+1
−tm+1

∆tuk

tm+1−tuk

∆tuk
· · ·

. .
. ...

...
. . .


(4)

Matrix C is strictly diagonally dominant and is thereby
invertible [32]–[34]. Let e⃗n represent an all ones vector with
length n, and 0⃗n represent a zero vector with length n. Since
the summation of each row from matrix D equals 0, e⃗Nu

is the eigenvector of D corresponding to the eigenvalue 0.
Considering the N×Nu matrix Â2 = B̂C−1D, we can obtain
that

Â2e⃗
†
Nu

= B̂C−1De⃗†Nu
= 0⃗†

N (5)

S† = (Â1 + Â2)Y
†
u (6)

According to Eq. (5), the summation of each row from
matrix Â2 equals 0. The next step is upsampling the maxima
Yu to the signal Y , where vector Y = {ym | m = 1, 2, ..., N}.
Correspondingly, the matrices Â1 and Â2 are zero-padded with
uk+1 − uk − 1 columns between the column k and k + 1,
k = 1, 2, ..., Nu − 1 to achieve the N × N matrices A1 and
A2. Eq. 7 shows the zero-padding of Â1.

A1 =



. . .
... 0 · · · 0

... . .
.

· · · tuk+1
−tm

∆tuk
0 · · · 0

tm−tuk

∆tuk
· · ·

· · · tuk+1
−tm+1

∆tuk
0 · · · 0

tm+1−tuk

∆tuk
· · ·

. .
. ... 0 · · · 0

...
. . .


(7)

We obtain the upper envelope interpolation matrix Au =
A1 +A2 and the upper envelope S as

S† = AuY
† (8)

Therefore, (1) according to the zero-padding process, only
the columns uk of A1 and A2 contain non-zero value and so
for the matrix Au. (2) Since the summation of each row of
A1 equals 1 and that of A2 equals 0, the summation of each
row of A equals 1. (3) Since the entries of Â1 and Â2 are
only dependent on tm and tuk

and the zero-padding process
is only dependent on uk, Au is only dependent on tm and uk.

Similarly, we can achieve the lower envelope matrix Av that
satisfies: (1) only the columns vl contain non-zero value; (2)
the summation of each row equals 1; and (3) all entries are
only dependent on tm and vl. Therefore, the EMF matrix Q =
(Au+Av)/2 meets the first three properties of our definition.

Since N − Nu − Nv columns of Q are all zero, the
matrix rank of Q is at largest Nu + Nv . The eigenspace for
eigenvalue 0 contains at least N−Nu−Nv linear-independent
eigenvectors, which are X⃗i = (xi,1, xi,2, ..., xi,j , ..., xi,N )
with xi,i = 1 and xi,j = 0 (j ̸= i), i ̸= uk, vl. We consider
the vectors P⃗1 = (p1,1, ..., p1,j , ..., p1,N ) with p1,j = 1

(j = u1, u2, ..., uNu ) and others equaling 0, and P⃗2 =
(p2,1, ..., p2,j , ..., p2,N ) with p2,j = 1 (j = v1, v2, ..., vNv

) and
others equaling 0. Since the summation of each row of Au or
Av equals 1, we can obtain

AuP⃗
†
2 = AvP⃗

†
1 = AuP⃗

†
1 = AvP⃗

†
2 = e⃗†N (9)

Therefore, Q has another eigenvector X⃗ = P⃗1 − P⃗2

corresponding to eigenvalue 0. The geometric multiplicity of
eigenvalue 0 is at least N −Nu −Nv + 1.

The last property is to determine the range of all eigenval-
ues. We consider the (Nu+Nv)

2 matrix Q̂ that only contains
the rows and columns uk ∪ vl of Q. According to property
1.1, except eigenvectors X⃗i of eigenvalue 0, the eigenvalue
λ of Q is also that of Q̂ and the corresponding eigenvetor
of Q is decimated at uk ∪ vl to that of Q̂. First, Q̂ has
eigenvector e⃗Nu+Nv

corresponding to eigenvalue 1. For any
other eigenvector P⃗ = {pi | i = 1, 2, ..., Nu + Nv} of Q̂
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(Q̂P⃗ † = λP⃗ †), it should have the first local maximum ps1 and
minimum ps2 . Since Q̂ calculates the mean of interpolations
f̂(p) for {p2i−1 | i = 1, 2, ...} and ĝ(p) for {p2i | i = 1, 2, ...},
we have the following relationships

ps1 − Q̂P⃗ † |s1= (1− λ)ps1 > 0

ps2 − Q̂P⃗ † |s2= (1− λ)ps2 < 0

ps1 > ps2

(10)

