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Target-Enclosed Least-Squares Seismic Imaging
Aydin Shoja , Joost van der Neut , and Kees Wapenaar

Abstract— Least-squares reverse-time migration (LSRTM) is
a method that seismologists utilize to compute a high-resolution
subsurface image. Nevertheless, LSRTM is a computationally
demanding problem. One way to reduce the computational
costs of the LSRTM is to choose a small region of interest
(ROI) and compute the image of that region. However, finding
representations that account for the wavefields entering the
target region from the surrounding boundaries is necessary. This
article confines the ROI between two boundaries above and
below this region. The acoustic reciprocity theorem is employed
to derive representations for the wavefields at the upper and
lower boundaries of the target region. With the help of these
representations, a target-enclosed LSRTM algorithm is developed
to compute a high-resolution image of the ROI. Moreover,
the possibility of using virtual receivers created by Marchenko
redatuming is investigated.

Index Terms— Marchenko, seismic imaging, target-oriented,
wavefield inversion.

I. INTRODUCTION

WAVEFIELD migration is the art of computing the
medium reflectivity from the recorded wavefield pass-

ing through the medium. Many migration algorithms, such as
Kirchhoff migration [1], one-way wave equation migration [2],
and reverse-time migration (RTM) [3], [4], [5], are available.
RTM is one of the common migration algorithms. RTM is
commonly implemented by applying the adjoint of the Born
operator to the recorded data [6]. However, the inverse of the
operator is needed for the true image. Consequently, the migra-
tion result suffers from amplitude and resolution issues [7], [8],
[9]. One way to address this problem is to solve the migration
problem with a least-squares solution called least-squares
reverse-time migration (LSRTM). The least-squares solution
is usually applied as an iterative optimization problem.

However, LSRTM is computationally expensive [8], [10],
[11], [12]. To reduce the computation cost of the LSRTM, one
can reduce the computation domain by confining the model
to a region of interest (ROI) by recording or computing the
wavefields at the boundary of this region. The process of
migrating for an ROI is called target-oriented migration [13],
[14], [15], [16], [17], [18], [19]. However, deploying receivers
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on the boundaries of an ROI usually is not possible due to
physical obstacles.

Due to the aforementioned accessibility issue, the typical
approach for target-oriented migration is to opt for reda-
tuming algorithms and only consider the upper horizontal
boundary of the ROI or target [18], [20], [21], [22], [23],
[24], [25], [26]. In cases where the ROI is enclosed between
two boundaries, that is, when wavefields are entering the
ROI from the underburden through the lower boundary [27],
[28], the shortcoming of only considering the upper boundary
is that any wavefield entering the ROI from the medium
below the lower boundary of the ROI is unaccounted for,
hindering the convergence of the inversion process. More-
over, including the lower boundary in the algorithm can add
transmission information to the inversion. However, includ-
ing the lower boundary in the inversion process has rarely
been studied directly. For instance, Cui et al. [29] derive a
representation with a reciprocity theorem and Marchenko reda-
tuming to include surrounding boundaries in target-oriented
full-waveform inversion (FWI), Diekmann et al. [30] use a
Marchenko-retrieved Green’s function of the ROI and insert it
in the Lippmann-Schwinger integral to create a linear inversion
process, and van der Neut et al. [31] design a target-enclosed
imaging algorithm with the help of a reciprocity theorem.
Of the above-mentioned articles, only [31] directly studies the
consequences of including the lower boundary in the imaging
process, and the others only implicitly imply the effects of it.

This article, which is an extension of [31], studies
the contribution of the lower boundary by introducing a
target-enclosed LSRTM algorithm. To derive this algorithm,
we start by explaining the LSRTM briefly. Next, we derive
a target-enclosed representation for Green’s functions on the
upper and lower boundaries of the ROI by using the reciprocity
theorem. Then, we connect this target-enclosed representation
to LSRTM to complete our algorithm. After deriving the
required equations, we test our algorithm with numerical
examples. First, we use physical receivers at the boundaries
of the ROI to check the results in the ideal situation. Then,
we briefly introduce Marchenko redatuming to explore the
possibility of using virtual receivers in our algorithm. For both
physical and virtual receiver cases, we use both a homoge-
neous background and a smooth background velocity as the
velocity model for migration. Finally, we finish the article by
discussing the results and providing a conclusion.

