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Abstract
Non-convergence is an inherent aspect of adaptive multi-agent systems, and even basic 
learning models, such as the replicator dynamics, are not guaranteed to equilibriate. Limit 
cycles, and even more complicated chaotic sets are in fact possible even in rather simple 
games, including variants of the Rock-Paper-Scissors game. A key challenge of multi-agent 
learning theory lies in characterization of these limit sets, based on qualitative features of 
the underlying game. Although chaotic behavior in learning dynamics can be precluded by 
the celebrated Poincaré–Bendixson theorem, it is only applicable directly to low-dimen-
sional settings. In this work, we attempt to find other characteristics of a game that can 
force regularity in the limit sets of learning. We show that behavior consistent with the 
Poincaré–Bendixson theorem (limit cycles, but no chaotic attractor) follows purely from 
the topological structure of interactions, even for high-dimensional settings with an arbi-
trary number of players, and arbitrary payoff matrices. We prove our result for a wide class 
of follow-the-regularized leader (FoReL) dynamics, which generalize replicator dynamics, 
for binary games characterized interaction graphs where the payoffs of each player are only 
affected by one other player (i.e., interaction graphs of indegree one). Moreover, for cyclic 
games we provide further insight into the planar structure of limit sets, and in particular 
limit cycles. We propose simple conditions under which learning comes with efficiency 
guarantees, implying that FoReL learning achieves time-averaged sum of payoffs at least 
as good as that of a Nash equilibrium, thereby connecting the topology of the dynamics to 
social-welfare analysis.
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1 Introduction

Characterizing the convergence and limit behavior of learning is vital for understanding 
the long-term outcomes in multi-agent systems. Much of the research in this direction has 
been driven by methods of dynamical systems, and in particular evolutionary game theory 
[1–7]. Even in simple games, such as Rock-Paper-Scissors [8, 9], models of evolution and 
learning are not guaranteed to converge; beyond cycles, long-term behavior can lead to 
chaotic behavior, known to the dynamical systems community from, e.g., weather mod-
els [10]. Not only does chaos manifest itself even in simple games with two players, but 
moreover, a string of recent results suggests that such chaotic, unpredictable behavior may 
indeed be the norm across a variety of simple low-dimensional game dynamics [11–20]. 
Importantly, these results are persistent even for the well-known class of Follow-the-Reg-
ularized-leader (FoReL) dynamics [21, 22], despite the fact that FoReL dynamics include 
some of the most widely studied learning dynamics such as replicator dynamics [23, 24], 
which is the continuous-time analogue of the Multiplicative Weights Update meta-algo-
rithm [25], well known for its optimal regret properties. Finally, the emergence of chaotic 
behavior has been connected with increased social inefficiency, which shows that chaotic 
dynamics can lead to highly inefficient outcomes [26, 27]. Such profoundly negative results 
raise the following questions:

• Do simple, robust conditions exist under which learning behaves well?
• Which types of games lie at the “edge of chaos”?
• Does dynamic simplicity translate to high-efficiency and social welfare?

Traditionally, a lot of work has focused on showing that, in specific classes of games (e.g., 
zero-sum or potential games), learning dynamics can lead to convergence and equilibra-
tion, see [5, 28–30] and references therein. Few results span over to general sum games and 
games of arbitrary payoff structures; however, such general approaches are arguably essen-
tial in modern research on multi-agent learning. Such payoffs can however occur naturally 
when stochastic extensive form games are used to create empirical normal form games, by 
averaging payoffs from simulations for combinations of strategies [31–33]. They can also 
appear in many real-world applications, such as, e.g., modeling the impact of investing strat-
egies of large funds on the stock market. While equilibration may not always be possible 
in such cases, one can still wish to ensure a regularity of sorts in the learning outcomes of 
the multi-agent system. In particular, the famous Poincaré–Bendixson theorem (Theorem 1) 
ensures that two-dimensional continuous learning and adaptation dynamics never form truly 
chaotic outcomes. However, this comes at a cost: although no specific payoff structure is 
needed, the underlying learning dynamics must be at most two dimensional.

In this work, rather than by making assumptions on the reward structure or on the 
dimensionality, we explore a different type of constraint in games. We show that the limit 
behavior of learning can be determined solely by the topological-combinatorial structure of 
the game, regardless of the number of players, or algebraic correlations between the pay-
offs (e.g., zero-sum). Firstly, we restrict ourselves to binary games [34–36], where players 
have two strategies. Secondly, we assume that every player can be affected by the behavior 
of up to one other player. Finally, we add a technical restriction that the game is connected, 
meaning that it cannot be decomposed into two subgames that are completely independent 
of each other. Such games encompass, among others, all 2x2 games [37], Jordan’s game 
[38–40], and easily identifiable subclasses of real-world systems where the graph structure 



Autonomous Agents and Multi-Agent Systems           (2023) 37:29  

1 3

Page 3 of 24    29 

is evident, such as certain traffic networks [41, 42], supply chains [43], or problems of 
water allocation in deltas [44, 45]. Under these assumptions, we prove in Sect. 3 our main 
contribution in the form of Theorems 3 and 4, which say that the limit behavior of FoReL 
learning of these games is always consistent with the Poincaré–Bendixson theorem.

Having excluded the presence of chaos, we further analyze quantitative properties of 
binary games, which admit cyclic interaction graphs. In Sect. 4, we show that the projec-
tions of limit sets onto any pair of consecutive variables preserve their structure, and, in 
particular, that the projections of limit cycles are Jordan curves. Furthermore, in Sect.  5, 
under additional but structurally robust assumptions on the payoff matrices (i.e., assump-
tions that remain valid after small perturbations of the payoff matrices and so are suitable, 
for example, for empirical payoff matrices), we derive positive results about the efficiency of 
the time-averaged behavior of the dynamics regardless of whether they are convergent. As 
is typically the case in the price of anarchy (PoA) literature [46], we focus on the measure 
of social welfare, which is the sum of individual payoffs. Whereas the typical PoA literature 
argues that regret-minimizing dynamics (such as FoReL) are at most a constant factor worse 
than the behavior of the worst-case Nash equilibrium [27, 47], we instead show that FoReL 
dynamics are always at least as efficient as the worst-case Nash equilibrium. Finally, Sect. 6 
provides examples of games satisfying our assumptions and their possible limit behavior, as 
well as two counterexamples of binary games which break assumptions on network topol-
ogy and induce more complicated limit sets: invariant tori, and chaos.

