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A B S T R A C T

An inverse acoustic method is presented in this work, which allows to determine the spatial and 
temporal distribution of unsteady rotating forces from microphone array measurements. The 
method is based on the usage of a space–time regularization with a mixed norm. The proposed 
method can take advantage of a prior knowledge of the space–time characteristics of the unsteady 
rotating forces to ensure an accurate force reconstruction in real-time, using a smaller number of 
input signals compared to more conventional inverse methods. Different properties of the pro-
posed method are initially investigated by using synthetic acoustic signals radiated from rotating 
point sources and computed via an acoustic analogy formulation. Finally, the method is validated 
by using experimental acoustic signals radiated from the rotor of an unmanned aerial vehicle.   

1. Introduction

The real-time spatial and temporal reconstruction of unsteady rotating forces is of paramount importance for the identification and
control of noise generation mechanisms in rotating machines, such as propellers, rotors, turbofans and wind-turbines. The theory of 
sound generation from rotating forces is fully established since the pioneering publication of the generalized acoustic analogy 
formulation by Ffowcs-Williams and Hawkings in 1969 [1] and subsequent mathematical declinations of the theory seeded by Farassat 
[2–5]. These formulations allow computing the noise generated by rotating forces arbitrarily varying in space and time and are 
routinely applied in several industrial fields [6–11]. 

The experimental identification of spatial–temporal noise source distributions is usually carried out using pressure signals 
simultaneously acquired by microphones distributed on an array [12–15]. The most popular identification methods based on 
microphone array measurements fall into two main categories: the beamforming methods [16–18], and the inverse methods [19,20]. 
The main conceptual difference between these methods is that the beamforming methods are exhaustive search techniques where a 
selected grid containing the location of potential sound sources is scanned, while the inverse methods aim at solving an inverse 
problem accounting for the presence of all sound sources at once [15]. As discussed hereafter, only few attempts have been accom-
plished so far to use the theory of noise from rotating forces to identify loading-noise source distributions from microphone array 
measurements. 

The beamforming methods are widely used in aeroacoustics, in virtue of their flexible measurement procedure and high compu-
tational efficiency. However, most of these beamforming methods are based on either static dipole sources [21–27] or moving 
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monopole sources [28–31] and have been rarely used for the identification of rotating loading sources. Recently, Pan et al., [32] 
developed a beamforming correction method in the frequency domain to identify rotating loading sources. Chen et al., [33] proposed a 
beamforming method in the time–frequency domain based on a moving dipole source formulation and obtained acoustic imaging 
results at different frequencies from an array located on the side of a propeller. However, a significant drawback of the beamforming 
methods is that it fails to quantify the source strengths accurately when multiple coherent sources are present. 

The inverse methods have been used for the localization and quantification of unsteady rotating loading sources. Li et al., [34,35] 
proposed an inverse method based on the Farassat integral solution of the the Ffowcs-Williams and Hawkings (FW-H) equation to 
reconstruct the steady aerodynamic forces acting on the surface of a propeller blade, which is responsible of the so-called rotor-locked 
noise contribution. Gerard et al., [36,37] investigated an inverse method based on the Helmholtz integral solution following the 
approach of Morse and Ingard to evaluate the unsteady rotating forces acting by the fan on the fluid. Trabelsi et al., [38] also developed 
an inverse method to evaluate the unsteady rotating forces acting on the fluid by the fan, but they employed a simple model of the tonal 
noise of an axial flow fan, in which the distributed force was replaced by an equivalent force concentrated at the aerodynamic center of 
the blade. 

