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Abstract 
Process design is a creative task that is currently performed manually by engineers. 
Artificial intelligence provides new potential to facilitate process design. Specifically, 
reinforcement learning (RL) has shown some success in automating process design by 
integrating data-driven models that learn to build process flowsheets with process 
simulation in an iterative design process. However, one major challenge in the learning 
process is that the RL agent demands numerous process simulations in rigorous process 
simulators, thereby requiring long simulation times and expensive computational power. 
Therefore, typically short-cut simulation methods are employed to accelerate the learning 
process. Short-cut methods can, however, lead to inaccurate results. We thus propose to 
utilize transfer learning for process design with RL in combination with rigorous 
simulation methods. Transfer learning is an established approach from machine learning 
that stores knowledge gained while solving one problem and reuses this information on a 
different target domain.  We integrate transfer learning in our RL framework for process 
design and apply it to an illustrative case study comprising equilibrium reactions, 
azeotropic separation, and recycles, our method can design economically feasible 
flowsheets with stable interaction with DWSIM. Our results show that transfer learning 
enables RL to economically design feasible flowsheets with DWSIM, resulting in a 
flowsheet with an 8% higher revenue. And the learning time can be reduced by a factor 
of 2. 
Keywords: Reinforcement learning, process design, transfer learning 

1. Introduction
The transition of chemical engineering to a sustainable and circular future requires new 
methods of process design (Fantke et al., 2021). Currently, methods for process design 
are mainly manual work with long development times and superstructure methods are 
also limited to predefined process configurations (Chen et al. 2017, Mitsos et al. 2018). 
Recently, reinforcement learning (RL), a branch of machine learning (ML), has shown 
promising results in process design (Midgley et al., 2020, Khan et al., 2020, Göttl et al., 
2021, Stops et al., 2022, Kalmthout et al., 2022). One major challenge in RL for process 
design is the training process as it is trial-and-error based. Thereby, the learning process 
typically requires a large number of process simulations, which demands expensive 
computational power. Previous work (Khan et al., 2020, Göttl et al., 2021, Stops et al., 
2022) mostly leverages short-cut process simulation methods to simulate the processes 
efficiently, which can lead to inaccurate results. Recent works employ rigorous process 
simulators such as COCO and Aspen Plus with rigorous models (Midgley et al., 2020, 
Kalmthout et al., 2022). Nevertheless, the problem of long simulation times hinders 
further developments (Kalmthout et al., 2022).  
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We propose to utilize transfer learning in process design with RL to facilitate the 
effectiveness and efficiency of the learning process. Transfer learning is a technique to 
improve learning performance by transferring knowledge from different but relevant 
domains to the target domain (Zhu et al., 2020). Adapting the concept of transfer learning 
for process design with RL, we first pre-train our recently proposed RL agent on a short-
cut process simulation from our previous work (Stops et al., 2022). Then, we transfer the 
pre-trained agent to a rigorous process simulator DWSIM for further training. Finally, we 
illustrate the impact of transfer learning through one case study. 
2. Methods 