II. THEORY

To develop the theory, we start with a brief discussion of
LSRTM. Next, a representation of the target-enclosed Green’s
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function is given with the help of the reciprocity theorem.
Finally, to derive our target-enclosed LSRTM formulation,
we combine LSRTM with the target-enclosed representations.
In the entire theory section, we are in the frequency-space
domain, and for simplicity, we drop the dependency on angular
frequency (ω).

A. Least-Squares RTM

We start the explanation of LSRTM by investigating the
Born integral for the scattered wavefield by a scattering poten-
tial [6], [32], [33]. Here, we follow the convention of [33]:

P scat(x′) =

∫
V

γ 2
0 (x)G0(x′, x)χ c(x)P inc(x)dx. (1)

In the above equation, x′ is the observation location, x is
a location inside the computation volume (V), P scat(x′) is
the scattered pressure field at the observation point, P inc(x)

is the incident pressure field at the computation point, and
G0(x′, x) is the background Green’s function between x and
x′. Moreover, γ0(x) = ((−iω)/(c0(x))), and χ c(x) = 1 −

((c2
0(x))/((cscat(x))2)) is the propagation velocity perturbation,

where c0(x) and cscat(x) are the background and scatterer’s
velocity, respectively.

It is possible to rewrite this equation in matrix form as

Pscat
pred(δm) = Lδm. (2)

Here, L is the matrix form of the integral operator of (1) and
δm is a vector, containing the perturbation χ c(x).

To obtain an estimation of δm, we can apply the adjoint of
L to the observed data

δmimg
= L†Pscat

obs (3)

where † denotes complex conjugate transposition.
We can go one step further to obtain a high-resolution

estimation of the image by minimizing the following objective
function [34]:

J (δm) =
1
2

∥∥Pscat
pred(δm) − Pscat

obs

∥∥2
2. (4)

Different optimization algorithms, such as conjugate gradient,
can minimize this function. This optimization problem is
known as LSRTM.

B. Target-Enclosed Representations

LSRTM is a computationally expensive algorithm.
To reduce its computational burden, seismologists usually
opt for a target-oriented algorithm, limiting the medium to a
smaller region. As we mentioned in Section I, target-oriented
algorithms usually redatum the data to the upper boundary of
the target and ignore any information coming from the lower
boundary.

In this section, the idea is to find a representation that
can account for a heterogeneous medium above the upper
and below the lower boundary of the target area. To derive
this representation, we follow [31]. The starting point of the

Fig. 1. (a) State A. (b) State B. Black stars depict source locations, and
black reversed triangles depict receiver locations.

derivation is the acoustic reciprocity theorem of the convolu-
tion type [21], which connects the wavefields of two different
states via∫

dVu

ρ−1(p+

A

(
∂3 p−

B

)
+ p−

A

(
∂3 p+

B

))
dx

=

∫
dVl

ρ−1(p+

A

(
∂3 p−

B

)
+ p−

A

(
∂3 p+

B

))
dx. (5)

Here, we consider a volume V , which is limited by two infinite
horizontal surfaces. States A and B (Fig. 1) are defined in
two different media which are identical inside the volume
V with boundaries denoted by dVu (upper) and dVl (lower),
and arbitrary outside of this volume. In addition, p+ and
p− are decomposed wavefields on the boundaries where +

means downgoing and − means upgoing, and ∂3 is the partial
derivative in direction x3 (downward).

To continue the derivation, we define Green’s function
G(x, xs) as the solution of the following Helmholtz equation:

∇
2G + k(x)2G = −ρδ(x − xs) (6)

where k(x) = (ω/(c(x))) is the wavenumber, and c is the
propagation velocity.