This article is an extended and modified version of our earlier conference paper, Poin-
caré–Bendixson Limit Sets in Multi-Agent Learning, which appeared at AAMAS 2022 
[48]. In this version we have added a new section with theoretical results on two-dimen-
sional projections of limit sets in binary, cyclic games, and provided a new example on 
how additional connectivity in a network of pennies (i.e. a type of topological connection 
breaking our assumptions), can result in complicated limit sets in form of invariant tori. We 
have also added a discussion section, where we identify main limitations of our results, and 
the most promising directions of future research.

1.1  Related work

Firstly, we would like to highlight several papers containing examples of simple FoReL 
systems with chaotic dynamics. These show that the assumptions of binary actions and 
previous-neighbor interaction are essential, and similar results would not be possible for 
broader classes of games. Going beyond binary games, we have the chaotic example of 
Sato et  al. [8] with two-players and three-actions. Furthermore [49, 50] provide further 
chaotic/complex attractor examples in n-player binary games without structured (e.g. pre-
vious neighbor) interactions. From this perspective, our results establish a maximal class of 
games for which such regularity results on limit sets are possible.

Research that considers non-convergence but focuses on non-chaoticity is scarce. In 
the closest works to ours, [51–53], the authors leverage the Poincaré–Bendixson theorem 
to show that the limit behavior of bounded learning trajectories in certain learning sys-
tems can be either convergent or cyclic, and in particular no chaotic attractor is possible. 
However, they do so by assuming low dimensionality (three-player limit) or a nongeneric 
structure on the set of allowable games, which allows for dimensionality reduction (i.e., a 
network of 2x2 zero-sum, or coordination games). In terms of connections between cyclic 
behavior and the efficiency of learning dynamics, [54] shows that, for a family of three 
players, two strategy games with a cyclic attractor can result in social welfare (sum of 
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payoffs) that can be better than the Nash equilibrium payoff; however, the result is specific 
to this particular example.

2  Preliminaries

2.1  Normal form games

A finite game in normal form consists of a set of N players, each with a finite set of strategies 
Ai . The preferences of each player are represented by the payoff function ui ∶

∏
i Ai → ℝ . 

To model the behavior at scale or probabilistic strategy choices, one assumes that players 
use mixed strategies, namely, probability distributions (xi�i )�i∈Ai

∈ Δ(Ai) =∶ Xi . With a 
slight abuse of notation, the expected payoff of player i in the profile (xi�i )i,�i is denoted ui 
and given by

A mixed strategy x̂ is a Nash equilibrium iff ∀ i and ∀x ∶ xj = x̂j, j ≠ i we have 
ui(x) ≤ ui(x̂) . In other words, no player can unilaterally increase their payoff by changing 
their strategy distribution. The minimax value for player i is given by minx−i maxxi ui(x) , 
where x−i ∶= (xj)j≠i . This is the smallest possible value that player i can be forced to attain 
by other players, without them knowing the strategy of player i. We call a game binary iff 
‖Ai‖ = 2 for all i.

2.2  Graphical polymatrix games

To model the topology of interactions between players, we restrict our attention to a subset 
of normal form games, where the structure of interactions between players can be encoded 
by a graph of two-player normal form subgames, leading us to consider so-called graph-
ical polymatrix games (GPGs) [55–57]. A simple directed graph is a pair (V, E) , where 
V = {1,… ,N} is a finite set of vertices (representing the players), and E is a set of ordered 
vertex pairs (edges), where the first element is called the predecessor, and the second is 
called the successor. Each edge (i,  k) has an associated two-player normal form game, 
where only the successor k is assigned payoffs. These are represented by a matrix Ai,k with 
rows enumerating the strategies of player k, and columns enumerating the strategies of 
player i. For a given strategy profile s = {si}i ∈

∏
i Ai , the payoffs for player k in the full 

game are then determined as the sum

The payoffs can be extended to mixed strategies in a standard multilinear fashion:

A situation where both the successor k and the predecessor i obtain a reward can be mod-
eled by including both edges (i, k) and (k, i) in the graph.

(1)ui(x) = Σ�1∈A1,…,�N∈AN
ui(�1,… , �N)x1�1 … xN�N .

(2)uk(s) =
∑

i∶(i,k)∈E

Ai,k(si, sk).

(3)uk(x) =
∑

i∶(i,k)∈E

∑

xsi
,xsk

Ai,k(si, sk)xsi xsk .
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We say that a simple directed graph is weakly connected if any two vertices can be 
connected by a set of edges, where the direction of the edges is not considered. This is a 
weaker condition than strong connectedness, where each pair of vertices must be connected 
by a path (i.e., a sequence of edges together with associated vertices, where the successor 
in one edge is the predecessor in the next). The indegree of a vertex is the number of edges 
for which the vertex is the successor (i.e., the number of predecessors). The outdegree is 
the number of edges for which the vertex is the predecessor (i.e., the number of successors). 
A cycle is a path where the predecessor in the first edge is the successor in the last edge. 
For our exposition we identify cycles modulo shifts, i.e., if two paths consist of the same 
edges in shifted order, then they form the same cycle. In this paper we consider two types 
of weakly connected GPGs: 

1. First, cyclic games, where the interaction between the players forms a cycle, where each 
player interacts only with the previous neighbor. We observe that in such a cyclic game 
the indegree and outdegree of each vertex is one. For simplicity, we label the nodes of 
such N-player games by natural numbers i = 0, 1,… , n and use the convention that node 
i is the successor to node i − 1 , and we can extend the indexing to all integers, in a way 
that indices congruent modulo n identify the same node.

2. Second, a more general class of graphical games, where each player’s payoffs depend on 
at most one other player (i.e., the indegree of each vertex is at most one). For a vertex 
i ∈ V , we denote the predecessor vertex by î , if it exists. For cyclic games we have 
î = i − 1.

Below, we state and prove a simple lemma that characterizes the one-predecessor assump-
tion in terms of graph topology and clarifies the relation between cyclic and indegree-one 
graphs (cf. Figure 1).

Lemma 1 Let (V, E) be a weakly connected, simple, directed graph. If the indegree of each 
vertex is at most one, then the graph can have at most one cycle. If the graph has no cycle, 
then it has at most one root vertex (i.e., a vertex of indegree zero), such that all other verti-
ces are connected to it by a unique directed path.

Proof For the first part of the lemma, we assume the contrary: that a1 , a2 are nodes of two 
distinct cycles within the same weakly connected component. The edges between a1 and a2 
must form a path (otherwise there would be a vertex with two predecessors). Assume the 
path leads from a1 to a2 and let a0 be the first vertex which is both on the path and on the 
cycle of a2 . Then a0 has two predecessors, which leads to a contradiction.

