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A B S T R A C T

The efficient operation and management of a geothermal project can be largely affected by geological, physical,
operational and economic uncertainties. Systematic uncertainty quantification (UQ) involving these parameters
helps to determine the probability of the focused outputs, e.g., energy production, Net Present Value (NPV),
etc. However, how to efficiently assess the specific impacts of different uncertain parameters on the outputs
of a geothermal project is still not clear. In this study, we performed a comprehensive UQ to a low-enthalpy
geothermal reservoir using the GPU implementation of the Delft Advanced Research Terra Simulator (DARTS)
framework with stochastic Monte Carlo samplings of uncertain parameters. With processing the simulation
results, large uncertainties have been found in the production temperature, pressure drop, produced energy
and NPV. It is also clear from the analysis that salinity influences the producing energy and NPV via changing
the amount of energy carried in the fluid. Our work shows that the uncertainty in NPV is much larger than that
in produced energy, as more uncertain factors were encompassed in NPV evaluation. An attempt to substitute
original 3D models with upscaled 2D models in UQ demonstrates significant differences in the stochastic
response of these two approaches in representation of realistic heterogeneity. The GPU version of DARTS
significantly improved the simulation performance, which guarantees the full set (10,000 times) UQ with a
large model (circa 3.2 million cells) finished within a day. With this study, the importance of UQ to geothermal
field development is comprehensively addressed. This work provides a framework for assessing the impacts
of uncertain parameters on the concerning system output of a geothermal project and will facilitate analyses
with similar procedures.
1. Introduction

With the intensified global warming phenomenon, people endeavor
to mitigate the greenhouse gas (or say, CO2) emission through coopera-
tion between governments, like the assignment of the Paris Agreement,
and the large-scale utilization of renewable energy, such as geothermal
and wind energy. The management of energy applications related to
subsurface resources should consider the uncertain parameters suf-
ficiently (Bickel and Bratvold, 2008). The developing strategies of
subsurface systems can be adjusted after consideration of uncertainties,
which have been shown in various industrial applications (James and
Oldenburg, 1997; Ballio and Guadagnini, 2004; Scheidt and Caers,
2009; Dai et al., 2014). Without exceptions, the energy production
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from geothermal reservoirs can be easily perturbed by uncertainties as
well (Shetty et al., 2018; Saeid et al., 2020).

The uncertainties in geothermal production can come from vari-
ous aspects. First, limited by geological measurements and samples,
our knowledge about a target reservoir is generally based on data
interpretation and empirical correlations. For example, the relationship
between permeability and porosity is often based on empirical petro-
physical correlations (Willems et al., 2020), while the porosity values
are often interpreted from core analysis and log curves (Chang et al.,
1994). However, the spatial distribution of permeability and porosity is
highly uncertain (Major et al., 2023). Besides, the physical and thermal
properties of fluids (e.g., salinity, density) and rock (e.g., thermal
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capacity and conductivity) can vary with mineral dissolution and rock
compositions at geological time scales. These variations impact the
amount of energy and heat transport processes inside the reservoir.
Furthermore, the operations of a geothermal reservoir should take
the economic part into account, which directly determines the project
benefit (Daniilidis et al., 2021). Nevertheless, the economic parame-
ters (e.g., heat and electricity prices) will fluctuate with the markets,
which introduces uncertainties in the comprehensive appraisal of a
geothermal project (De Paepe and Mertens, 2007).

Quantifying the influence of uncertain key parameters in advance
will assist reservoir management and improve the developing schemes
in time. Numerical simulation, as an effective tool, can be utilized to
inspect the reservoir’s response to the presence of various uncertain-
ties during development (Xu et al., 2007; Jansen et al., 2009). Large
numerical models could be constructed to fully capture the reservoir
heterogeneity in the subsurface geology. Therefore, the uncertainties
of geological information can be easily characterized within differ-
ent numerical models. In the meanwhile, the uncertainty analysis of
geothermal production can connect with Monte Carlo (MC) simula-
tion, which has been widely used to quantify the uncertainties in
subsurface applications with ensembles of forward models (Ballio and
Guadagnini, 2004; Cremon et al., 2020). MC performs simulations with
input data sampled stochastically within a given distribution in the
parameter space. How representative are the MC results depends on
the dimension of the uncertain parameter space and the nonlinearity of
the underlying model. To achieve converging results, MC usually has
to perform a large number of forward simulations, which requires a
high-performance numerical simulation framework and abundant com-
putation resources, especially for large models with detailed geological
characterization (Athens and Caers, 2019).

A popular treatment to mitigate the computational challenges for
larger models is property upscaling. Besides running on more advanced
computing hardware or with advanced computational methods, the
simulation models are often compromised with coarse resolutions by
efficient upscaling-based approaches. Several classical upscaling meth-
ods (Chen et al., 2003; Chen and Durlofsky, 2006; Gong et al., 2008)
were proposed for isothermal reservoir simulations, in which the model
resolution is allowed to be upscaled from the fine geological resolution
to different levels of coarse resolutions. In most uncertainty and sen-
sitivity studies, the fully heterogeneous 3D model is often upscaled or
simplified to a 2D model to accommodate the limited computational
performance of the simulator (Veldkamp et al., 2015). With an upscaled
model, the reservoir numerical simulation will certainly accelerate.
However, the model resolution affects both the performance and ac-
curacy of the simulations. In geothermal systems, heat transport is
governed by the complex interplay of thermal convection and conduc-
tion (Wang et al., 2021; Daniilidis et al., 2021). The generally-ignored
or coarsely-upscaled entities (e.g., shale facies) in isothermal simulation
should be carefully dealt with in geothermal systems (Wang et al.,
2021). To the best of our knowledge, it keeps an open question of how
to effectively upscale the non-reservoir lithologies in geothermal sim-
ulations (Perkins, 2019). Consequently, the demanding computational
workload of large models (e.g., with millions of grid blocks) remains
challenging for conventional reservoir simulators.

