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The numerical simulation of atherosclerotic plaque growth is computationally prohibitive, 
since it involves a complex cardiovascular fluid-structure interaction (FSI) problem with a 
characteristic time scale of milliseconds to seconds, as well as a plaque growth process 
governed by reaction-diffusion equations, which takes place over several months. In this 
work we combine a temporal homogenization approach, which separates the problem 
in computationally expensive FSI problems on a micro scale and a reaction-diffusion 
problem on the macro scale, with parallel time-stepping algorithms. It has been found 
in the literature that parallel time-stepping algorithms do not perform well when applied 
directly to the FSI problem. To circumvent this problem, a parareal algorithm is applied 
on the macro-scale reaction-diffusion problem instead of the micro-scale FSI problem. We 
investigate modifications in the coarse propagator of the parareal algorithm, in order to 
further reduce the number of costly micro problems to be solved. The approaches are 
tested in detailed numerical investigations based on serial simulations.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Cardiovascular diseases are by far the most common cause of death in industrialized nations today. One of the most 
common cardiovascular diseases is the growth of plaque (atherogenesis) in coronary arteries or the pathological accumu-
lation of plaque (atherosclerosis), which can result in heart attacks or strokes that are often fatal. Since the formation of 
plaque ranges over a long period of time, from months to several years, early diagnosis and treatment to prevent plaque 
growth can have a good chance of success.

An important driving force for plaque growth is the wall shear stress distribution, which varies significantly within 
each heartbeat, i.e., every second; see, for instance, [20,57] for a discussion on the dependence of plaque growth on the 
wall shear stress. Using three-dimensional fluid-structure interaction (FSI) simulations with realistic material models, the 
heartbeat scale has to be resolved by time steps in the order of milliseconds. We refer to [5,6] for the first studies on using 
complex wall models that take into account the effect of the reinforcing fibers within three-dimensional FSI simulations. 
For further references on FSI for cardiovascular applications, see, e.g., [9,10,26,38,40]; for FSI simulations in the context of 
plaque growth, see also [25,28,30,46,56,60].
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Hence, realistic numerical simulations of plaque growth over several months that resolve each individual heartbeat would 
easily require O(109) sequential time steps. Consequently, even using today’s fastest supercomputers, such a simulation is 
clearly infeasible.

Therefore, in [29] a temporal homogenization approach for separating the plaque growth time scale (macro scale) in the 
order of days and the FSI time scale (micro scale) in the order of milliseconds has been introduced. The approach is based 
on the assumption that the FSI is approximately periodic in time on the micro scale, which makes it possible to upscale the 
fluid dynamics to the macro scale. Using this approach it is possible to simulate only a moderate number of FSI time steps 
for each time step of the plaque growth problem. This means that we have to simulate only a few heartbeats (seconds) of 
the full FSI problem instead of the whole 24 hours of each day; the total number of time steps is reduced by a factor of 
O(104). Note that, completely neglecting the fine scale may introduce a significant error; see [28,30]. See also the recent 
PhD thesis of Florian Sonner for further details on temporal homogenization for plaque growth [55].

However, considering realistic three-dimensional simulations the number of time steps corresponding to fine scale FSI 
problems remains still infeasibly high, even after temporal homogenization. In order to further reduce the computational 
times, we introduce a new approach based on parallel time-stepping. We focus on a classical parallel time-stepping method, 
the parareal algorithm, which has been introduced by Lions et al. in [42]; for an overview over the vast literature on 
parallel-in-time integration methods, we refer to the review papers [31,45] and the references therein.

Due to a phase-shift in a coarse solution for hyperbolic partial differential equations (PDEs), such as the structural 
problem in FSI, it is generally challenging to apply parallel time-stepping methods to FSI problems; see, e.g., [43,51]. Thus, 
instead of applying the parareal algorithm to the micro-scale FSI problem, we apply it to the homogenized plaque growth 
problem on the macro scale. Plaque growth is typically modeled by a system of reaction-diffusion equations; see, e.g., [54,
59]. Instead of being hyperbolic, they have a parabolic character and hence can be solved more efficiently by parallel time-
stepping methods.

The focus of this paper is not the computation of accurate plaque-growth predictions in patient-specific geometries. 
Instead, our objective is to introduce a numerical framework for making the simulation times feasible and to investigate the 
methods numerically. Therefore, we make several simplifications: We focus on two-dimensional FSI simulations on a simple 
geometry. Furthermore, we consider two simplified models for the plaque growth, that is, the ordinary differential equation 
(ODE) model already considered in [28,29] as well as a more complex partial differential equation (PDE) of reaction-diffusion 
type. We formulate the parareal algorithm for the two-scale problem of plaque growth and also propose variants to increase 
the efficiency of the coarse-scale propagators. Finally, we investigate the parallel time-stepping methods numerically based 
on serial simulations. As, even in two dimensions, the micro-scale FSI problems are generally much more expensive than 
the coarse plaque growth problem, we are able to give some good estimates for the speedup that can be expected in fully 
parallel simulations.

The main novelties of this publication are as follows:

• To our knowledge this is the first paper that applies a parallel-in-time algorithm to the problem of atherosclerotic 
plaque growth. Therefore, the parareal algorithm is combined with the temporal homogenization approach presented 
in [29].

• In contrast to our previous works [28–30,53], we consider also a PDE model of diffusion-reaction type for the modelling 
of plaque growth.

• The fact that the solution of the micro problems (non-stationary FSI problems) is extremely expensive, for example, 
compared to the macro problems, allows us to simplify the complexity analysis of the parareal algorithm by only 
counting the number of micro problems that need to be solved.

• The complexity analysis motivates the development of a new variant of the parareal algorithm, based on the idea of re-
using previously computed growth values (instead of solving expensive micro problems) within the coarse propagator. 
A convergence analysis is given for a prototypical model problem.

• We show numerically that, when using the heuristic averaging approach of [17,30,59] as an approximation for the 
non-stationary FSI problem in the coarse propagator, parareal convergence is much slower.

• Detailed numerical studies investigate the performance of the algorithms under consideration both for an ODE and a 
PDE growth model, based on serial simulations.

The paper is structured as follows: In section 2, we introduce our fluid-structure interaction problem as well as the 
two solid growth models considered for modeling the plaque growth: an ODE-based model in section 2.2.1 and a reaction-
diffusion equation-based model in section 2.2.2. Next, in section 3, we briefly introduce the variational formulation of the 
FSI problem and then describe the temporal homogenization approach including some first numerical results. In section 4, 
we recap the parareal algorithm and discuss how we estimate the computational costs and the possible speed up in parallel 
simulations. We also discuss numerical results for the parallel time-stepping approach using the simple ODE plaque growth 
model. Furthermore, we introduce some ideas for reducing the costs of the coarse-scale propagators. In section 5, we show 
results for the reaction-diffusion plaque growth model, including a theoretical discussion on the computational costs of the 
algorithms. We conclude in section 6, where we also give a brief outlook on topics for future work.
2
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2. Model equations

We consider a time-dependent fluid-structure interaction system, where the fluid is modeled by the Navier–Stokes equa-
tions and the solid by the Saint Venant–Kirchhoff model. In order to account for the solid growth, we add a multiplicative 
growth term to the deformation gradient, which is motivated by typical plaque growth models [30,44,54,59].

2.1. Fluid-structure interaction

Consider a partition of an overall domain �(t) = F(t) ∪ �(t) ∪ S(t) into a fluid part F(t), an interface �(t) and a solid 
part S(t). The blood flow and its interaction with the surrounding vessel wall is modelled by the following FSI system:

ρ f (∂tv f + v f · ∇v f ) − div σ f = 0, div v f = 0 in F(t),

ρs∂t v̂s − div (F̂e�̂e) = 0, ∂t ûs − v̂s = 0 in Ŝ,

σ f �n f + σ s�ns = 0, v f = vs on �(t).

(1)

Here, v f and v̂s denote the fluid and solid velocity, respectively, and ûs the solid displacement. Quantities with a “hat” are 
defined in Lagrangian coordinates, while quantities without a “hat” are defined in the current Eulerian coordinate frame-
work. Two quantities f̂ (x̂) and f (x) correspond to each other by a C1,1-diffeomorphism ξ̂ : �̂ → �(t) and the relation 
f̂ = f ◦ ξ̂ . Later, we will also need the solid deformation gradient F̂ s = I +∇̂ûs , which is the derivative of ξ̂ in the solid part. 
The constants ρ f and ρs are the densities of blood and vessel wall, and �n f and �ns are outward pointing normal vectors of 
the fluid and solid domain, respectively.

By σ f and σ s we denote the Cauchy stress tensors of fluid and solid. Using the well-known Piola transformation between 
the Eulerian and the Lagrangian coordinate systems, we can relate σ s and the second Piola–Kirchhoff stress �̂e as follows:

σ s(x) = σ̂ s(x̂) = Ĵ−1
e F̂e�̂e(x̂)F̂T

e ,

where F̂e is the elastic part of the deformation gradient F̂ s . For modeling the material behavior of the vessel wall, different 
approaches have been proposed and investigated in literature; see, e.g., [5,7,8,13,37] for more sophisticated material models, 
for instance, incorporating an anisotropic behavior due to the reinforcing fibers. For the sake of simplicity, we use in this 
work the relatively simple Saint Venant-Kirchhoff model with the Lamé material parameters μs and λs

�̂e = 2μsÊe + λs tr(Êe)I, Êe := 1

2
(F̂T

e F̂e − I). (2)

The Saint Venant-Kirchhoff model is based on Hooke’s linear material law in a large strain formulation, resulting in a weakly 
nonlinear material model.

The blood flow is modeled as an incompressible Newtonian fluid, such that the Cauchy stresses are given by

σ f = ρ f ν f (∇v f + ∇vT
f ) − p f I, (3)

where ν f is the kinematic viscosity of blood. A sketch of the computational domain is given in Fig. 1. We split the outer 
boundary of � into a solid part �s with homogeneous Dirichlet conditions, a fluid part �in

f with an inflow Dirichlet condition 
and an outflow part �out

f , where a do-nothing condition is imposed.
The boundary data is given by

v f = vin on �in
f , ρ f ν f (�n f · ∇)v f − p f �n f = 0 on �out

f , ûs = 0 on �̂s, (4)

where vin is the inflow velocity on �in
f .

2.2. Modelling of solid growth

Developing a realistic model of plaque growth at the vessel wall is a complex task that involves the interaction of many 
different molecules and species, see for example [54]. Furthermore, the plaque growth will also strongly depend on the ge-
ometry and material model of the arterial wall. In this contribution, our focus does not lie on a realistic modeling of plaque 
growth, and thus, our model is greatly simplified. However, the two models considered here are chosen to behave similarly 
(from a numerical viewpoint) to more sophisticated models. We consider a simple ODE-based model in section 2.2.1 and 
a more complex but still relatively simple PDE model of reaction-diffusion type in section 2.2.2. Both models focus on the 
influence of the concentration of foam cells cs on the growth. Numerical results can be found in sections 3.2, 4.1.4 and 4.2
as well as in section 5, respectively.
3
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Fig. 1. Sketch of the computational domain centered at the origin (0, 0); F and S are the fluid and solid parts, respectively, and the solid lines correspond 
to the fluid-solid interface �. The plaque growth is initiated at (0, ±1).

2.2.1. A simple ODE model for solid growth
In the first model, which is taken from [28,30], the evolution of the foam cell concentration cs depends only on its 

current value but not on its spatial distribution. Hence, it can be described by a simple ODE. The rate of formation of these 
cells depends on the distribution of the wall shear stress σ W S

f at the vessel wall. As a result, we obtain the following 
simplified ODE model:

∂tcs = γ (σ W S
f , cs) := α

(
1 + cs

)−1

⎛⎜⎜⎝1 +

∥∥∥σ W S
f

∥∥∥2

L2(�)

σ 2
0

⎞⎟⎟⎠
−1

,

σ W S
f := ρν

(
Id − �n f �nT

f

)
(∇v + ∇vT )�n f .

(5)

The reference wall shear stress σ0 and the scale separation parameter α are parameters of the growth model. For cardio-
vascular plaque growth, we have typically α =O(10−7) s−1; see also [29].