Fig. 1  A weakly connected graph 
where each vertex is at most of 
indegree one
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For the second part of the lemma we argue as follows. If any vertex has a sequence 
of predecessors that does not form a cycle, and does not have a root node, then by 
backtracking through the predecessors we could identify an infinite collection of distinct 
vertices. Therefore, there must be at least one root node for each vertex. The path from such 
a root node to the given vertex must be unique, otherwise one could identify a vertex along 
the path with two predecessors. Finally, it is impossible to have two distinct root nodes, 
as connectedness imposes that there would have to exist a node with two predecessors 
between them.   ◻

Remark 1 Under the assumptions of Lemma  1, if the graph has a cycle, then the cycle 
enjoys properties similar to those of a root node: no paths go from outside the cycle to the 
cycle (otherwise one vertex in the cycle would have two predecessors), and all vertices out-
side the cycle must be connected by a path from one of the vertices of the cycle (a unique 
path, up to the starting point within the cycle). Later, we shall refer to such cycle as the 
root cycle.

2.3  Follow‑the‑regularized‑leader equations

Denote by vi�i (x) ∶= ui(�i;x−i) and vi(x) = (vi�i (x))�i∈Ai
 . To model the dynamics of learn-

ing we use a class of learning systems known as follow-the-regularized-leader systems 
(FoReL) [5, 6]. This class encompasses a variety of models ranging from gradient descent, 
to replicator dynamics, and allows for natural description of learning as regularized maxi-
mization of individual payoffs.

FoReL dynamics for player i are defined by evolution of utilities yi = {yi�i}�i∈Ai
∈ ℝ

‖Ai‖ 
– that is real numbers representing a score each player assigns to each respective strategy 
– by the integral equation

where the choice map Q = (Q1,… ,QN) , Qi ∶ ℝ
‖Ai‖ → Xi , which determines the evaluated 

strategy profile x(t) is given on each coordinate by:

In the above hi ∶ Xi → ℝ ∪ {−∞,∞} is a convex regularizer function, representing a reg-
ularization/exploration term. The equation  (4) represents how players adapt their mixed 
strategies to changing utility values. Observe, that without the regularization term, the map 
Qi would simply put all weight on the strategy with the highest utility.

In binary games, each player has only two strategies at his disposal, say �0, �1 . The vari-
able xi denotes then the proportion of time player i plays strategy �0 , and the proportion of 
�1 is given by 1 − xi . Following [21], we introduce new variables zi ∶= yi�0 − yi�1 ∈ ℝ , rep-
resenting the difference in utilities between playing strategy �0 and �1 . It is intuitively clear, 
and it was proved formally e.g. in [21] that Qi(zi + c, c) is constant in c, and therefore, with-
out loss of generality, we can set c ∶= 0 , and restrict our considerations to a z-dependent 
choice map Q̂i(zi) ∶= Qi(zi, 0) . Provided that Q is sufficiently regular (e.g. continuous), the 
integral equation (4) can be converted to a system of differential equations

(4)
yi(t) = yi(0) + ∫

t

0

vi(x(s))ds,

xi(t) = Qi(yi(t)),

(5)Qi(yi) = argmaxxi∈Xi
{⟨yi, xi⟩ − hi(xi) }.
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given coordinate-wise by

for details again see [21].

Remark 2 An intuitively obvious, but technically important observation is that evolution 
of ith coordinates of the system (4), and, in turn (7) depends solely on the values of xj or 
zj , respectively, for nodes j that influence the payoffs of i. In particular, for GPGs we have 
�Vi∕�zj ≠ 0 implies that there is an edge from j to i in the game graph; and for GPGs with 
up to one predecessor, without loss of generality we can rewrite (6) as

As previously hinted, for equation (7) to be well-posed, we need to enforce certain con-
ditions on the regularizer. The following lemma determines desirable properties of mono-
tonicity and smoothness of the choice map, when a player has exactly two strategies at 
disposal (so Xi = [0, 1]).

Lemma 2 Assume that the regularizer hi satisfies the following conditions: 

1. hi ∈ C2((0, 1)) ∩ C0([0, 1]) (smoothness),
2. h�

i
(xi) → −∞ as xi → 0 and h�

i
(xi) → ∞ as xi → 1 (steepness),

3. h��
i
(xi) > 0 for x ∈ (0, 1) (strict convexivity).

Then Q̂i ∈ C1(ℝ) and Q̂�
i
(zi) > 0.

Proof For a given zi , Q̂i(zi) is defined as the maximizer of ⟨(zi, 0), (xi, 1 − xi)⟩ − hi(xi) over 
xi ∈ [0, 1] . We have

From steepness, continuity and strict convexity it follows that hi(0) = hi(1) = ∞ so the 
maximum cannot be attained there. A necessary condition for maximum to be attained in 
(0, 1) is

From steepness and strict convexivity it follows that equation (10) has a unique solution 
xi =∶ Q̂i(zi) for any zi ∈ ℝ . From the inverse function theorem we have

which also implies that the function Q̂i is C1 on its domain.   ◻

Perhaps the best known example of a FoReL learning system are the replicator 
equations [23], where the regularizer is given by

(6)ż = V(z),

(7)Vi(z) ∶= vi𝛼0 (Q̂(z)) − vi𝛼1 (Q̂(z)),

(8)żi = Vi(zî) = vi𝛼0 (Q̂î(zî)) − vi𝛼1 (Q̂î(zî)).

(9)⟨(zi, 0), (xi, 1 − xi)⟩ − hi(xi) = zixi − hi(xi).

(10)zi = h�
i
(xi).