In the above-mentioned researches based on inverse methods, the reconstruction of the unsteady rotating forces was carried out in 
the frequency domain, thus losing some information about the variation of the sources in time. However, the capability to identify 
sources in space and time is key for real-time identification and control of rotating loading noise sources. Previous researches based on 
the time domain inverse method usually assume that the sources are simple monopole sources in stationary or rotating states [39–42]. 
Recently, Bi et al., [43] proposed a time-domain inverse method based on a conventional least-square regularization, hereinafter 
referred to as C-TDIM, to reconstruct the time histories of the three components of the unsteady rotating forces in the Cartesian co-
ordinate system. However, a large number of spatial sampling points are required by that method to ensure a sufficiently accurate 
reconstruction of the unsteady rotating forces, which is due to the least-square approach used to invert the acoustic problem. In 
addition, the conventional regularization methods commonly used to solve force reconstruction problems in time domain, such as 
Tikhonov-based methods [44–48] and Least Abosolute Shirinkage and Selection Operator (LASSO) regularization methods [49–53], 
cannot be well adapted to tackle both spatial localization and temporal reconstruction problems, simultaneously, since they are 
generally restricted to the reconstruction of force signals with the same space and time characteristics. In order to alleviate this 
limitation, this work proposes a time-domain inverse method based on a space–time regularization with a mixed norm, hereinafter 
referred to as ST-TDIM, to perform both spatial and temporal reconstruction of unsteady rotating forces. It should be pointed out that 
this method should overcome the intrinsic difficulty related to the different nature of spatial and temporal distributions: loading noise 
sources in rotating machines that operate in nominal conditions are typically continuous and regular in time, and concentrated in space 
in the blade tip region. The proposed method can take advantage of a prior knowledge of the space–time characteristics of the unsteady 
rotating forces to accurately and efficiently reconstruct them, in real-time, by reducing the required spatial resolution of the input noise 
measurements. 

The remainder of the present paper is organized as follows. Section 2 presents the theoretical formulation of the proposed method. 
In Sec. 3, synthetic noise signals radiated by two unsteady rotating point forces are computed analytically and used as an input of the 
proposed method to systematically evaluate its accuracy and computational performance. In Sec. 4, experimental noise signals emitted 
by an unmanned aerial vehicle (UAV) rotor are used to validate the method in a more realistic operational scenario. Finally, the main 
outcome and conclusions of the present work are drawn in Sec. 5. 

Fig. 1. Geometric description of the fan blade planform (a) and the source point distribution (b). The circular area drawn by dashed line represents 
the rotor disk. Solid circles identify locations of the point forces. 
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2. Theoretical formulations 

2.1. The time-domain inversion procedure 

Following the aeroacoustic theories based on Lighthill’s acoustic analogy extended to bodies in arbitrary motion, a surface pressure 
distribution on a blade, which is steady (constant) or unsteady (time varying) in the blade reference system, act as a distribution of 
dipolar sources with strength proportional to pressure and its time derivative, respectively [1–5]. This noise generation mechanism is 
referred to as loading noise. For thin-blade rotors operating at subsonic tip velocity conditions (tip speeds with Mach numbers under 
0.7), the loading noise contribution dominates over other contributions due to the fluid displacement caused by the blade motion 
(thickness noise) and to non-linear effects related to turbulence and/or shocks around the blades (quadrupole noise) [54]. 

By assuming chord-wise acoustic compactness (acoustic wavelength much larger than the blade chord), the planform of thin blades 
can be discretized into N point forces located along the blade span and at different azimuth in the rotor disk [54,55]. The source 
locations are marked by solid circles in Fig. 1, the force at each source point is decomposed into three components in the Cartesian 
coordinate system. The derivations start from the equations of sound pressure at a given microphone location x and time t generated by 
these N loading sources. By using the retarded time formulation 1A by Farassat [56], the pressure signal reads: 

p(x, t) =
1

4πc

∑N

n=1

⎡

⎢
⎣

RniḞni

R2
n

(
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⎤

⎥
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e

−
1

4π
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⎡

⎢
⎣
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R2
n

(
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⎤

⎥
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e

+
1
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⎡

⎢
⎣

(
RniṀni

)
RniFni

R3
n

(
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⎥
⎦

e
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⎡
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(
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R3
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⎤

⎥
⎦

e

(1) 

where the subscript ’’n’’ indicates the nth source point; Ḟni is the derivative of the force component of the nth source Fni with respect 
to the source time, i.e., Ḟni = ∂Fni/∂τ; Rni is the component of the distance vector from the nth source to the observer; Rn is the amplitude 
of the distance vector; R̃ni is the derivative of Rni with respect to space, i.e., R̃ni = ∂Rn/∂xi; Mni is the Mach number component of the nth 
source, with Mni = Vni/c where Vni is the velocity component of the nth source; Mn is the Mach number of the nth source; Ṁni is the 
derivative of Mni in terms of the source time, i.e., Ṁni = ∂Mni/∂τ. The subscript ’’e’’ in Eq. (1) indicates that all the quantities in the 
square brackets depend on their evaluated values at the retarded source time τ. 