With the development of GPU computing architecture, high-
performance computation reduces the time required for laborious simu-
lations to an affordable time. In our study, a general-purpose numerical
simulator called Delft Advanced Research Terra Simulator (DARTS,
2023), is utilized to perform geothermal modeling. DARTS is con-
structed within the advanced Operator-Base Linearization (OBL) tech-
nique (Voskov, 2017). Both efficiency and accuracy of DARTS for
geothermal simulation have been benchmarked against state-of-the-art
simulation frameworks (Wang et al., 2020). The recent implemen-
tation of GPU and multithread CPU versions of DARTS (Khait and
Voskov, 2017; Khait et al., 2020) have largely improved the simulation
2

performance. A benchmark study (Khait et al., 2020) demonstrates
the geothermal simulation with DARTS on GPU achieves an order of
magnitude faster speed than a single thread CPU simulation.

In this study, systematic uncertainty quantification (UQ) is per-
formed for a geothermal reservoir with detailed reservoir characteriza-
tions, which capture the geological heterogeneity with large, ‘‘high-cell
count’’ models. Specifically, MC simulations with a large ensemble of
models are utilized to investigate the uncertainty in produced energy
and Net Present Value (NPV) with multiple input parameters, including
geological data (e.g., porosity-permeability distribution), subsurface
properties (e.g., salinity, rock conductivity), operational (e.g., injectiv-
ity, injection temperature) and economic parameters (e.g., heat and
electricity prices). The large ensembles of forward simulations are
executed on the GPU version of DARTS. Furthermore, the high-fidelity
3D models are upscaled to coarser resolutions to examine whether
uncertainties exhibited in 3D models can be approximately captured by
upscaled models often used for such studies. In the following content
of the paper, the geological, mathematical and economic models are
first introduced together with their uncertainty ranges. After a few
sensitivity runs, an extensive MC convergence study is performed to
examine the resulting probability density function for main geothermal
characteristics. Then, a detailed uncertainty analysis is discussed based
on the numerical results, followed by conclusions.

2. Models and input parameters

2.1. Geological model

The geological model is provided by a service company responsible
for the geothermal field development. The study area is located in the
West Netherlands Basin which is an inverted rift basin. Sediments in
this basin range in age from Jurassic to Cenozoic and are overlying
Triassic and older sediments. The Upper Jurassic and Lower Cretaceous
start with the continental sediments of the Nieuwerkerk Formation and
Vlieland sandstone Formation (Willems et al., 2020). These sediments
were deposited in subsiding half-grabens, while adjacent highs were
subjected to erosion (PanTerra Geoconsultants, 2018). In these forma-
tions two main reservoir layers have been observed, Berkel Sandstone
and Delft Sandstone. Circa 3.2 million grid cells are used to characterize
the model using a geological scale, where circa 0.8 million grid cells are
for the sandstone and 2.4 million cells for shale facies.

The Berkel Sandstone Member and Berkel Sands-Claystone Member
have a shallow marine depositional setting. The facies range from the
upper shoreface to the lower shoreface of a coastal-barrier system.
Lateral continuity is often good and cementation low. The permeability
of the sands is good to excellent ranging from 400 to larger than 1000
mD. The Delft Sandstone is interpreted to be deposited as stacked
distributary-channel deposits in a lower coastal plain setting resulting
in massive sandstone sequences. The thickness of the Delft Sandstone
is influenced by the syn-rift deposition of the sediments and therefore,
the Delft Sandstone is of variable thickness; a thickness up to 130 m is
observed. The sandstone consists of fine- to coarse-grained sand, and
the lateral continuity is difficult to predict. Both the Berkel and Delft
Sandstone are studied with wells perforated through them. Porosities
range from 0.01 to 0.256 and permeabilities from 0.004 to 1308 mD
(see Fig. 2).

The model extends along a horizontal direction by 9000 m× 4200 m
ith 177 × 85 reservoir blocks. There is a total of 895 layers along

the vertical direction. Two doublets are placed in the reservoir and
operated with constant rate control. Due to the fact that the boundaries
are far away from the well influence area, they are assigned to no-
flow boundaries. Table 1 provides some basic parameter settings of the

model.
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Fig. 1. Porosity distribution of the target geothermal reservoir. The model is amplified 1.5 times along the vertical direction to show the heterogeneity of the reservoir in detail.
The well trajectories are connecting the following blocks in top and bottom layers respectively in the form of (i, j) indices: I1 (51, 58) - (48, 50); P1 (76, 53) - (82, 49); I2 (94,
44) - (111, 37); P2 (124, 39) - (144, 30).
Fig. 2. Porosity distribution of the reservoir from the side view.

Table 1
Thermal and hydraulic properties of the geothermal reservoir.