A representation for Green’s function at the upper boundary
of the target (dVu) can be derived by defining state A in the
actual medium and state B in a medium identical to medium
A inside the volume V (target) and homogeneous outside
of it. We denote Green’s functions of state A with G(x, xs)

Authorized licensed use limited to: TU Delft Library. Downloaded on July 25,2023 at 07:05:54 UTC from IEEE Xplore.  Restrictions apply. 



SHOJA et al.: TARGET-ENCLOSED LEAST-SQUARES SEISMIC IMAGING 4503612

and Green’s function of state B with G tar(x, xu). In state A,
we define p±

A = G±(x, xs), where xs is a location at Earth’s
surface dV0. For state B, we have p±

B = G±
tar(x, xu). Here, xu is

located at the upper boundary dVu and G±
tar(x, xu) is stimulated

by an impulsive point source at xu . Since the half-space above
the target is homogeneous in state B, the vertical derivative of
G+

tar(x, xu) at dVu is

lim
xu,3→xu,3+

∂3G+

tar(x, xu) = −
ρ

2
δ(xH − xu,H). (7)

Here, xu,3 → xu,3+ means the limit from below the boundary,
where xH and xu,H denote the horizontal coordinates of x
and xu , respectively. In addition, since in state B, the medium
below the target is reflection-free, G−

tar(x, xu) and its derivative
disappear at the lower boundary dVl . By substituting all of the
ingredients into (5), the following can be reached:

G−(xu, xs) =

∫
dVu

G+(x, xs)
2∂3

ρ(x)
G−

tar(x, xu)dx

+

∫
dVl

G−(x, xs)
2∂3

−ρ(x)
G+

tar(x, xu)dx. (8)

This equation is the base for our target-enclosed LSRTM
derivation. The first integral on the right-hand side of (8)
accounts for anything entering the medium from the upper
boundary, and the second integral accounts for anything that
comes from the lower boundary.

C. Target-Enclosed LSRTM

To merge this representation with LSRTM, we use∫
dV

p±

A (x)∂3 p∓

B (x)dx = −

∫
dV

p∓

B (x)∂3 p±

A (x)dx. (9)

In [35], we use Green’s function reciprocity

G−

tar

(
x′

u, xu
)

= G−

tar

(
xu, x′

u

)
(10)

G+

tar(xl , xu) = G−

tar(xu, xl) (11)

where x′
u is an element of dVu and xl is an element of dVl .

We rewrite (8) as follows:

G−(xu, xs)W (ω) =

∫
dVu

G−

tar

(
xu, x′

u

)
Su

(
x′

u, xs
)
dx′

u

+

∫
dVl

G−

tar(xu, xl)Sl(xl , xs)dxl (12)

where W (ω) is the source signature

Su
(
x′

u, xs
)

=
2∂ ′

3,u

−ρ
(
x′

u

)G+
(
x′

u, xs
)
W (ω) (13)

is the dipole source from the upper boundary of the target,
which accounts for reflections from above the upper boundary
of the target. Furthermore,

Sl(xl , xs) =
2∂3,l

ρ(xl)
G−(xl , xs)W (ω) (14)

is the dipole source term from the lower boundary of the target,
which accounts for the reflections generated below the target.
Fig. 2 represents the right-hand side of (12).

As said above, the second integral on the right-hand side
of (12) is the contribution of the medium below the target

Fig. 2. (a) First integral and (b) second integral on the right-hand side of
(12).

to the data. This integral can be split into two terms: 1)
the arrival from the lower boundary to the upper one in the
background and 2) the forward scatterings inside the target
region. In mathematical terms,∫

dVl

G−

tar(xu, xl)Sl(xl , xs)dxl

=

∫
dVl

G−

0,tar(xu, xl)Sl(xl , xs)dxl

+

∫
dVl

G−,scat
tar (xu, xl)Sl(xl , xs)dxl . (15)

Here, G−

0,tar(xu, xl) is the Green’s function in the background
model of the target, and G−,scat

tar (xu, xl) is Green’s function
that contains the scattered events. By substituting (15) in (12)
and taking the background contribution to the left-hand side,
we end up with

G−(xu, xs)W (ω) −

∫
dVl

G−

0,tar(xu, xl)Sl(xl , xs)dxl

=

∫
dVu

G−,scat
tar

(
xu, x′

u

)
Su

(
x′

u, xs
)
dx′

u

+

∫
dVl

G−,scat
tar (xu, xl)Sl(xl , xs)dxl . (16)
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4503612 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 61, 2023

Importantly, the Green’s function G−
tar(xu, x′

u) in the first
integral on the right-hand side of (12) is the scattered Green’s
function inside the target, so we rename it to G−,scat

tar (xu, x′
u).