Therefore, we can obtain λ < 1. Considering the entry p of
P⃗ with maximum absolute value and p ∈ {p2i−1 | i = 1, 2, ...}
without loss of generality, we can obtain

| ĝ(p) |≤| p2i |max≤| p | (11)

Thus, we can derive that

λp2 = (
ĝ(p) + p

2
)p ≥ 0 (12)

Therefore, we can obtain λ ≥ 0. In addition, we can use
mathematical induction to prove that λ of Q̂ are all real:
(1) 1st-order Q̂ satisfies obviously; (2) when kth-order Q̂
satisfies, its generalized eigenvector can be extended ∆t signal
interval to a new extrema with the original cubic splines. In
this case, the extended vector is the generalized eigenvector
of the k + 1th-order Q̂. Therefore, k + 1th-order Q̂ has at
least k generalized eigenvectors, as well as generalized real
eigenvalues. Since imaginary eigenvalues should appear in
pair, the last generalized eigenvalue is also real. Considering
all the aforementioned, 0 ≤ λ ≤ 1 for matrix Q.

B. Sifting process

Huang et al. [1] developed the sifting process to extract an
IMF. We assume that the extrema locations uk, vl are invariant
when extracting one IMF. This is an approximation because
the extrema locations only moves a little surrounding the initial
ones during sifting process. Since Q is dependent on tm,
uk and vl and independent on any ym, Q becomes invariant
when extracting one IMF. Therefore, the sifting process can
be expressed as

ξ⃗† = lim
β→+∞

(IN −Q)βY † = GY † (13)

where, ξ⃗ is an IMF, Y is the input signal, and IN is the N2

identity matrix. G = limβ→+∞(IN −Q)β is the sifting matrix
and the convergence of G should be determined.

Considering the unit linear-independent generalized eigen-
vectors [36] ϱ⃗i of Q and their corresponding eigenvalues
λi (i = 1, 2, ..., N ), the eigenvalues of R = IN − Q are
µi = 1− λi. Thus we have

(R− µiIN )τ ϱ⃗†i = 0⃗†
N , ∃ τ ∈ N+ & τ < N (14)

Rβ − µβ
i IN = (R− µiIN )(

β−1∑
j=0

µj
iR

β−1−j)

= (

β−1∑
j=0

µj
iR

β−1−j)(R− µiIN )

(15)

Therefore, we can obtain

(Rβ − µβ
i IN )τ ϱ⃗†i

= (

β−1∑
j=0

µj
iR

β−1−j)τ (R− µiIN )τ ϱ⃗†i = 0⃗†
N

(16)

Therefore, ϱ⃗i are the linear-independent generalized eigen-
vectors for eigenvalues µβ

i of Rβ . Since µi ∈ [0, 1], G =
limβ→+∞ Rβ only has eigenvalues 0 and 1. Matrix G is
similar to a Jordan normal form [37] with all diagonal entries
of 0 and 1, and thus G is convergent. We also have

G2 = lim
β→+∞

R2β = G (17)

Therefore, G is an idempotent matrix [38] and all the
generalized eigenvectors ϱ⃗i are indeed eigenvectors.

C. Intrinsic mode functions

Eq. (13) is used to calculate an IMF. Considering the
input signal Y represented by the unit linear-independent
eigenvectors ϱ⃗i, we can obtain

ξ⃗† = GY † = G

N∑
i=0

αiϱ⃗
†
i =

∑
µi=1

αiϱ⃗
†
i (18)

where αi are the projection scalar of Y on ϱ⃗i. Thus an IMF
is indeed the projection of input signal Y on the generalized
eigenspace for eigenvalue 0 of EMF Q, which corresponds to
a high-pass filtering process.