Parameters Unit Values

Porosity – (0.01–0.256)
Permeability mD (0.004–1308)
Shale heat capacity kJ∕m3∕K 2300
Sandstone heat capacity kJ∕m3∕K 2450
Pressure at the top of the reservoir bars 115
Temperature at the top of the reservoir K 328
Thermal gradient K∕km 30
Pressure gradient bar∕km 100
Rate (doublet 1) m3∕s 0.0868
Rate (doublet 2) m3∕s 0.0868

2.2. Uncertain input parameters

The production and operation of the geothermal field can be influ-
enced by uncertain parameters from geological, physical, operational
and economic aspects. A representative selection of uncertain parame-
ters is useful for systematic UQ. In this section, uncertain parameters
from various perspectives are sampled within given distributions and
will be used in the following investigation.

2.2.1. Porosity-permeability realizations
In our study, 100 realizations were generated based on a variation

of the seed parameter in the base case facies model (Saeid et al., 2020).
3

The mean and standard deviation of parameters were kept as delivered
and only the spatial distribution was varied. The facies were generated
using sequential indicator simulation for the Berkel Sandstone and
object modeling for the channelized Delft Sandstone. Porosities were
generated by using Sequential Gaussian Simulation and permeabilities
were generated using co-kriging of porosity. This limits the UQ with
respect to geological parameters constrained to a proposed sedimentary
scenario (see Fig. 3).

2.2.2. Salinity
Determined by the dissolved minerals and solids, the reservoir fluid

can be categorized from almost fresh water to highly saline brine (Bor-
gia et al., 2012; Kang and Jackson, 2016). Salinity has an impact on
heat propagation and the production process of a geothermal system.
Based on Saeid et al. (2015), the increase in salinity will result in a
decrease in energy production and system lifetime for the investigated
homogeneous reservoir. Since fluid samples are lacking, the specific
salinity value is uncertain for the target reservoir. To account for
the uncertainty of specific salinity, we selected a wide distribution of
salinity values for our analysis, conforming to the normal distribution
(mean 𝜇 = 0.125 ppm∕1e6 with standard deviation 𝜎 = 0.050 ppm∕1e6
Fig. 4).

According to Batzle and Wang (1992), the brine density as a func-
tion of salinity, temperature and pressure is described as,

𝜌𝑠 = 𝜌𝑤 + 𝑆
[

0.668 + 0.44𝑆 + 1𝑒−6
(

300𝑃 − 2400𝑃𝑆

+𝑇 (80 + 3𝑇 − 3300𝑆 − 13𝑃 + 47𝑃𝑆)
)]

. (1)

The brine viscosity as a function of salinity and temperature is de-
scribed as,

𝜇𝑠 = 0.1+0.333𝑆+(1.65+91.9𝑆3) exp
[

−
(

0.42(𝑆0.8 − 0.17)2 + 0.045
)

𝑇 0.8] ,

(2)

where 𝜌𝑠 and 𝜌𝑤 are saline and water density [kg∕m3], 𝜇𝑠 is viscosity
[mPa s], S is the brine mass fraction [ppm∕106], P is the pressure [MPa]
and 𝑇 is temperature [◦C]. In the uncertainty quantification study,
we assume that both density and viscosity are dependent on a single
salinity value randomly sampled.

2.2.3. Rock thermal conductivity
The thermal conductivity of the rock determines the speed of heat

exchange when a temperature gradient is present. The importance of
thermal conduction of different types of rocks for heat production and
propagation in geothermal systems has been studied and stressed (Dani-
ilidis and Herber, 2017; Wang et al., 2021). However, the sensitivity
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Fig. 3. Top view of the porosity and permeability distribution of three model realizations. The first row represents the porosity distribution, while the second row represents the
corresponding permeability distribution.
Fig. 4. The histograms and distributions of the uncertain input parameters.
of energy production to the magnitude of rock conductivity has not
been studied before. It can be measured in the laboratory under in-
situ conditions. It varies with several factors, for example, the mineral
composition of the rock, the presence of fluids, pressure, etc (Labus
and Labus, 2018). Heat production should consider the introduced
uncertainties in rock conductivity by these factors. The target reservoir
in this study consists of two types of rocks, shale and sandstone, both of
which are sedimentary rocks. The thermal conductivities of shale and
sandstone (Fig. 4) are assumed to follow a normal distribution. Typical
numbers were selected (MidttØmme and Roaldset, 1999; Labus and
Labus, 2018) for shale (mean 𝜇 = 190.08 kJ∕m∕day∕K, standard devia-
tion 𝜎 = 8.64 kJ∕m∕day∕K) and sandstone (mean 𝜇 = 259.2 kJ∕m∕day∕K,
standard deviation 𝜎 = 8.64 kJ∕m∕day∕K).