To obtain our target-enclosed LSRTM algorithm, we take
three steps: First, we assign

P scat,TE
obs (xu, xs) = G−(xu, xs)W (ω)

−

∫
dVl

G−

0,tar(xu, xl)Sl(xl , xs)dxl (17)

where “TE” stands for “target-enclosed.” Second, we com-
pute the scattered Green’s functions (G−,scat

tar (xu, x′
u) and

G−,scat
tar (xu, xl)) with (1)

G−,scat
tar

(
xu, x′

u

)
=

∫
V

γ 2
0 (x)G0,tar(xu, x)χ c(x)G0,tar

(
x, x′

u

)
dx (18)

and

G−,scat
tar (xu, xl)

=

∫
V

γ 2
0 (x)G0,tar(xu, x)χ c(x)G0,tar(x, xl)dx (19)

where x is a location inside the target volume. Using this in
the right-hand side of (16), we obtain∫

dVu

G−,scat
tar

(
xu, x′

u

)
Su

(
x′

u, xs
)
dx′

u

+

∫
dVl

G−,scat
tar (xu, xl)Sl(xl , xs)dxl

=

∫
V

γ 2
0 (x)G0,tar(xu, x)χ c(x)Pinc,TE(x, xs)dx (20)

where

P inc,TE(x, xs) =

∫
dVu

G0,tar
(
x, x′

u

)
Su

(
x′

u, xs
)
dx′

u

+

∫
dVl

G0,tar(x, xl)Sl(xl , xs)dxl . (21)

Finally, we complete our derivation by assigning

P scat,TE
pred (xu, xs)

=

∫
V

γ 2
0 (x)G0,tar(xu, x)χ c(x)P inc,TE(x, xs)dx. (22)

Our approach computes an incident wavefield, which con-
tains all of the information from the surrounding medium
of the target of interest. This means that our approach is
not limited to one kind of parametrization, and it can be
implemented for any parametrization choice. Furthermore, it is
also possible to inject Su and Sl as dipole sources using a
finite-difference algorithm instead of solving (21) and (22).
Finally, we can solve the following least-squares problem, that
is, minimizing the objective function:

J (δm) =
1
2

∥∥Pscat,TE
pred (δm) − Pscat,TE

obs

∥∥2
2. (23)

D. Marchenko Green’s Function Retrieval

We obtained a target-enclosed LSRTM algorithm in
Section II-C. Nevertheless, in most real-world situations, one
does not have physical access to the boundaries of the ROI.
The alternative to physical receivers inside the medium is to
create virtual receivers with redatuming. Marchenko redatum-
ing is a state-of-the-art data-driven approach that can compute
Green’s functions at any depth level with all orders of multiple
reflections from the reflection response at the surface and a
smooth background model of the medium.

To summarize, these redatumed Green functions are
retrieved by iteratively solving the Marchenko-type represen-
tations. These representations are [21]

G−

Mar(xv, xs) =

∫
dV0

R
(
xs, x′

s

)
f +

1

(
x′

s, xv

)
dx′

s

− f −

1 (xs, xv) (24)

and

G+

Mar(xv, xs) = −

∫
dV0

R
(
xs, x′

s

)
f −

1

(
x′

s, xv

)∗ dx′

s

+ f +

1 (xs, xv)
∗. (25)

Here, dV0 is the surface, xs and x′
s are locations at the

surface, and xv is a virtual location on an arbitrary depth.
Moreover, f ±

1 are upgoing (−) and downgoing (+) parts of
the focusing function. In addition, R(xs, x′

s) is the reflection
response at the surface which is related to the upgoing Green’s
function of the medium via

R
(
xs, x′

s

)
=

2∂ ′

3,s

−ρ
(
x′

s

)G−
(
xs, x′

s

)
. (26)

Here, ∂ ′

3,s is the vertical partial derivative at x′
s . We refer

to [36] for a comprehensive explanation of the derivation and
numerical algorithms for solving these equations.