The observation and source time are also discretized. Thus the sampling observer time steps tk and the source time steps τl are 
defined as: 

tk = t1+(k − 1)Δt, k = 1, 2,…,K (2)  

τl = τ1+(l − 1)Δt, l = 1, 2,…, L (3) 

When using the discrete pressure values to calculate the force values, the source time for each loading source should be determined 
first as: 

τk
n = tk − Rn

/
c (4) 

Due to Doppler effects, the source time τk
n will not be an integer multiple of the given time interval Δt. Therefore, the force 

component should be processed by the following time domain interpolation: 

Fni
(
τk

n

)
=
∑k

l=1
ζl( τk

n

)
Fl

ni (5)  

Ḟni
(
τk

n

)
=
∑k

l=1

∂ζl( τk
n

)

∂τ Fl
ni (6)  

where Fl
ni represents the force component at each source time step τl; ζl(τk

n) is the Lagrange linear interpolation function [41,42]. 
After the discretization and interpolation, Eq. (1) becomes 

p
(
x, tk) =

∑N

n=1

∑k

l=1
gl

ni

(
τk

n

)
Fl

ni (7) 

where gl
ni
(
τk

n
)

is expressed as: 
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In a matrix form, Eq. (7) can be rewritten as: 

p
(
x, tk) = ψ1kT1+ψ2kT2+⋯+ψ lkTl+⋯+ψkkTk (9) 

where 

ψ lk= [ gl
11

(
τk

1

)
⋯ gl

N1

(
τk

N

)
gl

12

(
τk

1

)
⋯
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(
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N

)
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N

)
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(10)  

Tl =
[

Fl
11 ⋯ Fl

N1 Fl
12 ⋯ Fl

N2 Fl
13 ⋯ Fl

N3

]T (11) 

By considering Q measurement points (microphones), and by applying Eq. (9) to each measurement point, yields the following 
extended matrix equation: 

Pk = H1kT1+H2kT2+⋯+HlkTl +⋯+HkkTk (12) 

where 

Pk =
[

p
(
x1, tk) p(x2, tk) ⋯ p

(
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)
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]T (13)  
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Q
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(14) 

By applying Eq. (12) to each time step, the problem can be casted in a large matrix form, i.e.: 

P = H
̅→←̅

T
̅→←̅

(15) 

where 

P =
[

P1 P2 ⋯ Pk ⋯ PK
]

(16)  

T
̅→←̅

=
[

T1 T2 ⋯ Tk ⋯ TK
]

(17)  

H
̅→←̅

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

H11

H12 H22

⋮ ⋮ ⋱
H1k H2k ⋯ Hkk

⋮ ⋮ ⋱ ⋮ ⋱
H1K H2K ⋯ HkK ⋯ HKK

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(18) 

Eq. (15) is a linear system that relates the force components in the three directions of the N discrete forces along the blades and at 
different source time steps to Q microphone sound pressure at different observer time steps. Then, the force components at different 
locations on the fan blade planform and at different source time steps can be computed from the sampled values of the sound pressures 
at the measurement points by inverting Eq. (15) as: 

T
↔
=
(

H
↔ )+

P (19) 

where the superscript “+” denotes the pseudo-inverse of a matrix. 
Eq. (19) indicates that when the sound pressures at an observer time step are measured, the force components in the three di-

rections at the corresponding source time step can be reconstructed, and thus the proposed method can realize the real-time recon-
struction of the force signals. Once the force at each source point on the blade planform and at each time step is determined, the 
localization and quantification of the unsteady rotating loading sources can be realized. This process is herein referred to as space–time 
source reconstruction process. 