2.2.4. Injection temperature
Energy production is subject to the injection temperature, which

will impact the lifetime of a geothermal reservoir (Saeid et al., 2015;
Aliyu and Chen, 2017; Zaal et al., 2021). The magnitude of the injection
temperature can vary with heat exchange and heat losses during energy
utilization and transportation. Therefore, the injection temperature is
expected to fluctuate a bit around certain values. A normal distribution
(mean 𝜇 = 25 ◦C, standard deviation 𝜎 = 1.5 ◦C Fig. 4) was assumed to
describe the uncertainty existing in the injection temperature.
4

2.2.5. Well injectivity
The re-injection of cold water into the reservoir will initiate mineral

precipitation or thermal cracking (Benson et al., 1987) in the near-
wellbore region. The injectivity of a geothermal doublet will be reduced
or enhanced correspondingly. In the numerical simulation, the well
index following the Peaceman (1983) equation is used to characterize
the well injectivity

𝑊 𝐼 =
2𝜋

√

𝑘𝑥𝑘𝑦ℎ
ln(𝑟𝑤∕𝑟𝑜)

. (3)

Here, based on the default evaluation of well index, an additional in-
jectivity coefficient was randomly sampled from a normal distribution
(mean 𝜇 = 1, standard deviation 𝜎 = 0.1 Fig. 4). During one MC
simulation, the sampled coefficient was multiplied by the default well
index to represent the uncertainty of well injectivity. In this study,
since both doublets operate at a constant rate, the well injectivity will
influence the pressure drop between injector and producer wells within
each doublet. Therefore, the required pumping energy will be different.

2.2.6. Economics
Varying on the energy source and providers, the heat and electricity

prices will fluctuate within the studied period (De Paepe and Mertens,
2007). To more accurately examine the uncertain impact of heat and
electricity prices on NPV, the 100-years simulation time was divided
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Table 2
Parameters utilized in NPV calculation.
Parameters Unit Values

Pump cost ke 500
Pump lifetime years 5
Pump efficiency % 60
OpEx (% of CapEx/year) % 5
Discount rate % 10

into 20-year sub-intervals. Within each sub-interval, it was assumed
the prices fluctuate around a mean value within a normal distribution.
The prices of each year within this interval were sampled from the
normal distribution. The distribution of heat and electricity prices is
shown in Fig. 4. The relevant parameters for NPV calculation are
listed in Table 2. Capital Expenses (CapEx) are discrete investments;
these include the costs for the exploration phase, the drilling of the
wells, the construction costs for the heat network and drilling facilities,
equipment (heat exchanger, gas separator) and the recurring costs for
the electrical submersible pump. The Operational Expenses (OpEx) are
computed as a percentage of the CapEx with the pump power electricity
added (Daniilidis et al., 2017).

2.3. Numerical model

The general mass and energy conservation equations are taken
to model the dynamic flow and transport processes during the field
development. In low-enthalpy geothermal reservoirs, the brackish to
highly saline brine is often encountered as working fluids with some
chemical additives. Without loss of generality, the saline brine is chosen
as the heat carrier here.
𝜕
𝜕𝑡
(𝜙𝜌𝑓 ) − ∇ ⋅ (𝜌𝑓 𝑢𝑓 ) + 𝜌𝑓 𝑞𝑓 = 0, (4)

𝜕
𝜕𝑡
(𝜙𝑈𝑓 + (1 − 𝜙)𝑈𝑟) − ∇ ⋅ (ℎ𝑓 𝜌𝑓 𝑢𝑓 ) + ∇ ⋅ (𝜅∇𝑇 ) + ℎ𝑓 𝜌𝑓 𝑞𝑓 = 0, (5)

where Eq. (4) is the mass conservation equation and Eq. (5) is the
energy conservation equation. Here 𝜙 is the porosity, 𝜌𝑓 is the fluid
density [kg∕m3], 𝑢𝑓 is the fluid flow velocity [m∕s], 𝑞𝑓 is the fluid
source/sink term per volume [1/s], 𝑈𝑓 is the fluid internal energy
[kJ∕m3], 𝑈𝑟 is the rock internal energy [kJ∕m3], ℎ𝑓 is the fluid enthalpy
[kJ∕kg], 𝜅 is the thermal conductivity [kJ∕m∕day∕K].

The different quantities in Eqs. (4)–(5) are defined as follows. The
fluid internal energy per volume is expressed as:

𝑈𝑓 = 𝜌𝑓ℎ𝑓 − 𝑝𝑓 , (6)

where 𝑝𝑓 is the fluid pressure [bars] and the rock internal energy per
volume is expressed as:

𝑈𝑟 = 𝐶𝑟(𝑇 − 𝑇ref ), (7)

where 𝐶𝑟 is the volumetric heat capacity of rock [kJ∕m3∕K], 𝑇ref is the
reference temperature [K]. The rock is compressible, which is reflected
by the change of porosity through:

𝜙 = 𝜙0(1 + 𝑐𝑟(𝑝𝑓 − 𝑝ref )), (8)

where 𝜙0 is the initial porosity, 𝑐𝑟 is the rock compressibility [1∕bars]
and 𝑝ref is the reference pressure [bars]. The fluid is also compressible
and its properties are evaluated through IAPWS-97 (Kretzschmar and
Wagner, 2007). In addition, Darcy’s law is used to describe the fluid
flow in the reservoir,

𝑢𝑓 = − 𝐾
𝜇𝑓

(∇𝑝𝑓 − 𝛾∇𝐷), (9)

where: 𝐾 is the permeability [mD], 𝜇𝑓 is the fluid viscosity [mPa s], 𝛾
s the fluid specific weight [N∕m3], 𝐷 is the depth [m].
5

d

The governing equation systems are solved in a fully-coupled way
in DARTS, where a general unstructured finite volume mesh discretiza-
tion is combined with a backward Euler approximation in time. The
advanced Operator-Based Linearization (OBL) approach (Voskov, 2017)
is deployed within DARTS to discretize the physical space, which highly
improves the simulation efficiency with enough accuracy (Khait and
Voskov, 2018). A detailed description and applications of DARTS are
available on the project website (DARTS, 2023).