(11)
𝜕xi

𝜕zi
= Q̂�

i
(zi) = 1∕h��

i
(xi) > 0,
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In particular, such regularizer satisfies the assumptions of Lemma 2, and yields the follow-
ing equations for a binary GPG with up to one predecessor:

which, via (10) and (12), translates to the following system in original (x) coordinates:

2.4  Limit sets, periodic orbits and chaos

A differential equation ẋ = F(x) given by a C1 vector field F ∶ Ω → ℝ
n on a domain Ω ⊂ ℝ

n 
admits a unique solution on a maximal open interval I = (Il, Ir), Il, Ir ∈ ℝ ∪ {±∞} , 
denoted by x(t) ∶ I → ℝ

n , for any initial condition x(0) = x0 ∈ Ω . Among possible solu-
tions to such equation, we distinguish particular types of solutions defined by their qualita-
tive properties: we say that a solution x(t) is an equilibrium iff x(t) = const for all t ∈ I . A 
solution is periodic iff x(t) = x(t + T) for some T > 0 and all t ∈ I ; and it is a connecting 
orbit between equilibria x1 and x2 (allowing x1 = x2 ), iff x(t) → x1 as t → ∞ and x(t) → x2 
as t → −∞ . A set 𝜔(x0) ⊂ Ω is an �-limit set (sometimes also referred to as a limit set) for 
an initial condition x0 ∈ Ω , if ∀x ∈ �(x0) there exists an unbounded, increasing sequence 
{tn}n ⊂ ℝ

+ , such that x(tn) → x, n → ∞ . Limit sets are invariant: this means that they are 
formed by unions of solutions of the differential equation on maximal intervals (or, in other 
words, any solution intersecting one has to be contained in it). For bounded orbits x(t), 
they are also compact – bounded as subsets of ℝn , and closed under the limit operation on 
sequences from itself.

Fundamental research has been devoted to study the properties of solutions within limit 
sets, as they offer a qualitative description of long-term behavior of the system [58]. Since 
the discovery of chaotic attractors [10], it has become known that in the general setting, 
these solutions can have arbitrarily complicated shapes and exhibit seemingly random 
behavior, a clearly undesirable feature from the point of view of applications; and engi-
neering systems with simple �-limit sets became of particular interest.

Definition 1 We say that a differential equation ẋ = F(x), x ∈ Ω has the Poincaré–Bendix-
son property iff for all x0 ∈ Ω , such that the solution x(t) satisfying x(0) = x∗ is bounded, 
each limit set �(x∗) such that 𝜔(x∗) ⊂ Ω is either:

• an equilibrium;
• a periodic solution;
• a union of equilibria, and connecting orbits between these equilibria.

(12)hi(xi) ∶=
∑

�i

xi�i log xi�i .

(13)
żi =

∑

j,k∈{0,1}

(−1)(j+k)Aî,i(𝛼j, 𝛼k)
exp(zî)

1 + exp(zî)

− Aî,i(𝛼1, 𝛼1) + Aî,i(𝛼1, 𝛼0), i = 1,… ,N

(14)

ẋi = xi(1 − xi)
∑

j,k∈{0,1}

(−1)(j+k)Aî,i(𝛼j, 𝛼k)xî

− xi(1 − xi)
(
Aî,i(𝛼1, 𝛼1) − Aî,i(𝛼1, 𝛼0)

)
, i = 1,… ,N.
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A well known result from the qualitative theory of differential equations shows that pla-
nar systems exhibit this trait.

Theorem 1 The Poincaré–Bendixson Theorem [59]. Let F = F(x) , x ∈ Ω ⊂ ℝ
2 be a C1 vec-

tor field with finitely many zeroes. Then, the differential equation ẋ = F(x) has the Poin-
caré–Bendixson property.

Already in ℝ3 there are known examples of systems having complicated, chaotic attrac-
tors [10]. However, dimensionality is not the only factor which could determine potential 
shapes of limit sets. In particular, for certain systems of arbitrary dimension, with struc-
tured “previous-neighbor” interactions between the variables, the limit sets can be as as 
simple as in planar systems. In what follows, we denote by Πi(x) = (xi−1, xi) a planar pro-
jection onto two consecutive variables.

Theorem 2 Mallet-Paret & Smith [60]. Let x = (x1,… , xn) , (fi(xi−1, xi))ni=1 , be a C1 vector 
field on an open, convex set O ⊂ ℝ

n , and let x0 ∶= xn . Assume that �fi

�xi−1
≠ 0 for all x ∈ O . 

Then, the system of differential equations

has the Poincaré–Bendixson property. In addition, for initial conditions x∗ ∈ O , such that 
the solution x(t) satisfying x(0) = x∗ is bounded, the planar projections of the limit set

are one-to-one for all i ∈ 1,… , n.

The above theorem is key to proving our further results.

3  The Poincaré–Bendixson theorem for games

In this section we state and prove our main results on the topology of limit sets in Follow-
the-regularized-Leader learning. We will first state and prove the Poincaré–Bendixson the-
orem for cyclic games:

Theorem 3 Let ż = V(z) be a system of differential equations given by the vector field (7) 
– the follow-the-regularized-leader learning dynamics – for a binary, cyclic game. For 
any smooth, steep, strictly convex collection of regularizers {hi}i such system possesses the 
Poincaré–Bendixson property.

Proof Since ui depends only on Qi and Qi−1 , we have

Our goal is to employ Theorem  2. Therefore, we would like to establish under which 
conditions

(15)ẋi = fi(xi−1, xi), i = 1,… , n, x ∈ O,

(16)Πi ∶ �(x∗) → ℝ
2

(17)
Vi(Q̂(z)) = Vi(Q̂i−1(zi−1))

= vi𝛼0 (Qi−1(zi−1, 0)) − vi𝛼1 (Qi−1(zi−1, 0)).
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for all i. We have:

Moreover, differentiation of mixed strategy payoffs yields

From Lemma 2 we have 𝜕xi−1
𝜕zi−1

> 0 , so the necessary condition to satisfy inequality (18) is:

Now let’s consider the edge case, where Aî,i(𝛼0, 𝛼1) + Aî,i(𝛼1, 𝛼0) = Aî,i(𝛼0, 𝛼0) + Aî,i(𝛼1, 𝛼1) 
for some i. Then �vi�0∕�xi−1 = �vi�1∕�xi−1 . Consequently, �Vi∕�zi−1 = 0 , and hence i-
th coordinate of all solutions has the form zi(t) = ait + bi , for some ai, bi . If ai ≠ 0 , then 
all solutions diverge to infinity. If, however ai = 0 , then zi(t) = const . Since Vi+1 depends 
only on zi , we have zi+1(t) = ai+1t + bi+1 ; the argument continues, until all coordinates of 
solutions are constant, or one coordinate diverges for all solutions.   ◻

We are now ready to state and prove the theorem for GPGs with nodes of indegree at 
most one.

Theorem 4 Let ż = V(z) be a system of differential equations given by the follow-the-regu-
larized leader dynamics of a binary, weakly connected, graphical polymatrix game, where 
each player has up to one predecessor. Then, for any smooth, steep, strictly convex collec-
tion of regularizers {hi}i , such system possesses the Poincaré–Bendixson property.

First, we state the following lemma on inheritance of the Poincaré Bendixson prop-
erty for augmented systems.