We model the solid growth by a multiplicative splitting of the deformation gradient F̂s into an elastic part F̂e and a 
growth function F̂g

F̂s = F̂e F̂g ⇔ F̂e = F̂sF̂−1
g = [I + ∇̂ûs]F̂−1

g ; (6)

cf. [30,50,59]. In the ODE model, we use the following growth function depending on cs

ĝ(x̂, ŷ, t) = 1 + cs exp
(
−x̂2

)
(2 − | ŷ|), F̂g(x̂, ŷ, t) := ĝ(x̂, ŷ, t) I. (7)

This means that the shape and position of the plaque growth is prescribed, but the growth rate depends on the variable cs . 
As the simulation domain is centered around the origin, see Fig. 1, growth is concentrated at (0, ±1), in the center of the 
domain. It follows that

F̂g = ĝ I ⇒ F̂e := ĝ−1F̂s, (8)

and the elastic Green–Lagrange strain is given by

Êe = 1

2
( F̂

T
e F̂ e − I) = 1

2
(ĝ−2 F̂

T
s F̂ s − I) (9)

resulting in the Piola–Kirchhoff stresses

F̂e�̂e = 2μs F̂ e Êe + λs tr(Êe) F̂ e = 2μs ĝ−1 F̂ s Êe + λs ĝ−1 tr(Êe) F̂ s. (10)

2.2.2. A PDE reaction-diffusion model
Secondly, we consider a slightly more complex growth model, where the concentration of foam cells ĉs = ĉs(x̂, t) (x̂ ∈ Ŝ) 

is now governed by a PDE model, namely a non-stationary reaction-diffusion equation

∂t ĉs − Dŝĉs + Rsĉs(1 − ĉs) = 0 on Ŝ, Ds∂̂nĉs = γ (σ W S
f ) = αδ(x)

⎛⎜⎝1 +
∥∥∥σ W S

f

∥∥∥2

σ 2
0

⎞⎟⎠
−1

on �̂,

ĉ = 0 on �̂ , ĉ (·,0) = 0 on Ŝ,

(11)
s s s

4
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where δ(x) = min {0, (x − 1)(x + 1)}2 and ‖·‖ is the Euclidean norm. Note that the norm ‖σ W S
f ‖| on the right-hand side 

of eq. (11) is a function in space and time, whereas the right-hand side of eq. (5), including ‖σ W S
f ‖L2(�) , depends only on 

time and is a constant in space. Furthermore, we have σ0 and α as in the ODE model eq. (6), as well as positive diffusion 
and reaction coefficients Ds and Rs , respectively. The underlying idea is that the vessel wall is initially damaged in the 
central part of the interface around x̂1 = 0 and monocytes can penetrate into Ŝ in the part of the interface corresponding 
to x̂1 ∈ (−1, 1), where δ is actually positive.

Moreover, in contrast to the first numerical example, we do not prescribe the shape of the plaque growth by a growth 
function ĝ . Instead, the growth part F g depends on the spatial distribution of the foam cell concentration via the relation

ĝ(x̂, t) = 1 + ĉs(x̂, t), F̂g(x̂, t) := ĝ(x̂, t) I. (12)

The Green Lagrange strain Êe and the Piola–Kirchhoff stresses �̂e are then defined as above in eqs. (9) and (10), with ĝ
given in eq. (12).

Note that, solving the PDE model has higher computational cost compared to the ODE model described in section 2.2.1. 
On the other hand, a sophisticated reaction-diffusion problem may yield more realistic results for the plaque growth. 
Nonetheless, such a model remains significantly cheaper compared to a fully coupled FSI problem; this discrepancy will 
only increase when moving to three-dimensional simulations with complex material models for the arterial wall. This ob-
servation is essential for the efficiency of our parallel time-stepping approach, as we will discuss in more detail in the 
following sections.

3. Numerical framework

In this work, we use an Arbitrary Lagrangian Eulerian (ALE) approach to solve the FSI problem in eq. (1). The ALE 
approach is the standard approach for FSI with small to moderate structural deformations; see, e.g., [10,16,18,21,26,48,58]. 
This assumption holds generally true for the simulation of plaque growth, unless the interest is to simulate a complete 
closure of the artery. To simulate a full closure, a Fully Eulerian formalism [22,27,47] has been used in [27,30]; see also [2,
14,15] for further works on FSI-contact problems in a Fully Eulerian or Lagrange-Eulerian formalism.

Given a suitable ALE map ξ̂ f = x̂ + û f , its gradient F̂ f = I + ∇̂û f and determinant Ĵ f = det F̂ f , the ALE formulation of 
the FSI problem is given by:

Variational formulation 1 (Non-stationary FSI problem). Find velocity v̂ ∈ vin + V , deformation û ∈W and pressure p̂ f ∈L f , such 
that (

ρ f Ĵ f ∂̂t v̂ f , φ̂
)
F̂ + (

ρ f Ĵ f ∇̂v̂ f F̂−1
f (v̂ f − ∂t û f ), φ̂

)
F̂ + (

ρ̂0
s ∂̂t ûs, φ̂

)
Ŝ

+(
Ĵ f σ̂ f F̂−T

f , ∇̂φ̂
)
F̂ − (

Ĵ f ν f F̂−1
f ∇̂v̂ f F̂−1

f n̂ f , φ̂
)
�̂out + (

F̂e(ĝ)�̂e(ĝ), φ̂
)
Ŝ = 0 ∀φ̂ ∈ V,(

d̂iv( Ĵ f F̂−1
f v̂ f ), ξ̂ f

)
F̂ = 0 ∀ξ̂ f ∈ L f ,(

dt ûs − v̂s, ψ̂s)Ŝ = 0 ∀ψ̂s ∈ Ls,

where σ̂ f := ρ f ν f (∇̂v̂ f F̂−1
f + F̂−T

f ∇v̂T
f ) − p̂ f I .

There are different ways to compute the ALE map depending on the displacement ûs of the structural domain Ŝ . In 
our simulations, we extend ûs into the fluid domain using harmonic extensions (called û f ); that is, we solve a Laplacian 
problem with right hand side zero and ûs as Dirichlet boundary data on the fluid domain.

Note that �̂e and F̂e depend on ĝ (and hence on cs), as specified in eq. (10). The function spaces are given by

V = [H1
0(�̂; �̂in

f ∪ �̂s)]d, W = [H1
0(Ŝ; �̂s)]d, Ls := L2(Ŝ), L f = L2(F̂).

Furthermore, we assume that the solution v̂ f has higher regularity, such that the trace of ∇̂v̂ f is well-defined on �̂out, as 
needed in Variational formulation 1.

3.1. Temporal two-scale approach

Even for the simplified two-dimensional configuration considered in this work, a resolution of the micro-scale dynamics 
with a scale of milliseconds to seconds is unfeasible over the complete time interval of interest [0, Tend], with Tend being 
several months up to a year. For instance, when considering a relatively coarse micro-scale time step of δτ = 0.02 s, the 
number of time steps required to simulate a time frame of a whole year would be 365 · 86 400 · 1s

δτ ≈ 1.58 · 109, each step 
corresponding to the solution of a mechano-chemical FSI problem.

This dilemma is frequently solved by considering a heuristic averaging: as the micro-scale is much smaller than the 
macro scale one considers a stationary limit of the FSI and solves for the stationary FSI problem on the macro scale (e.g., 
δt ≈ 1 day); see, e.g., [17,30,59]. The wall-shear stress σ W S

f of the solution of this stationary FSI problem is then used to 
advance the foam cell concentration in eq. (5) or eq. (11).
5



S. Frei and A. Heinlein Journal of Computational Physics 491 (2023) 112347
Fig. 2. Schematic representation of the two-scale algorithm as described in section 3.1 and summarized in Algorithm 1: instead of solving the FSI problem 
and updating the foam cell concentration cs on the micro time scale (δτ , black), we compute an averaged growth function γ (σ W S

f ) over a few periods 
(heartbeats) of the micro-scale problem (right); this average is used to update cs on the macro scale (δt , green in the left part). (For interpretation of the 
colors in the figure(s), the reader is referred to the web version of this article.)

Variational formulation 2 (Stationary FSI problem). Find velocity v̄ ∈ vin + V , deformation ū ∈W and pressure p̄ f ∈L f , such that(
ρ f Ĵ f ∇̂v̄ f F̄−1

f v̄ f , φ̂
)
F̂ + (

J̄ f σ̄ f F̄−T
f , ∇̂φ̂

)
F̂

−(
Ĵ f ν f F̂−1

f ∇̂v̂ f F̂−1
f n̂ f , φ̂

)
�̂out + (

F̄e(ĝ)�̄e(ĝ), φ̂
)
Ŝ = 0 ∀φ̂ ∈ W,(

d̂iv( J̄ f F̄−1
f v̄ f ), ξ̂ f

)
F̂ = 0 ∀ξ̂ f ∈ L f

The foam cell concentration is then advanced by the ODE in eq. (5) resp. the PDE in eq. (11), with σ W S
f replaced by 

σ W S
f . It has, however, been shown that γ (σ W S

f ) is not necessarily a good approximation of γ (σ W S
f ), which depends on the 

pulsating blood flow; see the numerical results in [28,30] and the analysis in [29].
A more accurate two-scale approach has been presented by Frei and Richter in [29]. The numerical approach can be cast 

in the framework of the Heterogeneous Multiscale Method (HMM); see, e.g., [1,23,24]. In [29], a periodic-in-time micro-scale 
problem is solved in each time step of the macro scale, for instance each day. The growth function γ (σ W S

f ) is then averaged 
by integrating over one period of the heart beat, its average will be denoted by γ (σ W S

f ). This averaged growth function is 
applied to advance the foam cell concentration by eq. (5) or eq. (11), respectively. A schematic illustration of the two-scale 
algorithm is given in Fig. 2.

To be precise, we divide the macro-scale time interval [0, Tend] into N f time steps of size δt

0 = t0 < t1 < ... < tN f = Tend, N f = Tend

δt
. (13)

As cs varies significantly on the macro scale only, using cs(tm) as a fixed value for the growth variable on the micro scale 
results in a sufficiently good approximation in the time interval [tm, tm+1]. Then, one cycle of the pulsating blood flow 
problem (around 1 s) is to be resolved on the micro scale δτ

0 = τ0 < τ1 < .... < τNs = 1s, Ns = 1s

δτ
. (14)

It has been shown in [29] (for a simplified flow configuration) that this approach leads to a model error O(ε) compared to 
a full resolution of the micro scale, where ε = 1s

Tend
denotes the ratio between macro- and micro time scale and is in the 

range of O(10−7) for a typical cardiovascular plaque growth problem. The relations in eqs. (13) and (14) imply δτ = εδt . In 
the model problems formulated above, the scale separation is induced by the parameter α =O(ε).

A difficulty lies in solving the periodic micro-scale problem. If accurate initial conditions w0 := (v0, u0) are available on 
the micro-scale, a periodic solution can be computed using a time-stepping procedure for one cycle. If the initial conditions 
are known approximately, convergence to the periodic solution may still be obtained after simulating a few cycles of the 
micro-scale problem due to the dissipation of the flow problem; see [28,29]. Numerically, it can be checked after each cycle 
if the solution is sufficiently close to a periodic state. In this work, we apply a stopping criterion based on the computed 
averaged growth value:

|γ (σ W S,r
f ) − γ (σ W S,r−1

f )| < εp,
6
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where r = 1, 2, ... denotes the iteration index with respect to the number of cycles of the micro-scale problem. The algorithm 
is summarized as Algorithm 1, where we use the abbreviation wr,s := (vr,s, ur,s).

Algorithm 1: Two-Scale Algorithm

Set suitable starting values w0,0 = (v0,0, u0,0) and time-step sizes δt, δT .
for n = 1, 2, . . . , N f do

1.) Micro problem: Set r ← 0
while |γ (σ W S,r

f ) − γ (σ W S,r−1
f )| > εp do

1.a) Solve micro-scale problem in eq. (1) in In = (tn, tn + 1s)

{wr,0, cn−1
s } �→ {wr,m}Ns

m=1

1.b) Compute the averaged growth function

γ (σ W S,r+1
f ) = 1

Ns

Ns∑
m=1

γ (σ W S,m
f (vr+1,m), cn−1

s )

and set wr+1,0 = wr,Ns , r ← r + 1.

2.) Macro problem: Update the foam cell concentration cn
s by eq. (5) or eq. (11).

As starting values wr,0 = (vr,0, ur,0) in step 1. of the algorithm, we use the variables wr−1,Ns = (vr−1,Ns , ur−1,Ns ) from 
the quasi-periodic state of the previous macro step. It has been observed in [28] that these are usually closer to the starting 
values of the periodic state than the solution of an averaged stationary problem on the macro scale.

3.2. Numerical example

Before we present the different approaches for parallel time-stepping, let us illustrate the two-scale approach by a 
first numerical example. Therefore, we use the simple ODE growth model introduced in section 2.2.1, eq. (5). The test 
configuration introduced here will be used in section 4 as well.