2.4. Economic model

To perform an economic analysis, we take the model from Daniilidis
et al. (2021). The power [W] produced from the well is computed
according to

𝑃𝑤𝑒𝑙𝑙 = 𝑄𝜌𝑓ℎ𝑓 , (10)

in which 𝑄 is the flow rate [m3∕s]. The required pump power [W] only
onsiders the pressure drop in the reservoir,

𝑝𝑢𝑚𝑝 =
𝛥𝑝𝑄
𝜂

, (11)

here 𝛥𝑝 is the pressure difference between the injection and produc-
ion wells [Pa], 𝜂 is the pump efficiency. The total system power is
valuated as

𝑠𝑦𝑠𝑡𝑒𝑚 = 𝑃𝑝𝑟𝑜𝑑 − 𝑃𝑖𝑛𝑗 − 𝑃𝑝𝑢𝑚𝑝. (12)

he cumulative energy produced from the system is computed using

𝑐𝑢𝑚 =
𝑛
∑

𝑡=0
𝑃𝑤𝑒𝑙𝑙𝑡 , (13)

here 𝑛 is the project time, 𝑡 is the specific year. The cost of drilling
he well is computed according to TNO (2018),

𝑤𝑒𝑙𝑙 = 375000 + 1150𝑍 + 0.3𝑍2, (14)

here 𝑍 is the measured depth along the wellbore. The NPV is calcu-
ated as Daniilidis et al. (2017),

𝑃𝑉 =
𝑛
∑

𝑡=0

𝐶𝐹𝑡
(1 + 𝑟)𝑡

, (15)

where CF is the cash flow on a yearly basis, 𝑟 is the periodic discount
rate and t is the time period. Cash flow simply means the difference
between income and cost during a certain period of time. The cumula-
tive produced power generates income based on the heat price, while
the pump power costs are computed based on the electricity price. The
combined system energy is the summation of the two doublets. The
aggregated results are then used for the NPV calculations, over yearly
intervals.

3. Convergence analysis of MC simulations

Though it is difficult to set general criteria to calibrate the conver-
gence of MC simulations, the results are expected to reach statistical
convergence when the amount of samples is large enough (Ballio and
Guadagnini, 2004). The convergence rate may vary with the studied
problem and variables. Convergence is assumed to be reached if the
distribution stays stable with increasing the number of MC realizations.
Here, 𝐿2 norm is utilized to quantitatively characterize the convergence
of distributions. 𝐿2 norm is defined by ‖𝑋𝑛−𝑋𝑛−1‖2, where 𝑋𝑛 and 𝑋𝑛−1
are the normalized distribution at current and previous computation
steps.

In this study, in total 10,000 MC simulations were performed.
Energy production and NPV are taken as two of the most concerning
parameters. Fig. 5 shows 𝐿2 norm of the difference between energy
nd NPV distributions in the MC simulation process. As expected, the

istribution difference drops with the increase of MC samplings. With
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Fig. 5. 𝐿2 norm of the distribution difference with the increase of MC samples for
produced energy and NPV.

approximately 3000 realizations, the distribution difference becomes
smaller than 1%, which is regarded as converged MC simulations.

To make a further check about the convergence of the MC simula-
tions, the quantiles of the energy production and NPV of the 10,000
simulations were compared. Figs. 6 and 7 display the P10, P50 and
P90 of the produced energy and NPV with an increasing number of
MC samples. Fig. 6(a) shows an example of MC simulation convergence
of P10. Based on the daily energy production rate, the total energy
production of each MC sample can be evaluated at the end of the
simulation. The energy production of all realizations is then collected
as a data set. With an increasing number of MC samples, the 10%
probability of the counted data was sequentially calculated, which in
the end generated one curve in Fig. 6(a). The data set was then ran-
domly shuffled and the 10% probability is re-evaluated correspondingly
multiple times. Fig. 6(a) is made up of all these evaluations, with a
similar procedure followed for plots in Fig. 6 and Fig. 7. Wide spreading
of produced energy and NPV is noticed while the number of realizations
is limited. To get representative values of produced energy and NPV, a
minimum of 3000 realizations are required in our study to converge
MC simulations for a given quantile. The P10, P50 and P90 values
of the total produced energy in our study are 149, 144 and 140 PJ
respectively, while the P10, P50 and P90 values of total NPV are 109,
99 and 88 Me respectively.

4. Numerical results and analyses

4.1. Production temperature and pressure drop

Fig. 8 displays the production temperature of all realizations for
both doublets. For doublet 1, the temperature starts to drop at around
the 20th year for the ensemble of models, while it is at around 10th year
for doublet 2. A maximum temperature difference of 6 K at 100 years
of operation for doublet 1 is observed. The production temperature
of doublet 1 is largely impacted by uncertain parameters. A temper-
ature of 323.5 K (P50) has the highest probability at the end of the
simulation. In addition, the overall temperature drop for doublet 2 (9
degrees) is less than for doublet 1 (12 degrees), which is an indication
of well interference. The well interference suggests that there is a
diversion effect of doublet 1 to the injection well of doublet 2, which
influences the thermal propagation of doublet 2. As is shown in Fig. 1,
the injection well of doublet 2 is close to the producer of doublet 1,
which indicates the water supply of doublet 2 to doublet 1. Therefore,
the cold front propagation becomes a bit slower in the controlled area
of doublet 2.
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Fig. 9 shows the pressure drop between Bottom Hole Pressure (BHP)
of all realizations for both doublets. The pressure drop of doublet 1
after 100 years ranges from 50 bars to 100 bars (Fig. 9(a)), where a
70-bar drop represents the P50 value. The pressure drop of doublet 2
varies from 35 bars to 115 bars (Fig. 9(b)), where 50-bars is the most
probable pressure drop (P50). This shows that the uncertain parameters
have a stronger impact on the pressure calculation for doublet 2. In
addition, the magnitude of pressure drop calculated for doublet 1 is,
on average, larger than for doublet 2. This indicates that the average
flow resistance is smaller within the controlled area of doublet 1, as the
distance between the two wells in both doublets is similar Fig. 1.