Lemma 3 Consider the following y-augmented system of differential equations

for smooth f, g. If the original system

has the Poincaré–Bendixson property, then the augmented system (22) also has the Poin-
caré–Bendixson property.

(18)
�Vi

�zi−1
≠ 0.

(19)
�Vi

�zi−1
=

�vi�0

�xi−1

�xi−1

�zi−1
−

�vi�1

�xi−1

�xi−1

�zi−1
.

(20)

�vi�1
�xi−1

−
�vi�0
�xi−1

=Aî,i(�0, �0) − Aî,i(�1, �0)

+ Aî,i(�1, �1) − Aî,i(�0, �1).

(21)Aî,i(𝛼0, 𝛼1) + Aî,i(𝛼1, 𝛼0) ≠ Aî,i(𝛼0, 𝛼0) + Aî,i(𝛼1, 𝛼1).

(22)

ẋ = f (x),

ẏ = g(xi),

x = {x1,… , xn} ∈ ℝ
n, y ∈ ℝ.

(23)ẋ = f (x)
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Proof Let Z be an �-limit set corresponding to some solution (x(t), y(t)) to the system (22). 
Consider X – an �-limit set to solution x(t) of (23).

From invariance of �-limit sets it follows set Z consists of a union of solutions of (22). 
For any solution {x∗(t), y∗(t) ∶ t ∈ ℝ} ⊂ Z , we have {x∗(t)} ⊂ X . By the Poincaré–Bendix-
son property of the original system, we can distinguish three cases: 

1. x∗(t) is an equilibrium of (23),
2. x∗(t) is a periodic orbit of (23),
3. x∗(t) is a connecting orbit of (23) – a part of a cycle of connecting orbits.

In the rest of the proof we will frequently use the integral form of solutions y(t) to (22), 
given by y(t) = y(0) + ∫ t

0
g(xi(s))ds.

Case (1): We prove that (x∗(t), y∗(t)) is stationary for (22). It is enough to show g(x∗
i
) = 0 . 

Assume otherwise. Then ‖y∗(t)‖ = ‖y(0) + ∫ t

0
g(x∗

i
)ds‖ = ‖y(0) + tg(x∗

i
)‖ → ∞ as t → ±∞ . 

This contradicts the boundedness of an �-limit set.
Case (2) Let T be the period of x∗(t) . We show that (x∗(t), y∗(t)) is a periodic solution 

of (22) of the same period. We have:

hence y∗(t + T) − y∗(t) = const . If this quantity would be non-zero, the diameter of 
the set {y∗(t) ∶ t ∈ ℝ} would be infinite. However, the set Z is bounded, and therefore 
y∗(t + T) = y∗(t).

Case  (3): We show that (x∗(t), y∗(t)) is a connecting orbit between two equilibria for 
the full system  (22). We shall only prove convergence with t → ∞ , the very same argu-
ment holds for t → −∞ and �-limit sets. The orbit (x∗(t), y∗(t)) is bounded and therefore 
it has an accumulation point as t → ∞ given by (x∗∗, y∗∗) ∈ �(x∗(0), y∗(0)) . The point x∗∗ 
is an equilibrium for  (23). We will show that (x∗∗, y∗∗) is an equilibrium. It is enough to 
show that g(y∗∗) = 0 . Assume otherwise. Then y∗∗(t) = y∗∗ + tg(x∗∗

i
) which is unbounded. 

However, it is also a part of �((x∗(0), y∗(0))) , since �-limit sets are invariant. Boundedness 
of �((x∗(0), y∗(0))) leads to a contradiction. The same process, repeated for all connecting 
orbits of (23), creates a cycle of connecting orbits for (22).   ◻

Now, we can proceed to the proof of Theorem 4.

Proof By Lemma 1, and Remark 1, we know that the graph of the system has either a root 
vertex or a root cycle. We will first address the case of a root vertex. We will see that this 
case is somewhat degenerate. Without loss of generality let us assume that it is labelled as 
the 1st vertex, and that the other vertices are numbered in order of increasing path distance 
from vertex 1 (i.e. j < i implies that the path from 1 to j is shorter than the path from 1 to 
i) – this is possible by Lemma 1.

The payoffs of the root node are only affected by its own choice of strategy. Therefore, 
we can write ż1 = u1(𝛼0) − u1(𝛼1) , and, consequently, z1(t) = t(u1(�0) − u1(�1)) + z1(0) . 
This system constitutes an autonomous ODE, which trivially has the Poincaré–Bendixson 
property (as it is either completely stationary, or is divergent). From then on, we can add 

(24)

d

dt
(y∗(t + T) − y∗(t)) =

d

dt ∫
T+t

t

g(x∗
i
(s))ds

= g(x∗
i
(T + t)) − g(x∗

i
(t))

= 0,
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nodes, starting from vertices connected to the root vertex, and then continuing in an induc-
tive fashion. Then, either one of the nodes diverges, or they are all stationary, and trivially 
satisfy the Poincaré–Bendixson property. It should be noted that “divergence” in practice 
means that zi(t) ’s approach in the limit t → ∞ to either ∞ or −∞ ; the former implies that 
the player i is placing almost all probability mass on strategy �0 , and the latter – on �1.

The more interesting scenario arises for the root cycle, where periodic limit sets are 
possible. Enumerate these vertices by 1,… ,N0 , with N0 ≤ N , and assume that the vertices 
from N0 + 1 to N are arranged in the order of increasing path distance from vertices of the 
cycle (possible by Remark 1). Observe that the system

is an autonomous system of differential equations (as there are no edges with successors 
in {1,… ,N0} , and predecessors outside of this set), and forms a binary, cyclic game in the 
sense of Theorem 3. As such, this subsystem possesses the Poincaré–Bendixson property. 
From then on, the proof continues similarly as for the root vertex. We add a vertex N0 + 1 
which has an incoming edge from the root cycle, and, by Lemma 3 observe that the system

again has the Poincaré–Bendixson property. The proof continues inductively w.r.to the ver-
tices, until we conclude that the full system ż = V(z) has the Poincaré–Bendixson property.  
 ◻

Remark 3 Theorems 3, 4 apply to dynamics of fully mixed initial strategy profiles bounded 
away from pure strategies, as FoReL learning (4) is ill-defined for pure strategies. For some 
learning models such as as the replicator equations  (14)  the theorems can be applied to 
subsystems arising when certain players assume a pure strategy profile, as in these models 
pure strategy profiles define invariant learning spaces.