Consequently, we can substitute Marchenko Green’s func-
tions with the target boundaries of Green’s functions as
follows:

G+(xu, xs) ≈ G+

Mar(xu, xs) (27)
G−(xu, xs) ≈ G−

Mar(xu, xs) (28)

and

G−(xl , xs) ≈ G−

Mar(xl , xs). (29)

Equations (27) and (29) can be used in (13) and (14) to
obtain the source terms Su and Sl , whereas (28) can be used in
(17) to obtain the observed target-oriented scattered response.

III. NUMERICAL RESULTS

A. Single-Sided Algorithm Versus Double-Sided Algorithm

In this section, we aim to visualize the performance
of target-enclosed LSRTM. Here, we use direct modeling
of Green’s functions with receivers inside the medium; in
Section III-B, we use the Marchenko method to retrieve these
Green’s functions from the reflection response at the surface.
A model with dimensions of 1000 m by 650 m is designed
as shown in Fig. 3. The spatial grid sampling is 5 m in
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Fig. 3. (a) Velocity model. (b) Density model. The blue stars at the surface
are source locations, and the red dots are the boundaries of the target.

both directions. The target region consists of a rectangular
velocity anomaly embedded in a homogeneous background
and a constant density. A total of 201 sources are placed
at the surface, and 402 receivers are on the target’s upper
(250 m) and lower (550 m) boundaries. The required Green’s
functions and wavefields are computed by a finite-difference
algorithm [37] and a Ricker wavelet with a dominant fre-
quency of 30 Hz, where the recording time sampling of the
receivers is set to 4 ms. According to the theory section,
the wavefields at the receiver positions are decomposed into
upgoing and downgoing components. Fig. 4 shows the upgoing
component of the data at the upper boundary with a source
located at xs = (0, 0), corresponding to the first term on the
right-hand side of (17). We study the effects of including the
lower boundary with two different cases: 1) a homogeneous
background velocity and 2) a smooth background velocity for
migration.

1) Homogeneous Background Velocity: In this section,
we show the results using a homogeneous background velocity
in the target area. The true perturbation model of this case
is shown in Fig. 5. We design two scenarios to demonstrate
the performance and consequences of the target-enclosed
algorithm. For the first scenario, we only consider the upper
boundary of the target in the inversion process and completely
ignore the lower boundary contribution. We call this scenario
a “single-sided algorithm.” For this scenario, the observed data
is the same as Fig. 4. For the second one, we include the lower
boundary contribution, which is the “double-sided algorithm”
explained in the previous section. The observed data for this
scenario is shown in Fig. 6(a), which corresponds to the
left-hand side of (17), whereas Fig. 4 shows G−(xu, xs)W (ω).
The black arrows in Figs. 4 and 6(a) indicate the full reflection

Fig. 4. Upgoing component of data at the upper boundary with a source
located at xs = (0, 0). This is the data corresponding to the first term on the
right-hand side of (17).

Fig. 5. True perturbation model in a homogeneous background.

from the reflector below the lower boundary and the forward
scattered part of it, respectively. Fig. 6(b) and (c) shows the
predicted data of single- and double-sided algorithms, respec-
tively, after 30 iterations of LSRTM. A detailed investigation
of Fig. 6 proves that the double-sided algorithm can predict the
forward scattered event that is passing through the perturbation
which is indicated by a black arrow in Fig. 6(c).