4.2. Energy, NPV and break-even time

Fig. 10 displays the distribution of the cumulative produced energy
and NPV of all realizations at the end of the simulations. Both the en-
ergy and NPV follow a normal distribution. Since the input parameters
are sampled with normal distributions (except the randomly sampled
poro-perm realizations), the observed system response to the combined
input seems predictable, although the individual impact of each input
parameter can be different, as discussed below. However, for complex
subsurface systems like in this study, the outputs from ensemble models
will be highly case-dependent, which is difficult to predict without
systematic forward simulations. Assumptions made in this study, such
as the fixed production rate of each doublet, reduce the variability of
the final results and the uncertainty in the model outputs.

The difference in energy production between P10 and P90 is 9 PJ,
while the spread of NPV between P10 and P90 is 21 Me. To quantify
the uncertainties, we define an uncertain factor (𝛼) as the ratio of
(P10, P90) difference and P50 value, 𝛼 = (𝑋𝑃10−𝑋𝑃90)

(𝑋𝑃50)
× 100%. With

this definition, the uncertainty of NPV (21.21%) is larger than that of
produced energy (6.25%). On the one hand, it is because two additional
uncertain input parameters (heat and electricity price) are considered
in the NPV evaluation. On the other hand, the NPV calculation takes
more factors (e.g., pressure drop within a doublet, injected energy,
etc.) into account, which will be discussed in the following section.
As a comparison, the produced energy delivers a more straightforward
message about the uncertainty of heat transport and thermal exchange
inside the reservoir.

Fig. 11 displays the cumulative NPV of all realizations and the
converged break-even time. As is shown in Fig. 11(a), a large cash
investment is required at the beginning of the project, including drilling
and equipment costs. Based on a 10% discount rate, the NPV already
experiences decelerated growth at the end of the 30th year and reaches
a plateau within the last 50 years of production.

Break-even time refers to the amount of time required for the dis-
counted cash flows generated by a project to equal its initial cost (NPV
= 0). With the selected production strategy, a break-even time of less
than 2 years is expected. This project will become net profitable after
2 years and there are no risk factors foreseeable with the uncertainty
of the parameters considered in this study.

4.3. Uncertainty of system outputs to individual parameters

The output uncertainty to aggregated input parameters has been
discussed in the previous parts. This section will show the influence
of individual uncertain parameters on produced energy and NPV under
the presence of other uncertain parameters. In Fig. 12, the independent
impact of six parameters (poro-perm realization, salinity, injectivity
coefficient, injection temperature, shale and sandstone conductivity) on
total energy production is listed. In each subplot, values of the inves-
tigated parameter are first divided into sub-intervals, which are used
as filters for the MC samples. The energy distribution of the filtered
MC samples is then plotted against each sub-interval correspondingly.
The sensitivity of energy to different parameters can be observed within
these plots.
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Fig. 6. The asymptotic tendency of P10, P50 and P90 quantiles of the cumulative energy production of 100 years.
Fig. 7. The asymptotic tendency of P10, P50 and P90 quantiles of the NPV of 100 years.
Fig. 8. Production temperature of doublet 1 and 2, and the corresponding P10, P50, P90 production temperature curves.
Fig. 9. Pressure drop within doublet 1 and 2, and the corresponding P10, P50, P90 of pressure drop.
Influenced by other input parameters and by the number of filtered
realizations, the distribution of produced energy varies significantly
within each subplot. However, the mean values of energy are not
sensitive to individual parameters, except to the salinity. The energy
7

production is directly associated with the fluid density Eq. (10), which
is the function of salinity Eq. (1). Therefore, the shift of the mean
energy value to salinity is straightforward. The injectivity coefficient
mainly influences the operating pressure difference within each doublet
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Fig. 10. The histograms of produced energy and NPV of the geothermal project. The samples falling between P10 and P90 quantiles of both parameters are marked in orange.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. (a) Cumulative NPV of all realizations along the simulation and P10, P50, P90 quantiles of NPV; (b) Break-even time of the project.

Fig. 12. The uncertainty of energy production to the individual uncertain input parameter.
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Fig. 13. The uncertainty of NPV to individual uncertain input parameter.
and the energy production is not visibly affected under the constant rate
operation.

In fluvial systems, shale influences energy production via thermal
conduction as an additional heat source. In our previous work with the
same model (Wang et al., 2021), we analyzed the significant influence
of shale on energy production by including and excluding the shale
facies. In Fig. 12, the overall variation of produced energy to thermal
conductivity is not obvious for the typical conductivity ranges used in
this study.