The RL problem can be formulated as a Markov decision process (MDP): 𝑀𝑀 =
{𝑆𝑆, 𝐴𝐴, 𝑇𝑇, 𝑅𝑅} , which includes states 𝑠𝑠 ∈ 𝑆𝑆 , actions 𝑎𝑎 ∈ 𝐴𝐴 , transitions 𝑇𝑇: 𝑆𝑆 × 𝐴𝐴 , and 
reward functions 𝑅𝑅 . The agent aims to maximize the reward in the environment by 
literately taking action, evaluating the current reward, and updating the states. 
Specifically, in process synthesis tasks, states correspond to flowsheets. Actions are 
composed of two parts: Discrete and continuous actions. The discrete actions include the 
selections of a unit operation and its location in the flowsheet. The continuous actions 
define the design and operation variables of the corresponding unit operation. After the 
agent has performed actions, the states are updated. Based on the current state, a reward 
is calculated by the environment, e.g., the process simulation software, and returned to 
the agent as feedback on its actions. For process design, this reward is typically a design 
goal such as the process revenue. By repeating the process of performing actions and 
receiving rewards multiple times, the agent is trained to perform actions that result in a 
higher reward, corresponding to flowsheets with higher revenue. 
2.1. Agent and environment 
We adapt the RL framework from our previous work (Stops et al., 2022), where the states 
are presented as directed flowsheet graphs. Within the directed flowsheet graphs, nodes 
represent the unit operations and edges correspond to the process streams. Each node and 
edge is assigned a feature vector, respectively, storing information about the unit 
operation, e.g., type or size, and stream, e.g., thermodynamic data or flow rate of the 
stream. Furthermore, the agent architecture consists of three major parts: Graph encoder, 
actor networks, and critic networks. The graph encoder takes current flowsheet graphs as 
input and utilizes graph convolution in GNNs to learn information about the flowsheet 
graphs, in form of a vector representation, also referred to as flowsheet fingerprint. Actor 
networks are responsible for taking actions during the training process. There are three 
action levels: Selecting an open stream, selecting a unit operation, and selecting a 
corresponding design variable. Moreover, taking the flowsheet fingerprint as input, critic 
networks are used to estimate the reward of actions, and then actor networks will learn to 
take actions with the highest estimated reward. Specifically, the reward is calculated by 
using the DWSIM process simulator (Medeiros et al., 2018). The RL framework is 
implemented in Python including an interface for the agent to actively interact with 
DWSIM.  
2.2. Transfer learning 
We extend our RL framework by transfer learning. Specifically, we add a pre-training 
phase to the training of the agent. In the pre-training phase, we use a short-cut process 
simulation environment (Stops et al., 2022) and train the agent over 10000 episodes. 
Then, we transfer the pre-trained agent to a fine-tuning phase in which the agent is trained 
against a rigorous process simulator DWSIM for further 15000 training episodes. For the 
comparison, we directly train another agent with DWSIM environment over 15000 
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episodes. Note that in each episode, the agent generates a complete flowsheet. Both pre-
training and fine-tuning processes are adapted from Proximal Policy Optimization (PPO) 
by OpenAI (Schulman et al., 2017). Then, the agent architecture is updated by gradient 
descent for the total loss function derived from summing up losses of actor networks, loss 
of critic networks, and corresponding entropies.  
The agents are trained on a Windows server with a 3.5 GHz 24 cores Intel(R) Xeon(R) 
W-2265 CPU, NVDIA GeForce RTX 3090 GPU and 64 GB memory.  