To move our investigation further, we show the imag-
ing results of both algorithms in Fig. 7. Fig. 7(a) and (b)
shows the RTM images of both approaches. As we can
see, the RTM result of the double-sided algorithm faintly
reveals the long wavelength part of the model. Moving to the
LSRTM results in Fig. 7(c) and (d), we observe an interesting
outcome. The LSRTM result of the single-sided algorithm
shows that it cannot recover the long wavelength part of
the model [Fig. 7(c)]. In contrast, the double-sided algorithm
can incorporate the information embedded inside the forward
scattered field [Fig. 7(d)], and it recovers the long wavelength
parts of the volume perturbation. Moreover, Fig. 8 shows the
horizontal cross section of the retrieved perturbation. In this
figure, we can see the double-sided approach can recover the
vertical boundaries of the perturbation. Nevertheless, since the
background velocity for the migration is not updated during

Authorized licensed use limited to: TU Delft Library. Downloaded on July 25,2023 at 07:05:54 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 6. Homogeneous background velocity case, data domain. (a) Upgoing
component of double-sided observed data at the upper boundary [see (17)].
(b) Predicted data of single-sided algorithm after 30 iterations of LSRTM.
(c) Predicted data of double-sided algorithm after 30 iterations of LSRTM.
All wavefields are recorded at the upper boundary of the target (250 m).

LSRTM, the fit of the reflected event from below the target is
not accurate.

To conclude this section, we compare the cost functions of
both approaches in Fig. 9. The cost function of target-oriented
LSRTM shows a slow convergence rate. In comparison, the
target-enclosed approach includes the extra information com-
ing from the lower boundary, so its cost function converges
faster and to a lower minimum.

Fig. 7. Homogeneous background velocity case, image domain. (a) RTM
image of the single-sided algorithm. (b) RTM image of the double-sided
algorithm. (c) LSRTM image of the single-sided algorithm after 30 iterations.
(d) LSRTM image of the double-sided algorithm after 30 iterations.

Fig. 8. Horizontal cross section at the depth of 400 m of the retrieved
perturbation with a homogeneous migration velocity.

Fig. 9. Cost function comparison of homogeneous background velocity case.

2) Smooth Background Velocity: This section uses a smooth
background velocity for migration. The setup is exactly the
same as before, except for the background velocity. The

Authorized licensed use limited to: TU Delft Library. Downloaded on July 25,2023 at 07:05:54 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 10. True perturbation model in a smooth background.

Fig. 11. Smooth background velocity case, data domain. (a) Upgoing
component of double-sided observed data at the upper boundary [see (17)].
(b) Predicted data of single-sided algorithm after 30 iterations of LSRTM.
(c) Predicted data of double-sided algorithm after 30 iterations of LSRTM.
All wavefields are recorded at the upper boundary of the target (250 m).

perturbation model for this case is shown in Fig. 10. Again,
we do the same two scenarios as before, that is, “single-
sided” and “double-sided.” For the single-sided scenario, the

Fig. 12. Smooth background velocity case, image domain. (a) RTM image
of the single-sided algorithm. (b) RTM image of the double-sided algorithm.
(c) LSRTM image of the single-sided algorithm after 30 iterations. (d) LSRTM
image of the double algorithm after 30 iterations.

Fig. 13. Horizontal cross section at the depth of 400 m of the retrieved
perturbation with a smooth migration velocity.

Fig. 14. Cost function comparison of smooth background velocity case.

observed data is the same as before (Fig. 4). However, since
the right-hand side of the (17) is computed in a different
background velocity, the last primary in the observed data for
the double-sided approach [Fig. 11(a)] is slightly different.
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Fig. 15. Marchenko redatumed data with virtual receivers at the upper
boundary (250 m) and a source located at xs = (0, 0).

Comparing the results of both approaches shows (Fig. 11)
that the double-sided approach [Fig. 11(c)] can predict the
reflected event coming from the lower boundary. Since we
use a smooth background velocity here, this prediction is
more accurate than the previous section’s results [Fig. 6(c)].
In the image domain (Fig. 12), the double-sided approach
recovers a faint image of the vertical sides of the rectangular
perturbation [Fig. 12(d)], whereas the single-sided results in a
more standard image [Fig. 12(c)]. Moreover, Fig. 13 shows the
horizontal cross section of the retrieved perturbation. In this
figure, we can see the double-sided approach can recover
the vertical boundaries of the perturbation. The double-sided
image is more comparable to the true perturbation in Fig. 10.
Finally, investigating the cost functions (Fig. 14) of these
approaches shows that the double-sided approach converges
better since it can predict the event coming from below the
target.