Similarly, Fig. 13 displays the uncertainty of NPV to six param-
eters (poro-perm realization, salinity, injectivity coefficient, injection
temperature, mean heat and electricity price). Note that since the heat
and electricity prices fluctuate with time, their mean value during the
total 100-years period is collected for each MC realization, composing
the data set of mean prices. We can see a large uncertainty of mean
NPV with the variation of salinity, injection temperature and mean
heat price. This also explains the observation of larger uncertainty in
NPV than in energy from the previous section. Since NPV is positively
correlated with generated energy, it increases with salinity and simi-
larly with heat price as well. The injection temperature influences NPV
via the system power (Eq. (12)) as higher injection temperature causes
lower system power and therefore, lower NPV. The electricity cost only
takes a small portion of the total NPV calculation, which is verified by
the short break-even time (in Fig. 11(b)) of this project.

4.4. The effect of upscaling

In this section, to check the cold plume propagation under differ-
ent resolutions, the original model is upscaled to different levels of
resolutions. The accuracy of the upscaled model highly depends on
the upscaling factor and the proportion of the non-reservoir lithology
(i.e., impermeable shale facies). The non-reservoir lithology will heav-
ily impact the thermal propagation inside the reservoir via thermal
conduction, whose evaluation highly depends on the model resolution.
In other words, the loss of information during upscaling may lead to
inaccurate simulation results.

Here, several upscaling methods (namely, arithmetic, geometric
and harmonic averaging) for reservoir properties along the vertical
direction were tested, where arithmetic averaging performs the best
which is consistent with our earlier studies (Shetty et al., 2018; Perkins,
2019). The original model is with 895 vertical layers, which were then
gradually upscaled to 101, 9 and 1 layers along the vertical direction.
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Two out of the 100 realizations (porosity-permeability distributions)
are randomly selected as the showcase for the original and upscaled
models. Figs. 14 and 15 display the porosity, permeability, temperature
fields and cold front plumes of the two selected realizations with differ-
ent vertical upscaling factors. As is shown, the deviations of upscaled
models to the original model in both reservoir properties (porosity and
permeability) and simulation results (temperature field and cold front
plume) enlarge with the upscaling factors.

Though with noticeable deviations in cold front propagation, the
upscaled 2D models are commonly used to perform UQ analysis (Veld-
kamp et al., 2015) in place of detailed 3D geological models. Based
on all the 100 realizations of the geological model used in this study,
the corresponding 2D models have been generated through grid up-
scaling along the vertical direction. The amount of mass and energy in
the system is ensured to conserve for each geological realization via
volume-based upscaling. Moreover, the topography of the 3D model
is preserved by upscaling the unique Corner Point Geometry (CPG)
meshes of the original model. After upscaling, the original ∼3.2 million
grid blocks are reduced by ∼200 times to ∼15,000 grid blocks. With
all upscaled 2D models, the same routine using MC simulation for UQ
of 3D models is conducted. The simulation results are collected and
plotted in Fig. 16.

Fig. 16(a) displays the production temperature of doublet 1 during
an extended development period of 200 years since the temperature
drop within the first 100 years is small. While the production temper-
ature of doublet 2 is not shown here because it keeps as the initial
value during the whole simulation period of 200 years. The production
temperature of doublet 1 in the upscaled model shows a large difference
from that in the 3D model (Fig. 8(a)). The cold front in the upscaled
2D model propagates much slower than in the 3D model. This is
because the original 3D layering is represented by a single layer, which
instantaneously equilibrates temperature in a vertical direction during
the simulation. Therefore, the cold water plume in the 2D reservoir
looks mitigated.

Fig. 16(b) shows the probability density function of total energy
production during the simulation of the first 100 years. Compared with
Fig. 10(a), the distribution is shifted towards the positive X direction.
A larger P50 is observed on the energy histogram of the 2D model.
Without an apparent drop in the production temperature of the 2D
model in the first 100 years, the energy output stays stable as the initial
energy production rate for each Monte Carlo sample. The distribution
of produced energy follows closely the distribution of salinity, which
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Fig. 14. The porosity, permeability, temperature fields and cold front plumes of one realization.

Fig. 15. The porosity, permeability, temperature fields and cold front plumes of another realization.

Fig. 16. (a) Production temperature of doublet 1 in the upscaled 2D model. (b) The histogram of produced energy of the upscaled 2D model. The samples falling between P10
and P90 quantiles are marked in orange. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 17. A collection about the simulation time of all 3D realizations. The red dashed
line marks the mean value of the simulation time.

is positively correlated with the amount of energy carried by the
fluids. From this perspective, the impact of other uncertain parameters
on energy production can hardly be detected. Through the compar-
isons above, the upscaled 2D model cannot accurately reproduce the
production temperature and energy from the 3D model in the UQ.

4.5. Simulation time

Owing to the high computing performance of the GPU version of
DARTS, the mean simulation time for a 100-years simulation (with a
maximum timestep of one year) of the high-fidelity 3D model (with
∼3.2 million grid cells) stabilizes at 2.2 min on the Titan RTX GPU
card. The average numbers of nonlinear and linear iterations for the
simulations are 117 and 922. The simulation cost is mainly occupied
by the nonlinear and linear iterations, which on average take 19.8 and
74.4 s. The connection lists of the 100 geological realizations have
been pre-generated. During the MC simulation, the connection lists are
read in the simulator directly, which saves time for the pre-processing.
According to Khait et al. (2020), the benchmarked simulation with the
same model on a single thread CPU of Intel Core i7-8086K requires
about 80 min to run for 100 years (or approximately 40 min for a 50-
years simulation). The performance has been improved by more than
an order of magnitude. Using the Monte Carlo method, it is convenient
to run multiple simulations in parallel. This UQ study was performed on
16 GPU cards simultaneously. A total 10,000 simulations were finished
within 23 h as shown in Fig. 17.