4  Projections of limit sets in cyclic games

For cyclic, binary games, we can derive even stronger results on the topological structure 
of bounded limit sets, and, in particular, limit cycles. By the second part of Theorem 2, we 
have a one-to-one correspondence between any such limit set, and its projection on any 
pair of consecutive coordinates. This is formalized via the theorem below.

Theorem 5 Let ż = V(z) be a system of differential equations given by the FoReL field (7), 
for a binary, cyclic game, with smooth, steep, and strictly convex regularizers {hi}i . Then, 
for bounded solutions x(t) with x(0) = x∗ , the planar projections Πi ∶ �(x∗) → ℝ

2

are one-to-one, for all i ∈ 1,… , n.

Proof We consider the following two cases. Firstly, by the proof of Theorem 3, if for all 
i ∈ 1,… n we have

(25)
żi = Vi(zî),

i = 1,… ,N0,

(26)
żi = Vi(zî),

i = 1,… ,N0 + 1,
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then the vector field (7) satisfies the assumptions of Theorem 2, and the assertion follows. 
Secondly, if for any i it holds that Aî,i(𝛼0, 𝛼1) + Aî,i(𝛼1, 𝛼0) = Aî,i(𝛼0, 𝛼0) + Aî,i(𝛼1, 𝛼1) , then 
�Vi∕�zi−1 = 0 , and the i-th coordinate of the solutions zi(t) is of the form zi(t) = ait + bi for 
some real ai, bi . If ai ≠ 0 , then all solutions diverge to infinity. If all ai is zero for all i, then, 
by the same argument as in the proof �Vi+1∕�zi = 0 , and the argument continues iteratively 
in the same fashion as in the proof of Theorem 3, until any of the coordinates is divergent, 
or all coordinates of all solutions are constant. In the former case, there are no limit sets, 
and in the latter, they are all singletons, so their projections are trivially continuous and 
injective.   ◻

We recall that a Jordan curve is a continuous, injective image of a circle in ℝ2 . By the 
Jordan curve theorem, any Jordan curve divides ℝ2 into two connected components, and 
forms their common boundary [61]. One of the consequences of theorem 5, is that projec-
tions of limit cycles onto consecutive variables carry over this simple, topological property.

Corollary 1 Let x∗(t) be a limit set formed by a non-periodic solution of the FoReL sys-
tem  (7) for a binary, cyclic game, with smooth, steep, and strictly convex regularizers. 
Then, the projections {Πi(x(t)), t ∈ ℝ} are Jordan curves.

Proof Let T > 0 be the minimal period of x∗ . Then ℝ∕ℤ ∈ s → Πix
∗(sT) is a continuous, 

injective map of a circle in Πiℝ
n = ℝ

2 .   ◻

Remark 4 An analogous result, on projections on consecutive two variables, cannot be 
stated for general GPGs of indegree one. Consider a following three player game, where 
players 0 and 1 play matching-mismatching pennies, and in addition player 2 receives a uni-
form payoff only when player 1 plays one of his two strategies (regardless of what they do).

The learning dynamics for players 0 and 1 are formed by periodic solutions oscillating 
around the (0, 0) equilibrium, and the dynamics for player 2 are stationary, since there is no 
gain in changing strategies. The cross-product of any periodic solution with the stationary 
point is still a periodic solution, however, its projection onto the plane spanned by strate-
gies of players 1 and 2 is a line segment.

5  From geometry to efficiency: social welfare analysis

The following result shows that for cyclic, binary games, under additional but structurally 
robust assumptions on the payoff matrices (i.e., assumptions that remain valid after small 
perturbations of the payoff matrices), the time-average social welfare of our FoReL dynam-
ics is at least as high, as the social welfare SW =

∑
i ui of the worst Nash equilibrium. The 

proof crucially relies on the interplay of the optimal regret properties of FoReL dynamics 
combined with structural characterizations of the set of Nash equilibria of these games.

(27)Aî,i(𝛼0, 𝛼1) + Aî,i(𝛼1, 𝛼0) ≠ Aî,i(𝛼0, 𝛼0) + Aî,i(𝛼1, 𝛼1),

(28)A0,1 = −A1,0 =

[
1 0

0 1

]
, A1,2 =

[
1 0

1 0

]
.
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Theorem 6 In any binary, cyclic game with the property that for any player i, the payoff 
entries are distinct and

the time-average of the social welfare of FoReL dynamics is at least that of the social wel-
fare of the worst Nash equilibrium. Formally,

where xNE the worst case Nash equilibrium, i.e., a Nash equilibrium that minimizes the sum 
of utilities of all players.

In other words, the Nash equilibrium is the worst imaginable outcome for all players; 
and the dynamical, regret minimization approach yields superior payoffs.

Proof Lets consider the payoff matrix of each player i. Recall, that by the cyclicity assump-
tion, there is at most one player k such that Ak,i is a non-zero matrix, i.e., the unique prede-
cessor of i, that for simplicity of notation we call i − 1 . By assumption, the four entries will 
be considered distinct. Next, we break down the analysis into two cases. As a first case, we 
consider the scenario where there exists at least one player with a strictly dominant strat-
egy. The FoReL dynamics of that player strategy profile will trivially converge to playing 
the strictly dominant strategy with probability one. Similarly, all players reachable from 
player i will similarly best respond to it. This is clearly the unique NE for the binary cyclic 
game, so in this case the limit behavior of FoReL dynamics exactly corresponds to the 
unique Nash behavior and the theorem follows immediately.

Next, let’s consider the case where no player has a strictly dominant strategy. In this 
case, we will construct a very specific Nash equilibrium for the cyclic game. In this Nash 
equilibrium every player i − 1 plays the unique mixed strategy that makes its successor 
(player i) indifferent between its two strategies. Such a strategy follows from   (29), and 
from the binary structure of the game. By  (29), if players i − 1 , i participated in a zero-
sum game defined by the payoff matrix of player i, then player i − 1 would have no domi-
nant pure strategy; however, since it would be a 2x2 game, they would have a min-max 
mixed strategy. This, along with the fact that player i does not have a dominant strategy, 
exactly encodes that this zero-sum game has an interior Nash. In such point, the player i 
will be receiving exactly its max-min payoff no matter which strategy they select, therefore 
the profile where each player i − 1 just plays the strategy that makes player i indifferent 
between their two options is a Nash equilibrium for the full (cyclic) game, where each 
player receives exactly their max-min payoffs. However, by [21] (Lemma C.1), continuous-
time FoReL dynamics are no-regret with their time-average regret converging to zero at an 
optimal rate of O(1/T), i.e. there exists an Ωi > 0 , such that for all players i we have:

However, the left hand side is greater or equal to

(29)[Ai−1,i(𝛼0, 𝛼0) − Ai−1,i(𝛼1, 𝛼0)][A
i−1,i(𝛼0, 𝛼1) − Ai−1,i(𝛼1, 𝛼1)] < 0,

(30)lim inf
T→∞

1

T �
T

0

∑

i

ui(x(t))dt ≥
∑

i

ui(xNE),

(31)max
pi∈Xi

1

T �
T

0

(
ui(pi;x−i(t)) − ui(x(t)

)
dt ≤ Ωi

T
.
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since the mixed Nash equilibrium consists of max–min strategies. Therefore, the sum over 
i of the time-average performance is at least the sum of the max–min utilities minus a 
quickly vanishing term O(1/T) and the theorem follows.   ◻

We contrast the above result with the existing bounds on cost/social welfare of no-regret 
learners in smooth games e.g. in [47, 62] or [63], which give limits to how much at most it 
can deteriorate away from equilibrium. What we have demonstrated, is that in a wide class 
of learning games, their mixed Nash equilibrium is outperformed (in terms of social wel-
fare) by the average welfare accumulated along the learning trajectories. A result similar to 
ours was proved in [54], for a specific game (asymmetric cyclic matching pennies).

6  Examples

To illustrate our theoretical results, we analyze the replicator dynamics (14) of two classes 
multidimensional binary cyclic games that exhibit non-convergence and therefore non-triv-
ial limit behavior. The goal of the examples is to show that all possible limit sets indicated 
in the Poincaré–Bendixson property (i.e., an equilibrium, a periodic solution, and a cycle 
of connecting solutions) are attainable for systems satisfying our assumptions. In addition, 
we plot the social welfare of simulated trajectories, relating them to the results of Theo-
rem 6. Finally, we provide two counterexamples, where additional connectivity in the pay-
off graph induces more complicated limit sets: invariant tori and chaos. To determine the 
limit sets, we numerically integrate the initial-value problems with various starting condi-
tions via the lsoda differential equation integrator [64].

6.1  Matched–mismatched pennies game

First, we analyze a four-dimensional game of matched–mismatched pennies. Each player 
has a choice of two strategies, �0 and �1 . The payoffs for players 0 and 2 are given by

and the payoffs for players 1 and 3 are given by

Simply put, players 0 and 2 try to mismatch the strategy with players 1 and 3, and players 1 
and 3 try to match them. The replicator equations are given by

(32)ui(xNE) −
1

T ∫
T

0

ui(xi(t))),

(33)A3,0 = A1,2 =

[
−1 1

1 − 1

]

(34)A0,1 = A2,3 =

[
1 − 1

−1 1

]
.
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The system possesses three Nash equilibria, which correspond to the following strategy 
profiles: (0, 0, 1, 1), (1, 1, 0, 0), (0.5, 0.5, 0.5, 0.5), out of which the pure Nash equilibria 
are attracting, and the mixed Nash equilibrium has two center directions: one repelling and 
one attracting. We denote the mixed Nash equilibrium by xMNE . Given the symmetry of the 
system, the plane {(t, s, t, s), t, s ∈ [0, 1]} is invariant, consists purely of periodic orbits, and 
forms the center manifold to the mixed Nash equilibrium.

The numerical results are consistent with Theorems  3 and  4. The only limit sets 
observed by the numerical simulations are the mixed Nash equilibrium xMNE itself (along 
a single-dimensional attracting set) and the limit cycles around it, which also appear to 
be of saddle nature and have a single attracting direction, see Fig. 2. Most crucially, more 
complicated behavior, such as chaos or invariant tori, does not emerge, despite the system 
being nontrivially embedded in four dimensions.

The mixed Nash equilibrium yields the minimax payoff vector (0,  0,  0,  0) for each 
player and the social welfare of 0. The payoff matrices satisfy the assumptions of Theo-
rem 6, and the average payoffs along solutions are therefore at least non-negative. In fact, 
almost all (a set of full measure) initial conditions appear to converge to the pure equilibria 
at the boundary, with their time-average payoffs exceeding that of the Nash equilibrium 
and converging to the maximal welfare of 4, see Fig. 3.

6.2  Asymmetric N‑penny game

Our second system is a cyclic system of N-player asymmetric mismatched pennies, previ-
ously introduced in [54]. The payoffs for player i with respect to player i − 1 (keeping the 
convention that x0 = xN ) are given by the matrix

(35)

ẋ0 = x0(1 − x0)(2 − 4x3),

ẋ1 = x1(1 − x1)(4x0 − 2),

ẋ2 = x2(1 − x2)(2 − 4x1),

ẋ3 = x3(1 − x3)(4x2 − 2).

Fig. 2  Limit sets in the matched–mismatched pennies system: an orbit converging to an equilibrium (left) 
and an orbit converging to a limit cycle (right)
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with p > 0 , yielding the following replicator equations

For odd N, the game does not have a Nash equilibrium in pure strategies. The pure 
strategy profiles are saddle-type stationary points of the ordinary differential equa-
tion (37) linked by connecting orbits of mixed strategies. The system has a unique mixed 
Nash equilibrium defined by xi =

1

p+1
, i ∈ {1,… ,N} , where each player obtains payoff 

of p

p+1
.

The system (37) was thoroughly analyzed in [54], and the main result given therein 
was that, for N = 3 and p > 7 , all mixed strategies except for the diagonal converge to a 
sequence of orbits connecting boundary stationary points. Moreover, the social welfare 

(36)Ai−1,i =

[
0 1

p 0

]
.

(37)ẋi = xi(1 − xi)(1 − xi−1 − pxi−1).

Fig. 3  Time-average payoffs and social welfare of a sample learning trajectory in the matched–mismatched 
pennies game (top), and in the asymmetric 5-penny game with p = 3 (bottom, projection onto first three 
variables)
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attained close to the boundary exceeds the social welfare at the Nash equilibrium. We 
extend these results. From Theorem 3 we deduce that, for all N and for all p ≠ −1 , the 
only limit sets in the interior are equilibria, periodic orbits, and cycles of connecting 
orbits to equilibria. The payoff matrices satisfy the assumptions of Theorem 6, and, in 
particular, for all p > 0 , the mixed equilibrium yields the minimax payoff for each player, 
and time averages of payoffs along other orbits must exceed the minimax payoffs. For 
almost all initial conditions, the dynamics is attracted to the boundary cycle of average 
payoff (p + 1)

N−1

2
 (see, e.g., Fig. 3), and indeed no chaotic emergent behavior appears.