Concerning the geometry we use a two-dimensional channel of length 10 cm and an initially constant width ω(0) of 
2 cm as illustrated in Fig. 1. The solid parts on the top and bottom corresponding to the arterial wall have an initial 
thickness of 1 cm each. Fluid density and viscosity are given by ρ f = 1 g/cm3 and ν f = 0.04 cm2/s, respectively. The growth 
parameters are set to σ0 = 30 g cm

s2 and α = 5 · 10−7 1
s , which yields a realistic time-scale for the arterial plaque growth, 

see [29]. The solid parameters are ρs = 1 g/cm3, μs = 104 dyne/cm2, and λs = 4 · 104 dyne/cm2. As an inflow boundary 
condition, we prescribe a pulsating velocity inflow profile on �in

f given by

vin
f (t, x) = 30

(
sin(π t

P )2(1 − x2
2)

0

)
cm/s. (15)

Here, P = 1 s is the period of a single heartbeat. The symmetry of the configuration can be exploited in order to reduce 
computational cost by simulating only on the lower half of the computational domain and imposing the symmetry condition 
v f · �n = 0, τ T σ f �n = 0 on the symmetry boundary �sym, where τ denotes a tangential vector.

We discretize the FSI problem (variational formulation 1) in time using the backward Euler method. For discretizing the 
ODE growth model, we use the forward Euler method, which results in

cn
s = cn−1

s + δt γ (σ W S
f , cn−1

s ), n = 1, ..., N f . (16)

For spatial discretization, we use biquadratic (Q 2) equal-order finite elements for all variables and LPS stabilization [11]
for the fluid problem. Our mesh, containing both fluid and solid, consists of 160 rectangular grid cells; this corresponds 
to a total of 3 157 degrees of freedom. The time-step sizes are chosen as δτ = 0.02 s and δt = 0.3 days; the tolerance 
for periodicity of the micro-scale problem as εp = 10−3. All the computational results have been obtained with the finite 
element library Gascoigne3d [12]. We use a fully monolithic approach for the FSI problem following Frei, Richter & Wick [30,
48].

In Fig. 3, we compare results obtained with the two-scale approach for different macro time-step sizes δt with the 
heuristic averaging approach outlined above; see variational formulation 2. We see that the pure averaging approach un-
derestimates the growth significantly. Even a very coarse discretization of the macro-scale time interval δt = 15 days in 
the two-scale approach gives a much better approximation. We note, however, that too coarse time steps might introduce 
different issues, as the starting values v0,0 and u0,0 might not be good approximations for the periodic state on the micro 
scale anymore. In combination with a significant mesh deformation for t ≈ 300 days, this led to divergence of Algorithm 1
for an even coarser macro time-step size δt = 30 days. For δt ≤ 15 days, a near-periodic state was reached in 2-3 iterations 
in each macro-step. A detailed convergence study for a very similar problem has been given in [28].
7
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Fig. 3. Top: Comparison of a pure averaging approach with the two-scale approaches with different macro-scale time steps δT . Top left: Concentration cs

over time. Top right: Channel width over time. Bottom: Wall shear stress σ W S
f over two periods of the micro scale at t = 297 days for δt = 9 days. The 

initial values are taken from the previous micro problem at t = 288 days.

At the bottom of Fig. 3, we show the L2(�)-norm of the wall shear stress over two periods, i.e., 2 seconds, of the micro 
problem for δt = 0.02 s and δT = 9 days. The initial values are taken from the periodic state of the micro problem at the 
previous macro time-step, i.e., 9 days before. We see that the wall shear stresses converge very quickly to the periodic state. 
An initial deviation of 6.28 g cm

s2 to the periodic reference solution at time τ = 0.02 is reduced to 6 · 10−4 g cm
s2 at time τ = 1

within only one period.

4. Parallel time-stepping

The main cost in Algorithm 1 lies in the solution of the non-stationary micro problem in step 1.a, which needs to be 
solved in each time step of the macro problem. Considering a relatively coarse micro-scale discretization of δt = 0.02 s, as 
used in the previous section, 50 time steps are necessary to compute a single period of the heart beat. The simulation of two 
or more cycles might be necessary to obtain a near-periodic state in step 1.a of Algorithm 1; cf. the discussions in [28,29]. 
In a realistic scenario, each time step of the micro problem corresponds to the solution of a complex three-dimensional FSI 
problem, which makes already the solution of one micro problem very costly.

For this reason, parallelization needs to be exploited in different ways: First, one can make use of spatial parallelization 
using a scalable solver, for instance, based on domain decomposition or multigrid methods; see, e.g., [9,19,33,35,36,39,58]. 
Since the focus of this contribution is on parallelization in time, we will not discuss this aspect here. In particular, we 
expect that even when the speedup due to spatial parallelization saturates, the computing times for the whole plaque 
growth simulations will remain unfeasible. Therefore, we have to make use of an additional level of parallelization, that is, 
temporal parallelization of the macro-scale problem. In particular, we will use the parareal algorithm, which we will recap 
in the next subsection.

In order to motivate the algorithmical developments in this section, we will already present some first numerical results 
for the ODE growth model in eq. (5) within the section.

4.1. The parareal algorithm

First, the time interval of interest [0, Tend] on the macro scale is divided into P sub-intervals I p = [T p−1, T p] of equal 
size, where
8
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Fig. 4. Schematic representation of the parareal algorithm applied to the homogenized (two-scale) problem as shown in Fig. 2: micro-scale solution (black), 
two-scale solution (green), parareal iterates in iteration k (light grey) and k + 1 (dark grey), fine scale solution (red), and coarse scale solution (blue).

0 = T0 < T1 < ... < T P = Tend. (17)

In order to define the parareal algorithm, suitable fine and coarse problems need to be introduced. Note again that 
we will apply the parareal algorithm only on the macro scale as introduced in section 3.1; hence, both the fine and the 
coarse scale of parareal correspond to the macro scale of the homogenization approach. The fine problem advances the 
growth variable cs from time T p to T p+1 by solving Algorithm 1 with a smaller time-step size δt (e.g., 0.3 days) on the 
corresponding fine time discretization of [T p, T p+1]:

T p = tp,0 < tp,1 < ... < tp,np = T p+1, np = T p+1 − T p

δt
, tp,q := tp·np+q = tp,q−1 + δt.

The fine propagator on a process p consists of a time-stepping procedure to advance cs(T p) to cs(T p+1) with the fine time 
step δt . We write

cfine
s (T p+1) = F(cfine

s (T p)).

The efficiency of the parareal algorithm depends strongly on the computational cost of the coarse propagator. In par-
ticular, it needs to be much cheaper than the fine problems since it is defined globally on [0, Tend] and, hence, introduces 
synchronization. Thus, we use a large time-step δT and

T p = T̄ p,0 < ... < T̄ p,N p = T p+1, Np = T p+1 − T p

δT
, T̄ p,q := T̄ p·N p+q = T̄ p,q−1 + δT .

For simplicity, we assume that both time-step sizes δt and δT are uniform throughout [0, Tend]. In order to keep the cost of 
the coarse propagator as low as possible, we will mainly focus on the case that the coarse time steps coincide with the P
sub-intervals I p in the numerical results, i.e., Np = 1, such that the total number of coarse time steps

Nc := P · Np

is equal to P . We denote the coarse propagation from T p to T p+1 by

ccoarse
s (T p+1) = C(ccoarse

s (T p)).

We use capital letters T p to denote the coarse discretization of [0, Tend] into P parts and for the time-steps T p,q on 
the coarse level. By small letters tp,q we denote the finer discretization on each sub-interval; the two discretizations yield 
the first level (fine problem) and second level (coarse problem) of the parareal algorithm. Of course, it is also possible to 
employ coarse time steps which differ from the sub-intervals on the fine level, but for the sake of simplicity, we will not 
discuss this case in this work. In the example given above with Tend = 300 days, δT would be 30 days for P = Nc = 10, 
while δt is 0.3 days. On the micro scale, the times τi and time-step size δτ are defined locally in [ti, ti + 1s]; in the example 
above, we had δτ = 0.02 s. Note that the micro scale influences the parareal algorithm only indirectly due to the temporal 
homogenization approach.

Then, given an iterate c(k)
s for some k ≤ 0, the parareal algorithm computes ck+1

s by setting

c(k+1)
s (T p+1) = C(c(k+1)

s (T p)) +F(c(k)
s (T p)) − C(c(k)

s (T p)) for p = 0, ..., P − 1. (18)
9
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Algorithm 2: Parareal algorithm

(I) Initialization: Compute {(c(0)
s (T p), w(0)(T p)

}P
p=1 by means of Algorithm 1 with a coarse macro time-step size δT := (T p − T p−1)/N p . Set k ← 0

(II) while |c(k+1),fine
s (Tend) − c(k),fine

s (Tend)| > εpar do
(II.a) Fine problem:

for p = 1, ..., P do

(i) Initialize c(k+1),fine
s (T p) = c(k)

s (T p), w(k+1)(T p) = w(k)(T p)

(ii) Compute {(c(k+1),fine
s (tp,q), w(k+1)(tp,q)

}np

q=1 by Algorithm 1 with fine time-step size

δt and set F(c(k)
s (T p)) = c(k+1),fine

s (tp,np )

(II.b) Coarse problem
for p = 1, ..., P do

(i) Compute C(c(k+1)
s (T p)) by solving one time step of Algorithm 1 with time-step

size δT = (T p − T p−1)/N p

(ii) Parareal update

c(k+1)
s (T p+1) = C(c(k+1)

s (T p)) +F(c(k)
s (T p)) − C(c(k)

s (T p)).

k ← k + 1

This can be seen as a predictor-corrector scheme, where the coarse predictor C(c(k+1)
s (T p)) is corrected by fine-scale contri-

butions that depend only on the previous iterate c(k)
s ; thus, the fine problems can be computed fully in parallel. A schematic 

illustration of the parareal algorithm is given in Fig. 4.
Let us analyze the application of eq. (18) to the two-scale problem (Algorithm 1) in more detail. The first term in eq. (18)

requires the solution of one micro problem and an update of the foam cell concentration (by eq. (5) or eq. (11)) in each 
coarse time step T p → T p+1. Within the fine-scale propagator (second term in eq. (18)) np = �N f /P� time-steps need to 
be computed per process, where �g� denotes the next-biggest natural number to g (=̂ ceil(g)) and N f is the number of 
macro time steps; see eq. (13). Each time step requires the solution of one micro problem and an update of the foam cell 
concentration. The last term in eq. (18) has already been computed in the previous iteration (compare the first term on the 
right-hand side of the same equation) and thus introduces no additional computational cost. The algorithm is summarized 
in Algorithm 2.

We use the FSI variables w(k)(T p) from the previous parareal iteration as initial values in step (II.a)(i). The initial 
values c(k)

s (T p) in step (II.a)(i) are taken from step (II.b) of the coarse problem. Moreover, to initialize the variables 
{c(0)

s (T p), w(0)
s (T p)}P

p=1 before the first parareal iteration, we apply the coarse propagator once with a large time-step size 
δT = (T p − T p−1)/Np .

For the ODE growth model, we use the value of cfine
s at the end time Tend

|c(k+1),fine
s (Tend) − c(k),fine

s (Tend)| ≤ εpar, (19)

as the stopping criterion for the parareal algorithm.

4.1.1. Parallelization approaches
As mentioned earlier, in this work, we focus on studying the effectivity and efficiency of our approach by investigating 

the convergence of the parareal algorithm based on a serial implementation. Since the computational cost of the micro FSI 
problems is very high, we expect the communication cost to be negligible; cf. section 4.1.2 as well as sections 5.2 and 5.3 for 
a more detailed discussion of the computational cost for the ODE and the PDE growth model, respectively. Even though our 
implementation used in the numerical examples below is only serial, we want to briefly discuss two potential parallelization 
approaches for a parallel implementation of Algorithm 2: master-slave parallelization and distributed parallelization; cf. Fig. 5
for a sketch of both approaches for our parareal algorithm. Note that, as also indicated by Fig. 5, we always assume a 
one-to-one correspondence of fine problems and processes in this paper.

In the master-slave parallelization approach, the coarse problem is assigned to a single process and the local problems 
on the fine level are distributed among the remaining processes. Each slave process p has to communicate F(c(k)

s (T p)) to 
the master after computation of the fine problem for the parareal update (step II.a in Algorithm 2), and the master process 
has to communicate c(k+1)

s (T p) back after the parareal update (step II.b in Algorithm 2); this corresponds to all-to-one and 
one-to-all communication patterns.

In the distributed parallelization approach, the parallelization of the coarse problem is different. In particular, time in-
tervals are assigned to the different processes, and each process computes both the fine problem and the part of the coarse 
problem on those time intervals; for simplicity, we do not discuss the case that the partition of the coarse problem onto the 
processes is different from the local (fine) problems, which would also be possible. As can be seen in Fig. 5, a major benefit 
of this approach is the different communication pattern: instead of all-to-one and one-to-all communication, each process 
sends the parareal update c(k+1)

s (T p) to the next process in line. Note that, in terms of the coarse problem, the processes 
can only perform their computations in serial, whereas the local problems can, again, be computed concurrently.
10
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Fig. 5. Master-slave and distributed parallelization schemes for the parareal approach. In the master-slave case, the coarse propagation is performed on a 
separate process (blue) and information is communicated between master and slave. In the distributed case, the coarse propagation and the fine propagation 
is performed on the same processes. Communication is indicated by an arrow in color of the sender.