3. Illustrative case study 
The production of methyl acetate (MeOAC) is chosen as an illustrative case study.  
3.1. Process simulation 
The short-cut process methods for pre-training are illustrated in our previous work (Stops 
et al., 2022).  Here, the process simulation with DWSIM is introduced. In this case study, 
the agent can choose reactors, distillation columns, and heat exchangers as unit 
operations. Besides, the agent can also decide to add recycles or claim open streams as 
products. The types of unit operations and corresponding design variables are defined as 
follows. 
Reactor is deployed to convert reactants to the desired product (MeOAc). The reactor is 
modeled as a plug flow reactor (PFR) where the following reversible reaction takes place:  

HOAc + MeOH ⇌ MeOAc + H2O (1) 
For operational simplicity, the reactor is simulated isothermally, in which the temperature 
is kept constant regarding the inlet stream temperature. Besides, catalyst loading is not 
considered. The reaction kinetics are obtained from (Xu et al, 1996),  with the equilibrium 
being related to temperature. The reactor cross-sectional area is determined by the relation: 
N/10, where N is the inlet molar flow (Stops et al., 2022). The design variable is the 
reactor length, which will be determined by the agent in the third-level continuous 
decision process. The range is from 3 to 10 m. 
Distillation column is applied to separate MeOAc from the quaternary system. Rigorous 
distillation columns are used instead of shortcut columns in the previous work (Stops et 
al., 2022) to account for more realistic factors such as intermolecular interactions. The 
rigorous column models provide multiple possible choices of design parameters, from 
which the distillate to feed ratio (D/F) is selected as the third-level decision. Other 
adjustable parameters such as the number of stages and reflux ratio are set as fixed values 
(35 and 1.5, respectively). The D/F ratio can range from 0.4 to 0.6. 
Heat exchanger is a DWSIM heater model. In the proposed framework, the heat 
exchanger is simulated based on the outlet temperature which is determined by the third-
level decision. A temperature range from 278.15 K to 330.05 K is applied, where the 
upper limit refers to the lowest boiling point of the components which is MeOAc.  
Recycle action consists of additional units including a splitter and a mixer. Firstly, the 
process stream is split into a recycle stream and a purge. Secondly, the recycled stream is 
merged with the selected feed with a mixer. Thereby, the split ratio is the third-level 
decision of the agent, which lies in the range of 0.1 to 0.9 for pragmatic consideration. 
3.2. Reward 
The reward determines the economic viability of generated flowsheets and teaches the 
agent to take feasible actions. First, a reward of 0 € is given when the incomplete 
flowsheets can converge after every single action, because the economic value is difficult 
to assess for an incomplete flowsheet. Second, whenever the agent fails the simulation by 
taking infeasible actions, the episode will be terminated immediately and a negative 
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reward -10M€ is given. Finally, when a flowsheet is completed, we calculate the reward 
according to Equation 2: 
 

𝑟𝑟 =  �𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 −�𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑝𝑝 −��𝐶𝐶𝑝𝑝𝑝𝑝𝑓𝑓𝑝𝑝𝑜𝑜𝑝𝑝𝑜𝑜𝑝𝑝𝑜𝑜 + 0.15 ⋅ 𝐶𝐶𝑜𝑜𝑜𝑜𝑖𝑖𝑓𝑓𝑖𝑖𝑝𝑝�𝑝𝑝𝑜𝑜𝑜𝑜𝑝𝑝𝑖𝑖 (2) 
where 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the revenue of the sold product (Seider et al., 2008), 𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑝𝑝 is the costs 
of feeds, 𝐶𝐶𝑝𝑝𝑝𝑝𝑓𝑓𝑜𝑜𝑝𝑝𝑝𝑝𝑜𝑜𝑝𝑝𝑜𝑜 is the operation costs (Smith, 2016) and 𝐶𝐶𝑜𝑜𝑜𝑜𝑖𝑖𝑓𝑓𝑖𝑖𝑝𝑝 is the total capital 
investment which is multiplied by factor 0.15 (Seider et al., 2008). In the case of negative 
rewards, a reduction factor 10 is applied to encourage the exploration of the agent.  

4. Results and discussion 
Figure 1 shows the learning curves for the agents with and without transfer learning. The 
scores represent the moving average rewards, i.e., the economic viability of the 
flowsheets, over 100 episodes. The training for the agent without transfer learning took 
72 hours over 10000 episodes. For the agent with transfer learning, the pre-training took 
2 hours over 10000 episodes and the further training took 72 hours over 10000 episodes.  
During the first 3500 episodes, the agent without transfer learning generates 
predominantly infeasible lengthy flowsheets, resulting in the learning curves rising 
slowly. In fact, due to the complexity of the design space, the agent has difficulty in 
learning from the previous failed flowsheets, leading to negative scores. After 3500 
episodes, the agent mainly produces flowsheets with positive scores, which indicates that 
the designed processes are economically viable. Besides, within the training episodes, the 
learning curve slowly converges and reaches maximally to about 42. In comparison, the 
agent with transfer learning shows a quicker learning process. At the beginning of the 
learning process, the agent is able to mostly produces positive scores, and then the 
learning curve rises steeply. This demonstrates that the agents successfully leverage the 
pre-trained information from a short-cut process environment to make favorable decisions 
even in the early training stages. After about 4500 episodes, the score begins to fluctuate 
between 30 and 40 and maximumly reaches 46 which is higher than the agent without 
transfer learning.  