6.3  Quasiperiodicity in a 6‑player pennies game

We proceed to the first negative example. We consider a system, where six players play a 
custom combination of matched–mismatched pennies. The payoff matrices are given by

The system is built from three 2x2 sub-games. Players 0 and 1 play mismatching pennies, 
players 2 and 3 and players 4 and 5 both play matching–mismatching pennies. In addition 
there are matching-pennies type payoff contributions from player 0 to player 2, and from 
player 1 to player 4. Both nodes representing players 2 and 4 in the game graph have two 
predecessors each, which violates the assumptions of Theorem  4. The replicator system 
yields the following differential equations:

where xi represents the frequency of playing strategy �0 (or simply, heads) for player i.
The dynamics of this game are best understood when interpreting them as a product 

of dynamics of the systems; the mismatching pennies dynamics between agents 0 and 1 
are of saddle type, with mixed Nash equilibrium (x∗

0
, x∗

1
) = (0.5, 0.5) at the center which

 

(38)

A0,1 = A1,0 = A2,3 =

�
−1 0

0 − 1

�
,

A3,2 = A0,2 = A1,4 =

�
1 0

0 1

�
,

A4,5 =

�
−
√
2 0

0 −
√
2

�
,

A5,4 =

�√
2 0

0
√
2

�
.

(39)

ẋ0 = x0(1 − x0)(1 − 2x1),

ẋ1 = x1(1 − x1)(1 − 2x0),

ẋ2 = x2(1 − x2)(2x3 + 2x0 − 2),

ẋ3 = x3(1 − x3)(1 − 2x2),

ẋ4 = x4(1 − x4)(2
√
2x5 + 2x1 −

√
2 − 1),

ẋ5 = x5(1 − x5)(
√
2 − 2

√
2x4),
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has an attracting direction along the diagonal; and two copies of matching–mismatch-
ing games, which contain continuum families of invariant cycles. The cross product of 
this sub-game mixed Nash equilibrium, and any chosen pair of invariant cycles from 
each subsystems forms a continuous family of invariant tori, as seen in Fig.  4, filled 
with dense orbits. Each of these tori inherits the attracting direction from the Nash 
equilibrium, thus forming a family of limit sets, which are neither equilibria, nor peri-
odic. Due to lack of cyclicity, the game does not guarantee the payoff structure given by 
Theorem 6.

6.4  A chaotic polymatrix replicator

Our second negative example leads to an even more complex outcome; it shows that even 
in a binary three-player game, but without structured interactions (i.e., no cyclicity, all 
possible connections in the game graph), the learning trajectories of replicator dynamics 
can approach chaotic limit sets. The payoff matrices for this game are given by

After simple transformations, we arrive at the following one-parameter system of differen-
tial equations:

(40)

A0,0 =

[
� 14

0 0

]
,

A1,0 = −A0,1 =

[
−10 10

0 0

]
,

A2,0 = A2,1 = A2,2 = −A1,1 =

[
−2 2

0 0

]
,

A0,2 =

[
−25 29

0 0

]
,

A1,2 =

[
0 − 11

0 0

]
.

Fig. 4  Trajectories approaching two invariant tori in a six-player variant of matched–mismatched pennies



 Autonomous Agents and Multi-Agent Systems           (2023) 37:29 

1 3

   29  Page 20 of 24

This system was recently introduced by Peixe and Rodrigues [50], who formally showed 
by combined theoretical and numerical approaches that the system contains a persistent 
strange (chaotic) attractor for a range of parameter values � ∈ [1.4645, 9.5055] . We rep-
licate their findings by integrating a sample trajectory and observing its approach to the 
chaotic attractor for � = 2.8 , see Fig. 5. Similarly, as in the previous example, due to non-
cyclicity there are no guarantees to be derived from Theorem 6 on the payoff structure.

7  Discussion

In this paper, we proved the existence of a strong connection between the structure of a game 
graph in GPGs, and the topological structure of the long-term FoReL learning outcomes, 
represented by the limit sets. For binary games of indegree one, this structure is indeed quite 
simple, as the Poincaré–Bendixson property chaotic limit sets cannot emerge. For cyclic 
games, the result is even stronger, as the limit sets can be unambiguously represented by their 
two-dimensional projections, and, for a large subclass of these games, carry social welfare 
guarantees similar to these of Nash equilibria, trajectories that need not converge.

Although these results can be applied to systems of arbitrarily high dimension, the strat-
egy space of each individual agent is very limited – essentially one-dimensional, spanned 
by its choice of two pure strategies. This assumption limits the scope of applicability of pro-
vided theorems, and, without any additional dimensionality reduction, makes them unsuita-
ble for high-dimensional deep learning scenarios [65]. On the other hand, our results extend 
to learning systems can include arbitrarily large amount of agents, which is a vast improve-
ment, as the Poincaré–Bendixson theorem in its traditional, two-dimensional formulation 
(as given in Theorem 1) can only be directly applied to 2x2 games. This opens up possibili-
ties of applying the theory to large, structured learning systems consisting of many primitive 
agents, such as the ones encountered in swarms [66], or mean field games [67].

(41)

ẋ0 = x0(1 − x0)(12 − 𝜇 + (𝜇 − 14)x0 − 20x1 − 4x2),

ẋ1 = x1(1 − x1)(−10 + 20x0 + 4x1 − 4x2),

ẋ2 = x2(1 − x2)(27 − 54x0 + 11x1 − 4x2),

Fig. 5  A learning trajectory approaching a chaotic attractor in the polymatrix replicator [50] (left) and a 
plot of values of its coordinates (right). The game is characterized by unstructured interactions between 
payoffs and therefore breaks the assumptions of Theorems 3 and 4
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8  Conclusions

Numerous recent results regarding learning in games have established a clear separation 
between the idealized behavior of equilibration and the erratic, unpredictable, and typically 
chaotic behavior of learning dynamics even in simple games and domains. This realiza-
tion might seem to be a setback, but when viewed from the correct perspective it unveils a 
new way of interpreting learning outcomes, by adopting solution concepts from the quali-
tative theory of dynamical systems. Our results showcase the possibility of establishing 
links between the topological-combinatorial structure of multi-agent games, such as game 
graph, or the number of actions, to understand and constrain the topological complexity 
of limit sets (Poincaré–Bendixson property) and finally link back to more traditional game 
theoretic analyses, such as calculating the efficiency of the system via social welfare. These 
connections showcase the promising advantages of this approach. and we hope that it will 
lead to more interesting results along these lines in the future.
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