In some implementations of two-level methods, the coarse problem is assigned to one of the processes dealing with the 
local problems instead of an additional process; if the memory and computational cost of the coarse problem is negligible, 
this can be beneficial since all available processes can be employed for the local problems. It can be seen as a mixture of the 
master-slave and distributed parallelization approaches. In our case, this might not be feasible since the coarse problem is 
defined on the same spatial mesh as the local problems, leading to significant memory cost. Furthermore, more sophisticated 
approaches such as task-based scheduling [4] can be employed for the parallelization.

An investigation of the differences in performance of the different approaches can only be performed using an actual 
parallel implementation. This is out of the scope of this paper, and therefore, we will leave it to future work.

4.1.2. Computational costs
Even in the simplified two-dimensional configuration considered in this work, it suffices to count the number of micro 

problems to be solved to estimate the computational cost of corresponding parallel computations and to compare different 
algorithms. Remember that, in each micro problem, rp · 1

δt FSI systems need to be solved, where rp is the number of 
cycles required to reach a near-periodic state. In the example considered above, these were at least 2 · 1

0.02 = 100 costly 
FSI problems. Hence, our discussion in the following sections will be based on the assumption that the computational cost 
for all other steps of the parareal algorithm as well as the communication between the processes can be neglected. This 
is particularly obvious for the ODE growth model in eq. (5). For the PDE growth model in eq. (11), we will discuss the 
computational and communication cost in more detail in sections 5.2 and 5.3.

To analyze the computational cost of Algorithm 2 under this assumption, let us denote the total number of iterations of 
the parareal algorithm by kpar. As discussed in sections 4.1 and 4.1.1, we assume that the number of coarse time steps is the 
same as the number of fine problems and processes, respectively. Therefore, we need to solve Nc micro problems in step 
I, kpar · �N f /P� micro problems on each of the P processes in step II.a (ii), and kpar · Nc micro problems within the coarse 
propagation in step II.b (i). This corresponds to the solution of

kpar · �N f /P�︸ ︷︷ ︸
fine level (P parallel processes)

+ (kpar + 1) · Nc︸ ︷︷ ︸
coarse level (1 serial process)

(20)

serial micro problems; this is the case for both parallelization approaches discussed in section 4.1.1. If the coarse time step 
δT is chosen independently of T , Nc is fixed and the computational cost tends to saturate for large P (at least if we assume 
that the number of required parareal iterations kpar is independent of P ). The cheapest possible coarse propagator, on the 
other hand, is to use one coarse time step per coarse propagation, i.e., N p = 1 and Nc = P . In this case the computational 
time increases for large P , if we assume that the number of parareal iterations kpar is independent of P . The minimum 
computational time is attained for P ≈ √

N f .
As a serial implementation requires the solution of N f micro problems, the speed-up of the proposed parareal algorithm 

is given by

speedup(P ) = N f

kpar · �N f /P� + (kpar + 1) · Nc
≈ 1

kpar
P + (kpar + 1) Nc

N f

, (21)
11



if we assume a perfect load balancing on the fine processes. This is a special case of the standard analysis for the speed-up 
of the parareal algorithm; see, e.g., [52].

The aim of this work is to show potential for the parareal algorithm as a parallel time-stepping method for plaque 
growth simulations. A final assessment of the parallelization capabilities can, of course, only be made based on computing 
times of an actual parallel implementation. We will leave this to future work.

4.1.3. Convergence theory
Let us briefly recap the standard convergence theory for the parareal algorithm; see, e.g., [32]. For this purpose, let us 

consider the simpler ODE model

∂tcs = γ (cs), cs(0) = 0, (22)

and its discretization by the explicit Euler method

cn
s = cn−1

s + δT γ (cn−1
s ), c0

s = 0. (23)

We assume that the function γ and its derivative are Lipschitz continuous in cs , i.e., we assume

|γ (c1
s ) − γ (c2

s )| ≤ L|c1
s − c2

s |,
∣∣ d

dt
γ (c1

s ) − d

dt
γ (c2

s )
∣∣ ≤ L|c1

s − c2
s | for all c1

s , c2
s ∈ R (24)

for some L > 0. As in [32], we also assume for simplicity that the fine-scale propagator advances the ODE exactly, i.e.,

cs(Tn) = F(cs(Tn−1)) = cs(Tn−1) +
Tn∫

Tn−1

γ (cs(s))ds. (25)

This is motivated by the fact that the time discretization error in the fine propagator is typically small compared to the 
coarse propagator. The following convergence result is shown by Gander & Hairer in [32]:

Lemma 1. Let c∗
s ∈ C1(0, Tend) be the exact solution of eq. (22), and let {c(k)

s (Tn)}P
n=1 be the k-th iterate of the parareal algorithm 

in eq. (18) using the forward Euler method in eq. (23) as the time discretization. Under the assumptions made above, it holds for the 
error e(k)

n = |c(k)
s (Tn) − c∗

s (Tn)| and k ∈N0, n ∈ {1, . . . , P } that

e(k)
n ≤ (cTn)

k+1 βn−k−1δT k+1 max
t∈[0,Tend] |∂tc∗

s (t)|, (26)

with a constant c > 0 and β = 1 + LδT .

Remark 1. The assumptions in eq. (24) cannot be easily verified for the ODE model in eq. (5), as the fluid forces and 
γ̄ (σ W S

f ) depend in a highly nonlinear way on cs . In the numerical examples given below, we will, however, observe that 
the convergence behavior is similar to the one shown in Lemma 1.

4.1.4. Numerical results
We use, again, the simple example described in section 3.2 with the ODE growth model in eq. (5) and set εpar = 10−3. 

Results for P = Nc = 10 and δt = 0.3 days are shown in Fig. 6, where the first 3 iterates are compared against a reference 
solution (c∗

s , u∗
s , v∗

f ), which was computed by a standard serial time-stepping scheme, as in section 3.2. We observe fast 
convergence towards the reference curve in all three quantities of interest. The stopping criterion in eq. (19) was satisfied 
after 4 iterations of the parareal algorithm.

In Table 1, we show the deviations in the foam cell concentration |c(k),fine
s (Tend) − c∗

s (Tend)| at final time Tend after each 
iteration of the parareal algorithm for P = Nc = 10, 20, 30, 40 and 50 processes. We observe that the number of iterations 
kpar decreases from four to three for P ≥ 20. This is due to the fact that the coarse problem is solved with the smaller 
time-step size δT = � Tend

P �, which makes the coarse problem more expensive but also more accurate. In particular, we 
obtain a better approximation for the coarse values c(k)

s (T p) that are used as initial values in the fine problems in the next 
iterate. We can also observe that, for fixed P , the error decreases at least by a factor 1

P in each parareal iteration. This is 
in agreement with Lemma 1, which predicts (for a simpler model problem) a reduction factor c · δT = c · � Tend

P � for some 
constant c > 0, compared to the previous iterate.

Since the number of parareal iterations kpar is constant for all cases with P ≥ 20, we get the lowest computational cost 
for P = 30, which is close to 

√
N f ≈ 31.6; cf. the discussion in section 4.1.2. For P = 30, 3 · 34 = 102 micro problems need 

to solved on each process (step II.a) and 4 · 30 = 120 micro problems within the coarse propagators (steps I and II.b), i.e., 
222 micro problems in total. Compared to a serial time-stepping scheme with the same fine-scale time-step size, which 
requires the solution of N f = 1 000 serial micro problems, this corresponds to a speed-up of 1 000 ≈ 4.5; see also eq. (21). 
S. Frei and A. Heinlein Journal of Computational Physics 491 (2023) 112347
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Fig. 6. Behavior of the first three iterates of the parareal algorithm in the first numerical example (ODE growth) for P = 10. A description of the problem is 
given in section 4.1.4, numerical values in Table 1. The iterates converge very quickly towards the reference solution. Top: Growth function and error w.r.t. 
the reference solution σ W S

f (v∗
f ) over time t . Center: c(k),fine

s and error w.r.t. the reference solution c∗
s over time. Bottom: Channel width over time and 

error |us,y(x̂) − u∗
s,y(x̂)| w.r.t. the vertical component of the reference solution u∗

s at the narrowest point x̂ over time.

Table 1
Errors |c(k),fine

s (Tend) − c∗
s (Tend)| for P = 10, . . . , 50 for the parareal algorithm (Algorithm 2) in the first numerical example (ODE growth). For comparison, 

the reference value c∗
s (Tend) = 0.63831273... resulting from a serial time-stepping with the same fine-scale time-step size δt is taken. The time measure in 

terms of the number of serial micro problems (# mp) as well as speedup and efficiency compared to the reference computation (right column) are shown; 
the stopping criterion |c(k+1),fine

s (Tend) − c(k),fine
s (Tend)| < εpar = 10−3 is used; best numbers marked in bold face.

k P = 10 P = 20 P = 30 P = 40 P = 50 Ref. (serial)

1 2.21 · 10−2 1.19 · 10−2 8.12 · 10−3 5.83 · 10−3 5.46 · 10−3 0
2 2.24 · 10−3 5.63 · 10−4 2.62 · 10−4 1.37 · 10−4 8.61 · 10−5 -
3 1.42 · 10−4 2.02 · 10−5 6.53 · 10−6 2.32 · 10−6 8.30 · 10−7 -
4 5.76 · 10−6 - - - - -

# mp 450 230 222 235 260 1 000
speedup 2.2 4.3 4.5 4.3 3.8 1.0
efficiency 22% 22% 15% 11% 8% 100%
13
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Table 2
Errors |c(k)

s (Tend) − c∗
s (Tend)| for P = 10, . . . , 50 for the parareal algorithm (Algorithm 2) in the first numerical example (ODE growth). The time measure in 

terms of the number of serial micro problems (# mp) as well as speedup and efficiency compared to the reference computation (right column) are shown; 
the stopping criterion |c(k+1)

s (Tend) − c(k)
s (Tend)| < εpar = 10−3 is used; best numbers marked in bold face.

k P = 10 P = 20 P = 30 P = 40 P = 50 Ref. (serial)

1 2.59 · 10−3 5.97 · 10−4 3.29 · 10−4 1.42 · 10−4 8.95 · 10−5 0
2 2.81 · 10−3 2.04 · 10−5 6.59 · 10−6 2.36 · 10−6 8.43 · 10−7 -
3 6.37 · 10−6 - - - - -
4 1.73 · 10−7 - - - - -

# mp 450 160 158 170 190 1 000
speedup 2.2 6.25 6.3 5.9 5.3 1.0
efficiency 22% 31% 21% 15% 11% 100%

As is usual for two-level methods, for larger numbers of processes (P ), the cost of the coarse problems gets dominant. For 
P = 40, we solve, for example, 3 · 25 = 75 micro problems in the fine propagator compared to 4 · 40 = 160 micro problems 
for the coarse propagator; this results in a total of 235 micro problems and a speedup of 4.3.

In order to relate the speed-up to the computational resources used, we define the computational efficiency by the ratio 
speedup

P
as a second measure to quantify the results. By definition, the serial computation always has the best efficiency, 

as it converges within one sweep through all time steps. Even if the parareal algorithm would also converge within one 
iteration, the parallel computations come with additional costs since they require the solution of the coarse problem.

In fact, using the serial computation as a reference in the comparison in Table 1, the efficiency is best (22%) for P = 10
or P = 20; it deteriorates for larger numbers of processes due to the increasing cost of the coarse problems. The low 
efficiency is a typical observation for parallel time integration methods, such as the parareal method and can be explained 
as follows: For P = 10, for instance, 4 parareal iterations are required and each iteration requires the solution of all 1 000 
micro problems on the fine scale on the full time interval [0, Tend]. Hence, a total of 4 000 micro problems has to be solved. 
Assuming that the time to solve a micro problem is approximately constant, we can not expect efficiencies above 25%. Due 
to the additional cost of the coarse propagator, the efficiency is reduced to 22%. However, since we can always compute 10 
micro problems on the fine scale at the same time, we can still obtain a speedup of 2.2.

To increase the efficiency, we could take the value c(k)
s (Tend) computed in eq. (18) instead of c(k),fine

s (Tend) in the stopping 
criterion

|c(k+1)
s (Tend) − c(k)

s (Tend)| < εpar. (27)

In particular, at the end time Tend we expect that this has a higher accuracy compared to the fine-scale variable 
c(k),fine

s (Tend). However, the values c(k+1)
s (ti) are only available at the coarse grid points ti ∈ {T p}P

p=1. If one is interested in 
foam cell concentrations at intermediate time steps, a stopping criterion based on c(k),fine

s (ti) needs to be used, as in eq. (19).
The errors concerning c(k)

s (T ) and the number of micro problems to be solved using the stopping criterion eq. (27) are 
given in Table 2. We observe that for P ≥ 20 this stopping criterion was satisfied already after kpar = 2 iterations. For P = 30
we get again the lowest computational cost with a speed-up of around 6.33 compared to a serial computation. Furthermore, 
the best efficiency is obtained here with P = 20, which is due to the lower iteration count compared to the case P = 10.