B. Virtual Receivers

Here, we use the same setup as before but replace the
Green’s functions at the boundaries with their Marchenko
counterparts. In other words, we create virtual receivers
with the help of Marchenko redatuming. For a study about
the benefits of using Marchenko redatuming instead of a
more conventional redatuming algorithm for target-oriented
LSRTM, we refer to [26]. In this section, we only focus on
including the lower boundary by utilizing virtual receivers
created by Marchenko redatuming, and instead of using
“double-sided,” we use the “target-enclosed” term. Moreover,

Fig. 16. Homogeneous background velocity case with virtual receivers,
data domain. (a) Upgoing component of Marchenko redatumed data at the
upper boundary [see (17)]. (b) Predicted data of target-enclosed LSRTM after
30 iterations at the upper boundary. All wavefields are redatumed to the upper
boundary of the target (250 m).

we show the results for both homogeneous and smooth back-
ground velocities in this section.

1) Homogeneous Background Velocity: Fig. 15 shows the
data obtained by Marchenko redatuming. In Fig. 16, the
observed data calculated by (17) [Fig. 16(a)] and the predicted
data after 30 iterations [Fig. 16(b)] are shown. A comparison
between Figs. 6(c) and 16(b) shows that even in the presence
of redatuming error, such as limited aperture and lack of
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Fig. 17. Homogeneous background velocity case with virtual receivers,
image domain. (a) RTM image of the target-enclosed algorithm with
Marchenko wavefields. (b) LSRTM image of the target-enclosed algorithm
with Marchenko wavefields after 30 iterations.

certain parts of the wavelength spectrum, our algorithm can
predict acceptable data.

In the image domain, Fig. 17 shows the RTM [Fig. 17(a)]
and LSRTM [Fig. 17(b)] image resulting from Marchenko
redatumed data. Comparing Fig. 17(b) with Fig. 7(d) reveals
our target-enclosed algorithm with redatumed data as input
cannot recover the long wavelength part of the model. This
is due to the fact that the direct arrival of the Marchenko-
based Green’s function is incorrect since it is computed in
the background model. Consequently, the forward-scattered
waveforms responsible for the long wavelength updates in
Fig. 7(d) can no longer be utilized.

2) Smooth Background Velocity: In Fig. 18, the observed
data calculated by (17) [Fig. 18(a)] and the predicted data
after 30 iterations [Fig. 18(b)] are shown. Similar to the
homogeneous case, a comparison between Figs. 11 and 18
shows that our algorithm successfully predicts the data.

In the image domain, Fig. 19 shows the RTM [Fig. 19(a)]
and LSRTM [Fig. 19(b)] images resulting from Marchenko
redatumed data. Comparing Fig. 19(b) with Fig. 12(d) shows
that redatumed data reveals an acceptable perturbation model.
However, the faint recovered vertical interfaces are not pre-
sented in Fig. 19(b) since forward-scattered waveforms are
not processed correctly in the retrieved Marchenko Green’s
function at the lower boundary.

3) LSRTM Results for the Entire Medium: To make a fair
comparison, we include the results of standard LSRTM for
the entire medium with the smooth background model in this
section. Fig. 20 shows the LSRTM image after 30 iterations.
Fig. 20(a) shows the image of the entire medium and Fig. 20(b)
singled out the target area of it.

IV. DISCUSSION

In Section II, we develop a theory for target-enclosed
LSRTM that can limit the computation domain by confining
the target between two boundaries. Equations (17) and (22)
enable us to account for any wavefield entering the target
region by including the upper and lower boundaries in the
inversion process.