The CN Euclidean space W is the direct sum of two invari-
ant eigenspaces W0 and W1 corresponding to the eigenvalues
0 and 1 of G, and W0 ⊥ W1. Since ξ ∈ W1 and Y − ξ ∈ W0,
we have ξ ⊥ (Y − ξ). Therefore, the sifting process to extract
one IMF is an orthogonal decomposition.

Considering two IMFs ξ†1 = G1Y
† and ξ†2 = G2(Y − ξ1)

†,
for any Y , ξ1 ⊥ ξ2 is equivalent to (IN − G†

1)G
†
2G1 is an

anti-symmetric matrix with all 0 diagonals. However, different
Q mostly do not satisfy this condition. The classic EMD
using cubic spline interpolation does not provide orthogonality
between IMFs.

III. NUMERICAL EXPERIMENTS

A. Filter bandwidth

First, we decompose Gaussian white noise by classic EMD
procedures and by projection on the generalized eigenspace
for eigenvalue 0 of Q. The sifting process iterates 100 times
for the classic EMD procedures. The sampling frequency
is 10 kHz and the length is 1 s for the Gaussian white
noise. Fig. 1 illustrates the fast Fourier spectra of IMFs to
demonstrate the filter bandwidths. Both FFT spectra present
similar bandwidths for the corresponding IMFs. EMD works
as overlapped bandpass filters on the time series [12]. The
corresponding low-frequency IMFs with two decomposition
procedures present different energy, which may arise from
our assumption of invariant extrema locations and the finite
iteration times of classic EMD.
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Fig. 1. Top panel: FFT spectra of IMFs by projection on the generalized
eigenspace for eigenvalue 0 of Q. Bottom panel: FFT spectra of IMFs by the
classic EMD.
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Fig. 2. IMF1 and IMF2 achieved by projection on the generalized eigenspace
for eigenvalue 0 of Q.

B. Decomposition results

Second, a numerically generated signal Y consisting of
a time-varying and a stationary components (Eq. (19)) is
decomposed using the classic EMD and our framework. The
sampling frequency is 10 kHz and the duration is 1 s.
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0

2
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Fig. 3. IMF1 and IMF2 achieved by the classic EMD.

Y1 =
cos(32πt+ cos(64πt))

1.5 + sin(2πt)

Y2 = sin(200πt)

Y = Y1 + Y2

(19)

Fig. 2 illustrates the IMFs achieved by projection on the
generalized eigenspace for eigenvalue 0 of Q. IMF1 and IMF2
agree well with Y1 and Y2, respectively. This indicates the
decomposition accuracy of our EMD framework. The classic
EMD also achieves similar results, as shown in Fig. 3.

Third, we decompose a seismic signal taken from [39], as
shown in Fig. 4. Fig. 5 presents the Hilbert spectra by our

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
time (s)
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0

1

A
m

p
lit

u
d

e

Fig. 4. The seismic signal taken from [39].

Fig. 5. Top panel: Hilbert spectrum of IMFs by projection on the generalized
eigenspace for eigenvalue 0 of Q. Bottom panel: Hilbert spectrum of IMFs
by the classic EMD.

EMD framework and the classic EMD. The spectra demon-
strate similar distribution, e.g., large energy concentration
at three close locations marked with the circles. The little
decomposition difference may arise from our assumption of
invariant extrema locations and the finite iteration times of
classic EMD.

IV. CONCLUSION

We propose a theoretical framework for EMD in this letter.
The cubic spline interpolation works as an EMF with the filter
matrix satisfying five properties. The sifting process matrix is
convergent to an idempotent matrix only with eigenvalues 0
and 1. An IMF is the projection of the input signal on the gen-
eralized eigenspace of EMF matrix Q, which corresponds to
a high-pass filtering process. Numerical experiments demon-
strate that our framework achieves similar results to the classic
EMD, although difference may result from the assumption of
invariant extrema locations and the finite iteration times of
classic EMD.

However, different IMFs are not orthogonal. Future work
will concern the construction of the EMF matrix for IMF
orthogonality. In addition, experiments should consider de-
composing complicated signals and compare more EMD al-
gorithms in the future work.
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