4.2. Variants with cheaper coarse-scale computations

In the parareal algorithm introduced above, a further improvement of the computational cost is not possible for P �
√

N f
processes in the case P = Nc due to the (increasing) cost of the coarse-scale propagators. In fact, these get dominant 
compared to the fine-scale contributions for P �

√
N f . In this section, we will discuss approximate coarse-scale propagators, 

where no additional computations of micro problems are needed; hence, they are computationally cheaper.

4.2.1. Heuristic averaging of the FSI problems
As a first variant, we use the heuristic averaging approach mentioned in the beginning of section 3.1 for the coarse-scale 

propagation in steps (I) and (II.b)(i) of Algorithm 2. The solution of the stationary FSI problem in variational formulation 2
is much cheaper compared to ≥ 100 time steps of a non-stationary FSI problem (approx. by a factor 100), and thus, its 
computational cost is neglected in the following discussion. Hence, the computational cost is reduced from kpar · �N f /P� +
(kpar + 1) · P to kpar · �N f /P� micro problems. In Fig. 7, we illustrate the error in the foam cell concentration for P = 50

(left), and give the error |c(k),fine
s (Tend) − c∗

s (Tend)| in each iteration k for P = 30 and P = 50 (right). We observe a much 
slower convergence compared to the standard parareal algorithm used above. This could already be expected from the 
results in Fig. 3, where we saw that the heuristic averaging is not a good approximation. Using the stationary problem for 
the coarse propagator, 8 parareal iterations are necessary until the stopping criterion is satisfied for P = 30 and P = 50
compared to 3 iterations in the standard parareal algorithm.
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Fig. 7. Behavior of the iterates of the parareal algorithm, when the stationary FSI problem (variational formulation 2) is used in Step (I) and (II.b)(i) 
of Algorithm 2. A description of the computation is given in section 4.2. Convergence to the reference solution is much slower compared to standard 
parareal (see Fig. 6). Top: Evolution of c(k),fine

s (t) and error |c(k),fine
s (t) − c∗

s (t)| of the foam cell concentration over time t for P = 50 and k = 1, 2, 3, 4. Right: 
Errors |c(k),fine

s (Tend) − c∗
s (Tend)| after each iteration for P = 30 and P = 50; total number of micro problems (# mp) solved in parallel as well as speedup 

and efficiency compared to the reference computation (right column); best numbers marked in bold face.

In terms of the computating time, 8 · 34 = 272 and 8 · 20 = 160 micro problems are necessary for the cases P = 30 and 
P = 50, respectively. While for P = 30 this is worse compared to the standard parareal algorithm, this is an improvement 
of 67% for P = 50; cf. Table 1. As for the standard parareal algorithm, convergence is obtained faster if we consider the 
stopping criterion in eq. (27) based on the parareal iterates c(k)

s (Tend); however, 7 iterations are still needed. The resulting 
computational cost is 7 · 34 = 238 micro problems for P = 30 and 7 · 20 = 140 micro problems for P = 50. Compared to 158 
micro problems for P = 30 and 190 micro problems for P = 50 in the standard parareal algorithm (cf. Table 2), we see only 
a small but no significant improvement. We will thus consider another, more promising approach to compute the required 
growth values γ (σ W S

f ) for the coarse propagator in the following subsection.

Remark 2. As mentioned before, parallelization in space is generally more efficient than parallelization in time. Hence, com-
plex three-dimensional FSI simulations already have a significant potential for parallelization. Additionally using temporal 
parallelization with large values of P , such as P > 50, may only be reasonable on very large supercomputers.

4.2.2. Re-usage of computed growth values
As a second approach we will consider the re-use of growth values γ (σ W S

f (tp,i)) computed in the fine-scale propagator 
on the coarse scale. Therefore, we store all values γ p·np+i := γ (σ W S

f (tp,i)) computed on the fine scale on all processes 
p = 1, ..., P for all time-steps i = 1, ..., np ; see step 1.b of Algorithm 1. These can be used in the coarse propagator (step II.b) 
in the same parareal iteration instead of computing new growth values there.

We introduce the following notations for the coarse resp. fine propagators that start from cs,n−1 using certain growth 
values γ (Tn−1) (that might now differ from γ (σ WS

f (cs,n−1))):

ccoarse
s,n = C(In, cs,n−1, γ (Tn−1)), cfine

s,n = F(In, cs,n−1, γ (Tn−1)),

where In = [tn−1, tn]. After an initialization step, the modified parareal iteration is defined by the following formula for 
n = 1, ..., P and k ≥ 1:

c(k)
s,n = C(In, c(k)

s,n−1, γ̄ (c(k),fine
s,n−1 )) +F(In, c(k−1)

s,n−1, γ̄ (c(k−1)
s,n−1)) − C(In, c(k−1)

s,n−1, γ̄ (c(k−1),fine
s,n−1 )), (28)
15
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Algorithm 3: Parallel Time-Stepping with Re-Usage of Growth Values

(I) Initialization: Compute {(c(0)
s (T p), w(0)(T p)

}P
p=1 by means of Algorithm 1 with a coarse macro time-step size δT = T p+1 − T p on the master 

process. Set k ← 0
(II) while |c(k+1),fine

s (Tend) − c(k),fine
s (Tend)| > εpar do

(II.a) Fine problem:
for p = 1, ..., P do

(i) Initialize c(k+1),fine
s (T p) = c(k)

s (T p), w(k+1)(T p) = w(k)(tp−1,N p ))

(ii) Compute {(c(k+1),fine
s (tp,q), w(k+1)(tp,q)

}np

q=1 by Algorithm 1 with fine time step δt

(iii) Store the resulting growth functions γ p·np+q := γ (σ W S
f )(tp,q) at all fine points

tp,q, q = 1, ..., np as well as w(tp,np ) at the last time-step.

(II.b) Coarse problem:
(i) for j = 1, ..., N f do

Compute c(k+1)
s (t j) by advancing the ODE eq. (5) resp. solving the PDE

in eq. (11) using the growth values γ j computed in (II.a).

where

c(k),fine
s,n−1 := F(In−1, c(k−1)

s,n−2, γ̄ (c(k−1)
s,n−2)), (29)

and c(0),fine
s,n = c(0)

s,n . Moreover, we set c(k),fine
s,0 = c(k)

s,0 = 0 for all k.
As no new micro problems need to be solved and approximations of the growth values γ j are available for all fine 

time steps j = 1, ..., N f , the coarse propagator can now even use the fine-scale time-step δt . The only additional cost is to 
advance the foam cell concentration by eq. (5) resp. eq. (18) on the coarse level. This cost is clearly negligible for the ODE 
growth model in eq. (5). The additional cost in case of the PDE model eq. (18) will be discussed in section 5. The resulting 
algorithm is given as Algorithm 3.

The growth values employed for the re-usage are available for all fine-scale time steps, and hence, we are able to perform 
the coarse propagation efficiently on the fine scale; cf. the discussion on the computational cost later in this section as well 
as for the PDE growth model in section 5.3. Nonetheless, the expected accuracy of the re-usage approach is still lower 
compared to the standard parareal algorithm. This is because the growth values on the fine scale have been computed using 
c(k),fine

s,n−1 , which depends on the previous iterate c(k−1)
s,n−2 (see eq. (29)), whereas the coarse propagator in the standard parareal 

algorithm already uses the more accurate c(k)
s,n−1 from the current iteration.

Computational costs Only the coarse step in the initialization (I) has to be carried out without re-usage and comes with 
a computational cost of Nc micro problems. On the other hand, step (II.b) does not require the solution of any micro 
problems. In terms of micro problems to be solved, the computational cost of step (II.a) is the same as in the standard 
parareal algorithm (Algorithm 2). Altogether, the number of micro problems to be solved in kpar iterations of Algorithm 3 is

kpar · �N f /P� + Nc.

Again, we obtain a saturation of the cost for large P , but the cost for large P is by a factor kpar smaller. Moreover, for 
Nc = P , the choice P ≈ √

kpar N f would be optimal if the number of iterations kpar was independent of the number of 
processes P .

The speed-up compared to a serial computation is given by

speedup(P ) = N f

kpar · �N f /P� + Nc
≈ 1

kpar
P + Nc

N f

, (30)

assuming, again, a perfect load balancing of the micro problems.
The communication cost of the approach strongly depends on the employed parallelization scheme; cf. section 4.1.1. In 

the distributed parallelization approach, the growth values γ (σ W S
f (tp,i)), which are needed in the coarse propagator, do not 

have to be communicated. This is because the same intervals in fine and coarse problems are computed on the processes. 
In the master-slave approach, however, the values have to be communicated from each slave process to the master. Using 
the ODE growth model, these are N f scalar values in total (in our example N f = 1 000). Even for the master-slave commu-
nication scheme, it is thus reasonable to assume that the computational cost of communication is still negligible compared 
to the solutions of the micro problems. In the case of a PDE growth model, the additional cost for communication will be 
discussed in section 5.

Theoretical convergence analysis We extend the convergence results discussed in section 4.1.3 for the model problem 
in eq. (22) for the re-usage algorithm in eq. (28) under the assumptions made in section 4.1.3.

The following result is a direct consequence of Lemma 3, which is shown in the appendix.
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Fig. 8. Error in the concentration |c(k),fine
s (t) − c∗

s (t)| over time t in the first 3 iterates of the parareal algorithm with re-usage of growth values (Algorithm 3) 
for P = 10 (left) and P = 60 (right) and the first numerical example (ODE growth model).

Table 3
Errors |c(k),fine

s (Tend) − c∗
s (Tend)| for P = 10, . . . , 70 for the parareal Algorithm 3 (re-use of growth values) and the first numerical example (ODE growth 

model). Value c∗
s (Tend) of a serial reference computation for comparison. The time measure in terms of the number of micro problems (# mp) as well as 

speedup and efficiency compared to the reference computation (right column) are shown; the stopping criterion |c(k+1),fine
s (Tend) − c(k),fine

s (Tend)| < εpar =
10−3 is used; best numbers marked in bold face.

k P = 10 P = 20 P = 30 P = 40 P = 50 P = 60 P = 70 Ref.

1 2.56 · 10−2 1.10 · 10−2 7.48 · 10−3 5.46 · 10−3 4.23 · 10−3 3.63 · 10−3 3.12 · 10−3 0
2 7.78 · 10−3 4.48 · 10−3 3.16 · 10−3 2.36 · 10−3 1.99 · 10−3 1.61 · 10−3 1.41 · 10−3 -
3 1.73 · 10−3 1.20 · 10−3 9.02 · 10−4 6.92 · 10−4 6.34 · 10−4 5.14 · 10−4 4.32 · 10−4 -
4 2.32 · 10−4 2.28 · 10−4 1.87 · 10−4 1.31 · 10−4 1.26 · 10−4 1.10 · 10−4 9.98 · 10−5 -
5 2.19 · 10−5 4.71 · 10−5 3.05 · 10−5 - - - - -

# mp 510 270 200 140 130 128 130 1 000
speedup 2.0 3.7 5.0 7.1 7.7 7.8 7.7 1.0
eff. 20% 19% 17% 18% 15% 13% 11% 100%

Theorem 1. Let c∗
s ∈ C1(0, Tend) be the exact solution of eq. (22) and let {c(k)

s (Tn)}P
n=1 be the k-th iterate of the re-usage algorithm 

in eq. (28) using the forward Euler method in eq. (23). Under the assumptions made in section 4.1.3, it holds for the error e(k)
n =

|c(k)
s (Tn) − c∗

s (Tn)| and k ∈N0, n ∈ {1, . . . , P } that

e(k)
n ≤ LδT max

{
1, Tn− k

2

}k ckβn−k

�k/2�! max
t∈[0,Tend] |∂tc∗

s (t)|. (31)

with a constant c > 0 (see Lemma 3) and β = 1 + LδT . This implies e(k)
n → 0 for k → ∞.

The convergence e(k)
n → 0 for k → ∞ follows due to the factorial �k/2�! in the denominator. Compared to Lemma 1, 

the estimated convergence in k is much slower. However, we will observe in the numerical examples below that a good 
accuracy might still be reached within few iterations.

Numerical results In Fig. 8, the evolution of the error in the concentration variable c(k)
s is plotted over time for P = Nc = 10

and P = Nc = 60. We observe convergence to the reference values c∗
s in both cases. Compared to the results in Fig. 6 for 

the classical parareal algorithm (Algorithm 2), the convergence is significantly slower. Nevertheless, the stopping criterion is 
already fulfilled after 4-5 iterations (see Table 3), which is only 1-2 iterations more than in the standard parareal algorithm 
(see Table 1).