Fig. 18. Smooth background velocity case with virtual receivers, data domain.
(a) Upgoing component of Marchenko redatumed data at the upper boundary
[see (17)]. (b) Predicted data of target-enclosed LSRTM after 30 iterations at
the upper boundary. All wavefields are redatumed to the upper boundary of
the target (250 m).

Furthermore, in Section III-A, several numerical tests are
designed to demonstrate the advantage of incorporating the
lower boundary in the conventional target-oriented LSRTM.
From the data point of view, our double-sided target-enclosed
LSRTM, compared to a conventional single-sided target-
oriented LSRTM, not only removes the background arrival
from the lower boundary to the upper boundary, but also
can predict the forward scattered field inside the target
(Figs. 6, 11, and 16). Additionally, a comparison between
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Fig. 19. Smooth background velocity case with virtual receivers, image
domain. (a) RTM image of the target-enclosed algorithm with Marchenko
wavefields. (b) LSRTM image of the target-enclosed algorithm with
Marchenko wavefields after 30 iterations.

Fig. 20. Standard LSRTM with smooth background velocity for entire
medium, image domain. (a) LSRTM image of the entire medium. (b) Mag-
nified target area of (a).

the resulting images of both algorithms with a homogeneous
migration velocity (Fig. 7) shows that single-sided target-
oriented LSRTM cannot update the long-wavelength part
of the model. In contrast, the double-sided target-enclosed
LSRTM updates the image according to the Born inversion
criteria by integrating the forward scattered wavefield informa-
tion. In the case of a smooth migration velocity, our algorithm
recovers a higher-resolution image and a faint estimation of
the vertical sides of the rectangular perturbation (Fig. 12).

Moreover, in Section III-B, we investigate the possibility of
using virtual receivers created by Marchenko redatuming in
our target-enclosed algorithm. Fig. 17 shows that in the case
of a homogeneous background migration velocity, it is hardly
possible to update the long wavelengths with virtual receiver
data, and only short-wavelength parts of the perturbation are
recovered. Moreover, for the smooth background case, our
algorithm increases the image’s resolution by updating the
short wavelengths in this case.

Ultimately, we show the standard LSRTM image for the
entire medium. Comparing Fig. 20 with previous cases shows
that our method is superior in imaging the target area in
any case. Our method adds valuable information by explic-
itly incorporating transmitted wavefields. Furthermore, with
our setup and hardware, the computational time of a single
iteration of LSRTM for the entire medium, which has 201 by
131 grid points, is about 45 s, and a single iteration of
target-enclosed LSRTM, which has 201 by 61 grid points,
is about 25 s. We do not consider the computational cost
of the Marchenko redatuming method here since we only
do it once and compared to the total time of LSRTM it is
negligible. One disadvantage we can mention is saving the
extra redatumed wavefields and focusing functions on the disk.
However, relative to the reduction of the memory need by the
reduction of the target dimensions, this can be neglected.

V. CONCLUSION

This article proposes a target-enclosed seismic imaging
algorithm that can account for the wavefields entering the
target region from the upper and lower boundaries of the
region. The three main advantages of this article’s algorithm
are:

1) it significantly reduces the computational domain by
limiting it to a smaller domain;

2) it removes interactions with the part of the medium
above the upper boundary;

3) it can incorporate the transmission information from the
lower boundary to the upper one.

Nevertheless, our algorithm has also some limitations. First,
we need access to the lower boundary of the target to deploy
receivers at the boundaries of the target. Second, we need a
background model of the target that can predict the arrival
time from the lower boundary to the upper. It is possible to
overcome the first limitation by using virtual seismology meth-
ods such as Marchenko redatuming to create virtual receivers
around the target region [21], [24], [26], [38], [39], [40], [41],
[42] as we showed in a numerical example in Section III-B.
To address the second limitation, a reformulation of the
target-enclosed LSRTM is possible to make it compatible with
FWI to update the background velocity model [43].

The need for high-resolution images is increasing daily,
which demands more computational power. This article’s
proposed target-enclosed LSRTM can produce less compu-
tationally demanding high-resolution images by focusing on
a relatively small target of interest and including all the
interactions between this region and the outside environment.
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