5. Discussion

From the porosity and permeability fields in Figs. 14 and 15, we
can see the heterogeneity of the models reduces with the increase of
upscaling factors for both realizations. During upscaling process, the
reservoir properties are averaged along the vertical direction based on
the upscaling intervals. The strong heterogeneity in the original model
is gradually smeared during the lumping of grid blocks. For the extreme
2D case, there is only one upscaling interval which ultimately inte-
grates all vertical layers into one layer. Therefore, the model becomes
more homogenized with upscaling and loses the unique heterogeneous
feature.

As for cold front propagation in Figs. 14 and 15, the swept area
becomes narrower with the increase of upscaling factors from the ob-
servation of the temperature field. A more intuitional representation of
cold front propagation is displayed in the 3D plumes, where the shape
of the cold front is clearly delineated. Due to the strong heterogeneity
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within the original model, the cold front propagates along the high-
flow channels within the reservoir. Therefore, the 3D cold front plume
is present in an irregular shape. As the model is upscaled, the shape of
the plume becomes more regular and restricted, which delivers a clear
explanation about why the outputs of an upscaled model distinguish
from that of the original 3D model. First of all, this is partly because
the reservoir properties among different vertical layers in the upscaled
models become similar and the setup becomes more homogeneous with
upscaling. Thereby, the difference in cold water propagation among
upscaled vertical layers decreases and the shapes of the plume become
more uniform in the upscaled setups.

In addition, the vertical upscaling lumps the sand and shale facies
together. This replaces the original slower thermal conduction process
with a vertical thermal equilibrium among layers, which will heavily
impact thermal transportation. In the extreme 2D scenario, the vertical
thermal equilibrium is achieved instantaneously. In the meanwhile, it
is worth noticing that the amount of energy conserved within mod-
els under different resolutions. A vertical thermal equilibrium in the
coarser setup means vertically-agglomerated energy will balance the
temperature difference at the cold front. Therefore, the swept volume
of the cold water within upscaled models shrinks with the same amount
of injected cold water. With the analyses above, the mismatch in
results between the original and upscaled models has been reasonably
clarified.

To summarize, the upscaled setups will lose detailed heterogeneity
information of the high-fidelity model, which will heavily impact the
flow behavior of injected cold water within the reservoir. Besides, the
vertical agglomeration of reservoir cells during upscaling will change
the behavior of heat transport within the reservoir. It is not recom-
mended to simulate the development of a geothermal reservoir with
upscaled coarser models from the current investigation.

6. Conclusions

In this paper, systematic uncertainty quantification of a geother-
mal reservoir has been studied. The selected geothermal reservoir,
located in the West Netherlands Basin, is thoroughly characterized
with a ‘‘high-cell count’’ model to represent the detailed and inherent
heterogeneity. The uncertain geological, physical, operational and eco-
nomic parameters were incorporated into the investigation. With 3D
high-resolution models, a large ensemble of 10,000 stochastic forward
models has been simulated using a GPU version of DARTS to investigate
the uncertain impacts of considered parameters.

After this, the 3D realizations were upscaled to a simplified up-
scaled 2D model. Using this model, the same uncertainty analyses were
conducted and the simulation results between the upscaled 2D and
fine-scale 3D models were compared. The high performance of the
GPU version of DARTS and the paralleled feature of the Monte Carlo
method guaranteed the large ensembles of forward simulations to be
finished in an affordable time. The energy and NPV parameters were
used as indicators for the convergence of MC simulations. After the
convergence check, the uncertainties of energy and NPV were then
discussed according to the numerical results.

Based on the analyses, the following conclusions can be drawn:

• A quick convergence of MC simulations has been achieved after
3000 simulations, which can be used as a reference number of
MC simulations for future uncertain analyses.

• Larger uncertainty was present in NPV (21.21%) than in produced
energy (6.25%), which is because more factors were encompassed
in the NPV uncertainty evaluation.

• Salinity plays an important role in the uncertainty of both the pro-
duced energy and NPV. The value of salinity should be carefully
evaluated based on field samplings or geological investigations in
similar quantification of geothermal projects.
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• Rock conductivity and injectivity coefficient are less influen-
tial to the uncertainty in system outputs, which indicates it is
representative enough to use typical values.

• The attempt to replace the original 3D model with upscaled
2D models for UQ which is often performed in industrial stud-
ies (Veldkamp et al., 2015), failed and generated significant
deviations in production temperature and energy. This demon-
strates the simplification of physical processes and the loss of
information during upscaling are detrimental to the accuracy of
the prediction.

• High-fidelity 3D model is necessary to precisely capture the de-
tails of heterogeneity and thermal transport within the reservoir.

Through this study, we emphasized the importance of UQ to
eothermal field development by demonstrating how various uncertain
arameters affect the predictions of produced energy and NPV. The
ggregated impact of all these parameters cannot be recognized without
ystematic UQ and ensembles of forward simulation. Also, the findings
f this study can give an insight into the optimization of reservoir
roduction under uncertainties.
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