While we had observed reduction factors in the order of δT = � Tend
P � between two consecutive parareal iterations for the 

standard parareal algorithm in Table 1, the reduction factors are slightly worse in Table 3. They are, however, in all cases 
(besides the last value for P = 20) bounded above by 1

k , where k is the parareal iterate. This indicates a convergence of 
order O( 1

k! ), which is related to the factor O( 1
� k

2 �! ) in eq. (31) in Theorem 1. Moreover, the absolute values of the error in 

each parareal iteration are significantly smaller for P = 60 compared to the case of P = 10 (Note the different scaling in the 
vertical axis).

In Table 3, we compare the number of micro problems needed for P = Nc = 10 to 70. The optimal number of processes 
is P = √

kpar N f ≈ 63.25, which is twice as many processes compared to the parareal algorithm in the previous section. 
The minimal cost in Table 3 is 128 micro problems for P = 60, compared to 222 for standard parareal. Compared to a 
17



Table 4
Errors |ĉ(k),fine

s (Tend) − ĉ∗
s (Tend)| at the midpoint x̂m of �̂ for P = 10 to 50 for the parareal algorithm (Algorithm 2) and a serial reference computation 

applied to the second numerical example (PDE growth model, ĉ∗
s (Tend) = 0.5186632). Estimated parallel runtimes are shown, as well as speedup and 

efficiency compared to the reference computation (right column). Details on the estimation of the runtimes are given in section 5.3. Best numbers are 
marked in bold face.

k P = 10 P = 20 P = 30 P = 40 P = 50 Ref. (serial)

1 2.80 · 10−3 1.42 · 10−3 7.49 · 10−4 6.53 · 10−4 5.04 · 10−4 0
2 8.73 · 10−5 9.46 · 10−5 1.27 · 10−4 6.22 · 10−5 4.78 · 10−5

3 3.45 · 10−5 2.90 · 10−5 2.97 · 10−5 1.36 · 10−5 9.19 · 10−6

4 - 1.93 · 10−6 4.45 · 10−6 - -

Est. par. 11 347 s 9 661 s 8 692 s 6 914 s 7 491 s 26 840 s
speedup 2.4 2.8 3.1 3.9 3.6 1.0
efficiency 24 % 14% 10% 10% 7% 100%

serial time-stepping scheme, we obtain a maximum estimated speed-up of 7.8. Moreover, the efficiency is also significantly 
improved for larger numbers of processes compared to the standard approach; cf. Tables 1 and 3.

5. Plaque growth problem with a distributed foam cell concentration

We consider the PDE growth model introduced in section 2.2.2, where the concentration of foam cells ĉs = ĉs(x̂, t) is now 
governed by the non-stationary reaction-diffusion problem in eq. (11). For time discretization, we use a linearized variant 
of the backward Euler scheme. Starting from cs,0 = 0, the standard backward Euler scheme writes for l = 1, ..., N f :

Find cs,l+1 ∈ C := H1
0(Ŝ, �̂s) such that

1

δt

(
ĉs,l+1 − ĉs,l, ϕ̂

)
Ŝ −

(
Ds∇̂ ĉs,l+1, ∇̂ϕ

)
Ŝ

+ Rs
(
ĉs,l+1(1 − ĉs,l+1), ϕ̂

)
Ŝ

+
(
γ (σ W S

f ), ϕ̂
)

�̂
= 0 ∀ϕ̂ ∈ C.

(32)

Since eq. (32) is a nonlinear system of equations, several iterations of a nonlinear solver (e.g., Newton’s method) would be 
necessary to solve it. Thus, we consider the following linearized variant, which can be seen as an implicit-explicit (IMEX) 
scheme (see, e.g., [3])

1

δt

(
ĉs,l+1 − ĉs,l, ϕ̂

)
Ŝ +

(
Ds∇̂ ĉs,l+1, ∇̂ϕ

)
Ŝ

+ Rsθ
(
ĉs,l+1(1 − ĉs,l), ϕ̂

)
Ŝ

+Rs(1 − θ)
(
ĉs,l(1 − ĉs,l+1), ϕ̂

)
Ŝ +

(
γ (σ W S

f ), ϕ̂
)

�̂
= 0,

(33)

where θ ∈ [0, 1] is a weighting parameter. In our numerical experiments, we choose θ = 0.7. For spatial discretization, we 
use again Q 2 finite elements on the mesh described in section 3.2. If we assume that evolution of the wall shear stress 
σ W S

f was given exactly, the following bound could be shown for the discretization error

‖ĉs(Tend) − ĉ
N f
s ‖ Ŝ +

⎛⎝ N f∑
l=1

δT ‖∇̂(ĉs(Tl) − ĉs,l)‖2
Ŝ

⎞⎠1/2

≤ c1h2 + c2δT . (34)

Due to the nonlinear interaction between FSI and reaction-diffusion equation, an analysis of the discretization error of the 
coupled problem is more involved and not within the scope of this paper. The chosen time-step δT is 1

1000 times the macro 
time interval length Tend, while the horizontal cell size h is a factor 1

20 of the length of the channel in horizontal direction. 
Thus, the errors in eq. (34) should be roughly equilibrated.

The material parameters in the fluid and solid problems are chosen as in the first example. The parameters of the PDE 
growth model are set to Ds = 1.2 · 10−7 cm2

s , Rs = 5 · 10−7 1
s , α = 5 · 10−8 cm

s , and σ0 = 30 g
cm s2 . The inflow profile of velocity 

is chosen as

vin
f (t, x) = 30

(
(1 + sin(π t

P )2)(1 − x2
2)

0

)
cm/s,

where P = 1 s. The end time is Tend = 200 days, and for the fine time steps, we use δt = 0.2 days, such that again 
N f = 1 000. In Fig. 9, we visualize the results for horizontal velocity vx and vertical displacement u y in the deformed fluid 
and solid domains in three different time instants, respectively. In Fig. 10 the foam cell concentration cs on the FSI interface 
is shown for different times t . First, we observe a dominant growth in the center of the domain due to the penetration 
of monocytes and the reaction term in eq. (11). After t > 100 the diffusion gets more significant, such that foam cells are 
distributed over the whole interface.
S. Frei and A. Heinlein Journal of Computational Physics 491 (2023) 112347
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Fig. 9. Visualization of the plaque growth at times t = 50 days, t = 100 days and t = 200 days for the second numerical example (PDE growth model). The 
horizontal velocity (in cm/s) and the vertical displacement (in cm) are shown on the deformed domain at micro time τ = 0.5 s, i.e., the time of maximum 
inflow velocity. As the plaque growth evolves, significantly higher velocities arise in the central part.

Fig. 10. Foam cell concentration ĉs at the FSI interface �̂ at different times t in the second numerical example (PDE growth model). In contrast to the ODE 
model, the concentration is not symmetric around the center anymore for larger times t; this is due to the reaction-diffusion equation.

Fig. 11. Errors for the second numerical example (PDE growth model) in different iterations of the parareal algorithm for P = 10; the setting is described 
in section 5. Left: Error in the concentration |ĉ(k),fine

s (x̂m, t) − ĉ∗
s (x̂m, t)| at the midpoint of �̂ over time; see also Fig. 10 for the temporal evolution of ĉs at 

the interface. Right: Error in the mean value 
∣∣ ∫

�̂
ĉ(k),fine

s (x̂, t) − ĉ∗
s (x̂, t) dx̂

∣∣ over time.
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Table 5
Errors |ĉ(k),fine

s (Tend) − ĉ∗
s (Tend)| at the midpoint x̂m of �̂ for a fixed coarse time step (Nc = 40), P ∈ {10, 20, 40} and the parareal algorithm (Algorithm 2) 

applied to the second numerical example (PDE growth model). Estimated parallel runtimes are shown, as well as speedup and efficiency compared to the 
reference computation (right column). Best numbers are marked in bold face.

k P = 10 P = 20 P = 40 Ref. (serial)

1 8.51 · 10−4 7.60 · 10−4 6.53 · 10−4 0
2 7.64 · 10−6 2.25 · 10−5 6.22 · 10−5 -
3 4.36 · 10−7 3.66 · 10−6 1.36 · 10−5 -

# mp 460 310 235 1 000
speedup 2.2 3.2 4.3 1.0
efficiency 22 % 16% 11% 100%

In the following section 5.1 we investigate numerically the convergence behavior of the standard parareal algorithm 
(Algorithm 2) and the re-usage variant (Algorithm 3). Then, we discuss the computational costs of the algorithms applied 
to the PDE growth model in section 5.2. Finally, we compare the algorithms in section 5.3 based on estimated runtimes of 
a parallel implementation.

5.1. Convergence behavior of the parallel time-stepping algorithms

We consider again the standard parareal algorithm (Algorithm 2) and the modification with re-usage of growth values 
(Algorithm 3). As stopping criterion, we now choose

|ĉ(k+1),fine
s (x̂m, Tend) − ĉ(k),fine

s (x̂m, Tend)| < εpar = 10−4,

where x̂m = (0, −1) is the center of the FSI interface �̂, that is, a slightly more strict tolerance compared to the ODE model.

Standard parareal In Fig. 11, we show the evolution of the error in the first three iterates of the parareal algorithm over time 
for P = Nc = 10. More precisely, we plot the error in the point functional ĉ(k),fine

s (x̂m, t), that is, the foam cell concentration 
at the center of the FSI interface, and the average 

∫
�̂

ĉ(k),fine
s (x̂, t) dx of the foam cell concentration over time. As in the first 

numerical example, we observe fast convergence towards the reference values. Again, the foam cell concentrations ĉs(x̂m)

are significantly overestimated in the initialization step, due to the large time-step δT in step (I). These are the starting 
values for the fine problems in the first parareal iteration.

In Table 4, we compare the convergence of the function values of ĉ(k),fine
s (x̂m, Tend) depending on the number of processes 

P . The findings are similar to the first numerical example (Table 1). Again, depending on P , three to four parareal iterations 
were sufficient to reach the stopping criterion, with a slightly faster convergence behavior for larger P .

In Table 5, we show numerical results for a fixed coarse time step δT = Tend
40 , i.e., Nc = 40 and varying P ∈ {10, 20, 40}. 

This means that the cost of the coarse propagator (in terms of the number of micro problems to be solved) is equal in 
all three cases. While the convergence behavior is slightly faster for smaller P , the stopping criterion was satisfied after 3 
parareal iterations in all cases. As the fine propagator is cheaper for larger P , the fastest computation is P = Nc = 40, with 
a speed-up of 4.3 in terms of the number of micro problems to be solved.

Parareal with re-usage of growth values In Table 6, we show the results for the parareal algorithm with re-usage of growth 
values; cf. section 4.2.2. For all tested P , we need kpar = 5 iterations to satisfy the stopping criterion. Similar to the first 
numerical example, these are 1-2 additional iterations compared to the standard parareal algorithm.

5.2. Theoretical discussion of the computational cost

While using the ODE growth model, it was obvious that the solution of the growth model and the communication could 
be neglected, this requires some discussion for the PDE growth model, as the reaction-diffusion equation (33) needs to be 
solved to advance the foam cell concentration ĉs .

Standard parareal In the standard parareal algorithm (Algorithm 2), a time step of the PDE growth model always follows 
the solution of a micro problem, where the growth values γ (σ W S

f ) are computed. Thus, the numbers of time steps of the 
PDE growth model and micro problems to be solved coincide. Considering that the latter consists of ≥ 100 time steps, each 
involving the solution of a nonlinear, coupled FSI problem, while the growth model only requires the solution of a single 
scalar PDE of reaction-diffusion type, it is clear that the computational cost of the growth model is negligible.

Concerning communication, each process p = 1, ..., P needs to communicate its final foam cell concentration F(c(k)
s (T p))

= ĉ(k),fine
s (tp,np ), which is a scalar-valued finite element function defined in the solid domain Ŝ , to the master process if 

the master-slave approach is used. No communication of F(ck
s (T p)) is required in a distributed approach; cf. section 4.1.1. 

Then, after the coarse propagator, the variables c(k+1)
s (tp·np ) have to be communicated: in the master-slave approach, the 
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data is transferred back to the slaves, and in the distributed case, it is communicated to the next process in line. Using the 
discretization outlined above, this corresponds to 369 degrees of freedom that need to be communicated each time.

As already discussed in section 4.1.1, in the master-slave case, this communication step is unfavorable because it involves 
all-to-one and one-to-all communication, whereas the communication pattern for the distributed parallelization only in-
volves neighbor communication, which is more beneficial. However, in both cases, the two communication steps are only 
performed once during each parareal iteration. In order to investigate if the communication cost is still negligible for the 
PDE growth model, parallel numerical experiments based on an actual parallel implementation are needed, especially for 
realistic three-dimensional problems; see also the discussion in [34]. Due to the large computational cost of the micro prob-
lems in realistic three-dimensional problems, the communication cost might still be comparably small, which motivates the 
focus on the number of micro problems to be solved in our discussion; recall that, in our case, the micro problems consist 
of ≥ 100 time steps of a fully coupled FSI problem. Obviously, this argumentation needs to be confirmed based on an actual 
parallel implementation; we will investigate this further in our future work.