 
Figure 1: Learning curves of the agent with and without transfer learning. The blue line depicts the 
learning curve with transfer learning and the orange line indicates the learning curves without 
transfer learning. The scores are moving average rewards over 100 episodes and each learning curve 
runs over 10000 episodes. 
 
Figure 2 displays the best flowsheet generated by the transfer learning agent and the 
continuous design variables are shown in Table 1. First, the feed (F1) is fed directly into 
three consecutive reactors (R1, R2, and R3) where the MeOAC and H2O are produced by 
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the esterification of HOAC and MeOH. Then, the resulting quaternary mixture is split up 
in a column (C1). The mixture is distilled from the top part of the column and sent to one 
heat exchanger (Hex1) to get the product (P1), containing enriched MeOAC and residues 
of HOAC and H2O. The bottom product of the first column is further split up into the 
second column (C2) to produce pure H2O in the distillate (P2) and a mixture of MeOH 
and H2O in the third product stream (P3).  And 90 % of the bottom product is recycled 
and mixed back into the feed.  
While the resulting flowsheet has a positive reward, it is still far from a realistic 
engineering solution and future research is required. In particular, there are three major 
issues observed in the optimal flowsheet solution: (1) In industrial applications, MeOAC 
is primarily produced in reactive distillation (Huss et al., 2003). As our agent does not 
include reactive distillation as a unit operation, this cannot be identified. In future work, 
intensified unit operations can be added to our framework or the agent could operate on 
a phenomena level rather than a unit operation level. (2) The best flowsheet generated by 
the agent in this work contains three consecutive PFRs. The reason is that the length of a 
single PFR is limited to 10 m, which is not sufficient to finish the reaction. Therefore, the 
agent learns to choose multiple PFRs to fulfill the reaction and maximize the product. (3) 
One unnecessary heat exchanger is added after the distillation column C1 and before the 
product P1. We believe this is due to the small operations cost of the heat exchangers and 
the minor impact on the overall reward. Future research should further investigate 
possible mitigation strategies such as longer training or further hyperparameter tuning.  

 
Figure 2: Best flowsheet generated by the transfer learning agent. First, MeOAC and H2O are 
produced from the feed (F1) in three consecutive reactors (R1, R2, and R3). Then the mixture is 
separated in the first column (C1). The first product (P1) is enriched with MeOAc but also contains 
residues of HOAC and H2O after one heat exchanger (Hex1). Then the bottom mixture of MeOH 
and H2O is further separated in the second column (C2). Pure H2O is in the distillate (P2) and the 
third product (P3) is the mixture of MeOH and H2O. And 90% of P3 is recycled and mixed with 
the feed stream. 

Table 1. Design variables selected by the agent with transfer learning in the best flowsheet.  

Unit operation Design variable Unit  Best run 
Reactor 1 (R1) Length m 9.42 
Reactor 2 (R2) Length m 9.25 
Reactor 3 (R3) Length m 8.38 
Column 1 (C1)  Distillate to feed ratio  - 0.58 
Column 2 (C2)  Distillate to feed ratio  - 0.4 
Heat exchanger 1 (Hex1) Outlet temperature K 315 
Recycle  Recycled ratio - 0.9 
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5. Conclusion 
We propose to deploy the transfer learning for process design in RL to accelerate the 
learning process of the agent. The GNNs-based agent is first pre-trained with a short-cut 
simulation environment and then transferred to the rigorous process simulator 
environment for further training. In the illustrative case study, the agent is able to design 
economically feasible flowsheets in the process simulator DWSIM environment. 
Furthermore, the learning curves demonstrate that transfer learning indeed improves the 
efficiency of the learning process significantly and thus can be used to reduce the overall 
training time significantly. This work thus demonstrates that transfer learning can 
accelerate the learning process of graph-based RL with rigorous process simulator 
environments.  
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