Parareal with re-usage of growth values The objective of the re-usage algorithm is to reduce the number of micro problems 
to be solved in the coarse-scale propagator. As this allows for a smaller time-step size δt in the coarse problem, the number 
of reaction-diffusion equations to be solved, might increase significantly. Instead of Nc of such equations in step (II.b)(i) 
of Algorithm 2, Algorithm 3 requires N f reaction-diffusion steps in step (II.b)(ii), where N f = 1 000 in the example used 
in this section. Thus, in kpar iterations of the parareal algorithm, the number of such equations to be solved is kpar · N f in 
step (II.b)(ii) plus Nc equations in step (I) and kpar · � N f

P � in step (II.a)(ii) of Algorithm 3. In total, Algorithm 3 requires the 
solution of

kpar · (N f + �N f /P�) + Nc

reaction-diffusion equations. For a comparison, we note that the number of micro problems to be solved for P processes 
was (kpar + 1)Nc +kpar · �N f /P� (see section 4.1.2). This means that the number of reaction-diffusion equations to be solved 
is by a factor

kpar · (N f + �N f /P�) + Nc

(kpar + 1)Nc + kpar · �N f /P�
larger compared to the number of micro-problems. A simple calculation yields that

kpar · (N f + �N f /P�) + Nc

(kpar + 1)Nc + kpar · �N f /P� ≤ kpar
(
N f + �N f /P� + Nc

)
kpar

(
Nc + �N f /P�) = N f

Nc + �N f /P� + 1 ≤
√

N f

2
+ 1.

In the last inequality, we have used that Nc ≥ P . For N f = 1 000, the bound on the right-hand side is approximately 16.8.
Of course, another option would be to use coarser time steps for the coarse propagator. However, noting again that a 

micro problem consists of ≥ 100 FSI steps, the computational cost for ≤ 16.8 scalar reaction-diffusion equations is still much 
cheaper. This will be confirmed in the following section, where we show estimated runtimes of a parallel implementation 
and the respective contributions from the micro problems and the solves of reaction-diffusion equations.

For the re-usage of growth values and the distributed parallelization scheme, the communication cost does not change 
compared to the standard parareal algorithm. This is because the growth values to be re-used are already available on the 
process; this follows directly from the discussion in section 4.2.2. In the case, of master-slave communication, the com-
munication cost is increased. In particular, N f growth functions γ i, i = 1, ..., N f need to be transferred from the processes 
p = 1, ..., P to the master process. Each γ i is a spatially discretized function which is defined on the FSI interface �̂. In the 
example considered here, it is non-zero only in the area x̂1 ∈ [−1, 1] which corresponds to 7 degrees of freedom in our 
discretization; again, for a realistic three-dimensional problem, the number of degrees of freedom will increase drastically 
but will still remain small compared to the full problem size. As mentioned before, we assume that the communication cost 
is negligible compared to the solution of the micro problems in our discussion. Again, this assumption has to be tested in 
the future based on parallel results.

5.3. Comparison of runtimes

The computational results given in this paper serve as a proof of concept to test the presented algorithms. From the 
discussion in the previous subsection, we assume that the only relevant computational cost comes from the solution of the 
micro problems. As mentioned before in our current implementation, we do not solve the fine-scale problems in parallel on 
different processes. Instead, they are solved sequentially one after the other on a single process. Since the cost for the micro 
problems dominates the computation times for any serial or parallel simulation of the plaque growth, we can still discuss 
the parallelization potential of the methods. The parallel implementation of the algorithms itself is subject to future work.

In this section, we will give an estimate of the runtimes that would be required in a parallel implementation. For this 
purpose, we list the serial part and parallel contributions of the computing times in Table 7. The serial part corresponds to 
21
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Table 6
Errors |c(k),fine

s (x̂m, Tend) − ĉ∗
s (x̂m, Tend)| at the midpoint x̂m of �̂ for P = 10 to 70 for Algorithm 3 (Re-usage of growth values) applied to the second 

numerical example (PDE growth model). We show estimated parallel runtimes, as well as speedup and efficiency compared to the reference computation 
(right column). Details on the estimation of runtimes are given in section 5.3. Best numbers are marked in bold face.

k P = 10 P = 20 P = 30 P = 40 P = 50 P = 60 P = 70 Ref.

1 2.80 · 10−3 1.42 · 10−3 7.49 · 10−4 6.53 · 10−4 5.04 · 10−4 4.00 · 10−4 3.32 · 10−4 0
2 6.37 · 10−4 6.96 · 10−4 5.62 · 10−4 4.08 · 10−4 3.45 · 10−4 3.09 · 10−4 2.82 · 10−4

3 1.33 · 10−4 1.87 · 10−4 2.06 · 10−4 1.56 · 10−4 1.39 · 10−4 1.30 · 10−4 1.25 · 10−4

4 2.87 · 10−5 5.31 · 10−5 6.14 · 10−5 5.08 · 10−5 4.61 · 10−5 4.29 · 10−5 4.02 · 10−5

5 5.05 · 10−6 1.47 · 10−5 1.67 · 10−5 1.45 · 10−5 1.20 · 10−5 1.07 · 10−5 1.05 · 10−5

Est. par. 17 733 s 9 685 s 7 105 s 5 902 s 5 277 s 4 925 s 4 804 s 26 840 s
speedup 1.5 2.8 3.8 4.5 5.1 5.4 5.6 1.0
efficiency 15 % 14% 13% 11% 10% 9% 8% 100%

Fig. 12. Illustration of the computational times spent within the coarse- (in serial) and fine-scale (in parallel) problems in Algorithm 2 and Algorithm 3 for 
the second numerical example (PDE growth problem)

Table 7
Estimated parallel runtimes (in s) of the parareal algorithm and the variant “Re-usage of growth values” for P = 10, ..., 70 and a PDE growth model. We 
show the time in seconds spent on the master process and the maximum and average time spent on the slave processes. The estimated parallel runtime 
is the sum of the time spent in serial (master) and the maximum time needed among the slaves; best numbers marked in bold face. A visualization of the 
runtimes is given in Fig. 13.

Standard parareal (Algorithm 2)

P Coarse Fine: max. (Aver.) Est. par.

10 1 096 s 10 251 s (8 009 s) 11 347 s
20 2 691 s 6 968 s (5 318 s) 9 661 s
30 3 943 s 4 749 s (3 581 s) 8 692 s
40 4 273 s 2 641 s (1 988 s) 6 914 s
50 5 361 s 2 130 s (1 601 s) 7 491 s
60 6 197 s 1 796 s (1 331 s) 7 993 s
70 7 339 s 1 564 s (1 161 s) 8 903 s

Parareal with re-usage of growth values (Algorithm 3)

P Coarse Fine: max. (Aver.) Est. par.

10 658 s 17 075 s (13 342 s) 17 733 s
20 930 s 8 755 s (6 669 s) 9 685 s
30 1 171 s 5 934 s (4 455 s) 7 105 s
40 1 448 s 4 454 s (3 339 s) 5 902 s
50 1 722 s 3 555 s (2 670 s) 5 277 s
60 1 933 s 2 992 s (2 219 s) 4 925 s
70 2 151 s 2 653 s (1 899 s) 4 804 s

the coarse propagation, which is performed on a single master process (steps (I) and (II.b) in Algorithm 2 or Algorithm 3). 
The parallel part corresponds to the solution of the micro problems (step (II.a)). It can be performed concurrently on all 
processes p = 1, ..., P . The computing times vary slightly across the processes. It increases for larger processes p, as more 
Newton iterations are required for the FSI problem, when the channel is already significantly narrowed due to the advancing 
plaque growth. The estimated parallel runtimes given in Tables 4, 6 and 7 are the sum of the serial part, which corresponds 
to the coarse propagator, and the maximum time needed by one of the processes p = 1, ..., P in the parallel part.

In Fig. 12, we illustrate the computational times needed to solve the fine problems (in parallel) and coarse-scale propa-
gators (in serial) for different processes and with Algorithm 2 and Algorithm 3. We see that the total computational times 
decrease for increasing P until P = 40 for standard parareal and until P = 60 for the re-usage variant. In the standard 
parareal algorithm (Algorithm 2) the cost of the coarse propagators becomes significant already from P = 20, while it is 
much smaller for the re-usage variant. While for P = 10, Algorithm 2 is still faster, this changes for P > 20.

The corresponding speed-ups and efficiencies compared to a serial time-stepping are given in the last rows of Tables 4
and 6 for standard parareal algorithm (Algorithm 2) and the re-usage variant (Algorithm 3), respectively. The lowest com-
puting time for standard parareal is 6 914 s for P = 40, which corresponds to a speed-up of 3.9. For the re-usage variant, 
we obtain a maximum speed-up of 5.6 for P = 40, which corresponds to an estimated parallel runtime of 4 804 s. The 
speed-ups are slightly lower than the speed-ups in section 4 (cf. Tables 1 and 3), that were computed based on the number 
of micro problems to be solved. This is mostly due to the load imbalancing among the slave processes, as - depending on 
22
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Fig. 13. Illustration of the computational times spent within micro-scale problems and PDE growth problems on the coarse (in serial) and fine scale (in 
parallel) in Algorithm 2 and Algorithm 3 for the second numerical example (PDE growth problem). Note that the time needed for the PDE growth model 
within the fine-scale problems is so small that it is not visible in both plots. The corresponding times can be found in Table 7.

the state of the plaque growth - some micro problems are more costly than others; for instance, due to a higher number 
of Newton iterations. The differences can be inferred best by comparing the average and the maximum time spent on the 
slave processes in Table 7. The efficiencies decrease again monotonically for increasing P in both Tables 4 and 6. For the 
re-usage variant, the efficiencies are again much more stable, due to the reduced cost of the coarse propagator.

Finally, we compare in Fig. 13 the computing times needed for the solution of the FSI micro problems and those needed 
for the reaction-diffusion equations, for both algorithms and P = 10, ..., 60. We observe that the times needed for the latter 
are negligible in all cases, which confirms the discussion in section 5.2.

6. Conclusion

We have derived a parareal algorithm for the time parallelization of the macro scale in a two-scale formulation for 
the simulation of atherosclerotic plaque growth. To reduce the computational cost of the coarse-scale propagators, we have 
introduced a variant which re-uses growth values that were computed within the fine problems and avoids additional costly 
micro-scale computations in serial.

The approaches have been tested on two different numerical examples of increasing complexity: first, by means of a 
simple ODE growth model, and secondly, by a PDE model of reaction-diffusion type. In this proof-of-concept, we analyze 
the approaches based on results and timings of a serial implementation. Since the number of communication steps is low 
compared to the computational work, we are still able to provide meaningful results. In the first case, we obtain estimated 
speedups up to 6.3 (standard parareal) respectively 7.8 (re-usage variant) in terms of the number of micro problems to 
be solved. In the PDE model, the maximum estimated speedups, now based on estimated parallel runtimes, were 3.9 re-
spectively 5.6. In future work, these results will have to confirmed using a parallel implementation. Therefore, we have 
discussed theoretically two parallelization schemes, master-slave and distributed parallelization. The discussion indicated 
that the distributed scheme might be beneficial, which also needs to be tested in future work.

Additional research should also be invested into further improving the efficiency of the coarse propagator. Therefore, 
the idea of Algorithm 3 could be extended, for example, by storing and interpolating the computed growth values, instead 
of simply re-using them. For the ODE case, such an interpolation approach has already been applied in our proceedings 
paper [53] with promising results. The extension to the PDE model is, however, not straight-forward, as an operator M :
cs → γ (σ W S

f (cs)) between spatially distributed functions needs to be approximated. Further future investigations include 
the application of the algorithms in complex three-dimensional geometries, more complex plaque growth, and arterial wall 
models. Finally, the approaches presented here can be combined with a spatial parallelization of the FSI problems or with 
adaptive time-stepping on micro and macro scale, as presented by Richter & Lautsch [41].
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Appendix A

In this section, we show convergence of the re-usage parareal algorithm, Algorithm 3 resp. eq. (28), applied to the ODE 
model in eq. (22) and its approximation by the explicit Euler method in eq. (23). First, we obtain from eqs. (23) and (24)
directly for c1

s , c2
s ∈R

|C(In, c1
s (Tn−1), γ ) − C(In, c2

s (Tn−1), γ )| = |c1
s (Tn−1) − c2

s (Tn−1)|, (35)

|C(In, cs, γ (c1
s )) − C(In, cs, γ (c2

s ))| = δT |γ (c1
s ) − γ (c2

s )| ≤ LδT |c1
s − c2

s |. (36)

By cs,n−1(T ) we denote in the following the function that solves the (continuous) ODE eq. (22) with initial value 
cs,n−1(Tn−1) = cs,n−1. We have using eqs. (23) to (25)∣∣∣ (F(In, cs(Tn−1), γ (cs(Tn−1))) − C(In, cs(Tn−1), γ (cs(Tn−1))))

− (
F(In, cs,n−1, γ (cs,n−1)) − C(In, cs,n−1, γ (cs,n−1))

) ∣∣∣
=

∣∣∣ Tn∫
Tn−1

γ (cs(T ))) − γ (cs,n−1(T ))dT − δT
(
γ (cs(Tn−1)) − γ (cs,n−1)

) ∣∣∣
≤ cδT 2

∣∣∣∣ d

dt
γ (cs(Tn−1) − d

dt
γ (cs,n−1)

∣∣∣∣ ≤ α0δT 2
∣∣cs(Tn−1) − cs,n−1

∣∣
(37)

for some constant α0 = cL > 0; see also [32].
The following recursion builds the basis for the error estimate:

Lemma 2. Let c∗
s ∈ C1(0, Tend) be the exact solution of eq. (22). {c(k)

s (Tn)}P
n=1 be the k-th iterate of the re-usage algorithm in eq. (28)

using the forward Euler method in eq. (23) and let e(k)
n = |c∗

s (Tn) − c(k)
s,n| be the error in the k-the iteration of the re-usage algorithm. 

Under the assumptions made in section 4.1.3, it holds for k = 1 that

e(1)
n ≤ α0δT 2e(0)

n−1 + α1δT e(0)
n−2 + e(1)

n−1, (38)

and for k ≥ 2,

e(k)
n ≤ α1δT

(
e(k−1)

n−1 + e(k−1)
n−2 + e(k−2)

n−2

)
+ e(k)

n−1, (39)

with a constant α1 ≥ max{L + α0δT , L(1 + LδT )}.

Proof. Consider first the case k ≥ 2. Using eqs. (25) and (28), we have

e(k)
n = ∣∣F(In, c∗

s (Tn−1), γ (c∗
s (Tn−1)) − C(In, c(k)

s,n−1, γ (c(k),fine
s,n−1 ))

−F(In, c(k−1)
s,n−1, γ (c(k−1)

s,n−1)) + C(In, c(k−1)
s,n−1, γ (c(k−1),fine

s,n−1 ))
∣∣

≤ ∣∣F(In, c∗
s (Tn−1), γ (c∗

s (Tn−1))) − C(In, c∗
s (Tn−1), γ (c∗

s (Tn−1)))

−F(In, c(k−1)
s,n−1, γ (c(k−1)

s,n−1)) + C(In, c(k−1)
s,n−1, γ (c(k−1)

s,n−1))
∣∣

+ ∣∣C(In, c(k−1)
s,n−1, γ (c(k−1)

s,n−1)) − C(In, c(k−1)
s,n−1, γ (c(k−1),fine

s,n−1 ))
∣∣

+ ∣∣C(In, c(k)
s,n−1, γ (c(k),fine

s,n−1 )) − C(In, c(k)
s,n−1, γ (c∗

s (Tn−1)))
∣∣

+ ∣∣C(In, c(k)
s,n−1, γ (c∗

s (Tn−1))) − C(In, c∗
s (Tn−1), γ (c∗

s (Tn−1)))
∣∣

From eqs. (35) to (37), we have

e(k)
n ≤ α0δT 2

∣∣∣c∗
s (Tn−1) − c(k−1)

s,n−1

∣∣∣ + LδT
∣∣c(k−1)

s,n−1 − c(k−1),fine
s,n−1

∣∣
+ LδT

∣∣c(k),fine
s,n−1 − c∗

s (Tn−1)
∣∣ + ∣∣c(k)

s,n−1 − c∗
s (Tn−1)

∣∣
= α0δT 2e(k−1)

n−1 + LδT (e(k−1),fine
n−1 + e(k−1)

n−1 ) + LδT e(k),fine
n−1 + e(k)

n−1,

(40)

where e(k),fine := |c(k),fine − c∗
s (Tn)|. This error contribution is estimated further by using eqs. (25), (29) and (35)
n−1 s,n−1

24



S. Frei and A. Heinlein Journal of Computational Physics 491 (2023) 112347
e(k),fine
n−1 := |c(k),fine

s,n−1 − c∗
s (Tn)| = |F(In−1, c(k−1)

s,n−2, γ (c(k−1)
s,n−2)) −F(In−1, c∗

s (Tn−2), γ (c∗
s (Tn−2))|

= ∣∣c(k−1)
s,n−2 − c∗

s (Tn−2) +
Tn−1∫

Tn−2

γ (c(k−1)
s,n−2(t))) − γ (c∗

s (t))dt
∣∣

≤ (1 + LδT )e(k−1)
n−2 .

(41)

Inserting this into eq. (40) yields eq. (39). For k = 1, we have c(0),fine
s,n−1 = c(0)

s,n−1. An analogous argumentation yields

e(1)
n = ∣∣F(In, c∗

s (Tn−1), γ (c∗
s (Tn−1))) − C(In, c(1)

s,n−1, γ (c(1),fine
s,n−1 ))

−F(In, c(0)
s,n−1, γ (c(0)

s,n−1)) + C(In, c(0)
s,n−1, γ (c(0)

s,n−1))
∣∣

≤ ∣∣F(In, c∗
s (Tn−1), γ (c∗

s (Tn−1))) − C(In, c∗
s (Tn−1), γ (c∗

s (Tn−1)))

−F(In, c(0)
s,n−1, γ (c(0)

s,n−1)) + C(In, c(0)
s,n−1, γ (c(0)

s,n−1))
∣∣

+ ∣∣C(In, c(1)
s,n−1, γ (c(1),fine

s,n−1 )) − C(In, c(1)
s,n−1, γ (c∗

s (Tn−1)))
∣∣

+ ∣∣C(In, c(1)
s,n−1, γ (c∗

s (Tn−1))) − C(In, c∗
s (Tn−1), γ (c∗

s (Tn−1)))
∣∣

≤ α0δT 2e(0)
n−1 + LδT e(1),fine

n−1 + e(1)
n−1.

Then, eq. (38) follows by using eq. (41). �
Lemma 3. Let e(k)

n = |c(k)
s (Tn) − c∗

s (Tn)| be the error in the k-the iteration of the re-usage algorithm. Under the assumptions made 
above, it holds for k ∈N0 and n ∈N that

e(k)
n ≤ Lα̃kβn−k ·

⎛⎜⎝ k+1∑
l=� k

2 +1�

3l−1

l! δT l+1
(

n − k

2

)l

⎞⎟⎠ max
t∈[0,Tend] |∂tc∗

s (t)| (42)

≤ Lα̃kβn−kδT max
{

1, Tn− k
2

}k 3� k
2 �

�k/2�! max
t∈[0,Tend] |∂tc∗

s (t)|, (43)

where α̃ = max{α0δT , α1, 1} and β = 1 + LδT .

Proof. We prove the lemma by induction over k ∈ N . For k = 0, a standard estimate of the forward Euler methods gives, 
using eq. (24),

e(0)
n := |c0

s,n − c∗
s (Tn)| ≤ |c0

s,n−1 − c∗
s (Tn−1)| +

Tn∫
Tn−1

|γ (c0
s,n−1) − γ (c∗

s (t))|dt

≤ e(0)
n−1 + L

Tn∫
Tn−1

|c0
s,n−1 − c∗

s (t)︸︷︷︸
=c∗

s (Tn−1)+δT ∂t c∗
s (ξ)|

|dt

≤ (1 + LδT︸ ︷︷ ︸
=β

)e(0)
n−1 + LδT 2 max

t∈[0,Tend] |∂tc∗
s (t)|.

(44)

To abbreviate the notation, we set c0 := maxt∈[0,Tend] |∂tc∗
s (t)|. We apply eq. (44) recursively

e(0)
n ≤ βe(0)

n−1 + c0LδT 2 ≤ c0LδT 2
n−1∑
l=0

βl = c0LδT 2 βn − 1

β − 1︸ ︷︷ ︸
=LδT

= c0δT (βn − 1) ≤ c0LnδT 2βn. (45)

In the last inequality, we have used that βn −1 ≤ nLδT βn , which can be shown by induction over n. The estimate in eq. (45)
is exactly eq. (42) for k = 0.

For k = 1, we have using eqs. (38) and (45), the fact that e(k)

k = 0, and by the definition of the parareal algorithm

e(1)
n ≤ α0δT 2e(0)

n−1 + α1δT e(0)
n−2 + e(1)

n−1

≤ α0c0LδT 4(n − 1)βn−1 + α1c0LδT 3(n − 2)βn−2 + e(1)

n−1
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≤ 2α̃c0LδT 3(n − 1)βn−1 + e(1)
n−1

≤ 2α̃c0Lβn−1δT 3
n−1∑
l=1

l + e(1)
1︸︷︷︸
=0

= 2α̃c0Lβn−1δT 3 n(n − 1)

2
≤ α̃c0Lβn−1δT 3 (n − 1/2)2 .

This is by a factor 3
2 smaller compared to eq. (42).

Now, let k ≥ 2. We assume that the estimate in eq. (42) is true for k − 1 and k − 2. By eq. (39) and the assumption of 
the induction, we have

e(k)
n ≤ α1δT

(
e(k−1)

n−1 + e(k−1)
n−2 + e(k−2)

n−2

)
+ e(k)

n−1

≤ α1δT

(
c0Lα̃k−1βn−k ·

⎛⎜⎝ k∑
l=� k+1

2 �

3l−1

l! δT l+1
(

n − k + 1

2

)l

⎞⎟⎠
+ c0Lα̃k−1βn−k−1 ·

⎛⎜⎝ k∑
l=� k+1

2 �

3l−1

l! δT l+1
(

n − 1 − k + 1

2

)l

⎞⎟⎠
+ c0Lα̃k−2βn−k ·

⎛⎜⎝ k−1∑
l=� k

2 �

3l−1

l! δT l+1
(

n − 1 − k

2

)l

⎞⎟⎠)
+ e(k)

n−1

≤ 3c0Lα̃kβn−k ·
⎛⎜⎝ k∑

l=� k
2 �

3l−1

l! δT l+2
(

n − k + 1

2

)l

⎞⎟⎠ + e(k)
n−1.

(46)

We apply this estimate recursively for the last term e(k)
n−1 in eq. (46) to get

e(k)
n ≤ c0Lα̃kβn−k ·

n∑
m=k+1

⎛⎜⎝ k∑
l=� k

2 �

3l

l! δT l+2
(

m − k + 1

2

)l

⎞⎟⎠ + e(k)

k︸︷︷︸
=0

= c0Lα̃kβn−k ·

⎛⎜⎜⎜⎜⎜⎝
k∑

l=� k
2 �

3l

l! δT l+2 ·
⎛⎜⎝n− k+1

2∑
m= k+1

2

ml

⎞⎟⎠
︸ ︷︷ ︸

=:s

⎞⎟⎟⎟⎟⎟⎠ .

In the case that k+1
2 and n − k+1

2 are no natural number, the sum s is to be understood in such a way that the index m
advances iteratively by 1 until reaching the upper limit.

The sum s is an approximation of the integral

n−k/2∫
k/2

xl dx ≤ 1

l + 1

(
n − k

2

)l+1

with the midpoint rule. As f (x) = xl is a convex function ( f ′′(x) > 0) for a positive x, the integral is an upper bound for s; 
see the error representation of the midpoint rule, e.g., in Theorem 8.41 in [49].

We have thus shown that

e(k)
n ≤ c0Lα̃kβn−k ·

⎛⎜⎝ k∑
l=� k

2 �

3l

(l + 1)!δT l+2
(

n − k

2

)l+1

⎞⎟⎠ .

Shifting the index l by 1 gives eq. (42). The estimate in eq. (43) follows from eq. (42) by noting that
26
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(n − k

2
)δT = Tn− k

2
≤ max

{
1, Tn− k

2

}
and the fact that the term 3l−1

l! is decreasing for l ≥ 2:

e(k)
n ≤ c0Lα̃kβn−k ·

⎛⎜⎝ k+1∑
l=� k

2 +1�

3l−1

l! δT l+1
(

n − k

2

)l

⎞⎟⎠
≤ c0Lα̃kβn−kδT

(
max{1, Tn− k

2
}
)k+1 ·

⎛⎜⎝ k+1∑
l=� k

2 +1�

3l−1

l!

⎞⎟⎠
≤ c0Lα̃kβn−kδT

(
max

{
1, Tn− k

2

})k+1 �k

2
+ 1� 3� k

2 �

� k
2 + 1�!

≤ c0Lα̃kβn−kδT
(

max
{

1, Tn− k
2

})k+1 3� k
2 �

� k
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