Considering that the inverse problem is usually ill-conditioned and the source reconstruction is not straightforward, some regu-
larization strategies, e.g., the Tikhonov regularization and the LASSO regularization, are commonly used to solve the force recon-
struction problem in the time domain. Unfortunately, these conventional regularization strategies are not well suited to tackle both 
spatial localization and temporal reconstruction problems simultaneously, since they are generally restricted to the reconstruction of 
signals sharing the same space and time characteristics. A more suitable space–time regularization technique for the present inversion 
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problem is therefore needed, as discussed in the next subsection. 

2.2. Space-time regularization 

The core idea behind the space–time regularization is to exploit available prior information about the space source distribution 
(localized or distributed) and the nature of the source signals simultaneously. The space–time regularization with a mixed norm is 
introduced in the inverse problem framework [57–59], which reads: 

T̃ = argmin
T
̅→←̅
‖ P
̅→←̅

− H
̅→←̅

T
̅→←̅
‖

2
2
+ λ‖T̂‖q

p,q

(20)  

where ‖T̂‖qp,q represents the space–time regularization term. The coefficients p and q are the norm parameters corresponding space and 
time, respectively. To better understand the influence of the space–time regularization during the solving process, the elements of the 

unknown force vector T
̅→←̅

in Eq. (17) are further rewritten into the matrix form T̂ as follows: 
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⎥
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(21)  

where the rows correspond to the time signal at a particular location and the columns to the excitation field at a specific instant. N is the 
number of reconstruction source points of the excitation field. Consequently, by recalling that the mixed norm is defined by the 
following expression: 

‖T̂‖q
p,q=

∑K

k=1

(
∑3

i=1

∑N

n=1

⃒
⃒Fk

ni

⃒
⃒p
)q

p

(22) 

it is clear that the regularization term introduces an explicit coupling between the coefficients of T̂ and allows promoting some 
structures observed in real signals [60]. To illustrate this particular property of the mixed norms, let us consider the case for which p =
1 and q = 2. In this situation, the matrix T̂ is supposed to be sparse along the lines (space) and full along the rows (time). In other 
words, by using this setting, we can promote the spatial sparsity of the excitation field and the continuity of the time signals. We can 
therefore argue that the space–time regularization is highly flexible, since it allows dealing with various force distributions and various 
excitation signals within a unique framework. 

The minimization problem in Eq. (20) can be solved by the generalized iterative reweighted least squares algorithm [61,62] by 

transforming ‖T̂‖qp,q to 
⃦
⃦
⃦Ŵ T

̅→←̅ ⃦⃦
⃦

2

2
, which reads: 

T̃ = argmin
T
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T
̅→←̅
‖

2
2
+ λ‖Ŵ T
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‖

2
2

(23)  

where Ŵ is a diagonal matrix and its element is 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Wk
niWk

√

. 

Wk
ni =

{⃒
⃒Fk

ni

⃒
⃒p− 2

,
⃒
⃒Fk

ni

⃒
⃒⩾ε

εp− 2 , otherwise
(24)  
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⎧
⎪⎪⎨

⎪⎪⎩
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(
Tk)T

⃦
⃦
⃦

p

p
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,

⃦
⃦
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(
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⃦
⃦
⃦

p

p
⩾ε2

(
ε2)q/p− 1

, otherwise
(25) 

In Eqs. (24) and (25), a small real positive number ε is added to Wk
ni and Wk, respectively, to avoid infinite weights. The explicit 

solution of Eq. (23) can be expressed in the following form: 
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T̃ =
(

H
̅→←̅

H H
̅→←̅
+ λ W
̅̅→←̅̅ )− 1

H
̅→←̅

H P
̅→←̅

(26)  

where W
̅̅→←̅̅

= Ŵ
H

Ŵ , with the superscript “H” denoting the Hermitian transpose. 

Since the weighting matrix W
̅̅→←̅̅

depends on the exciting force Fk
ni based on Eqs. (24) and (25), an iterative process must be employed 

to solve the minimization problem. The solution T̃
(s)

at iteration s relies on solution at iteration s − 1, namely: 

T̃
(s)
=
(

H
̅→←̅

H H
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+ λ W
̅̅→←̅̅

(s− 1)
)− 1

H
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H P
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(27) 

where the weighting matrix W
̅̅→←̅̅

(s− 1) at iteration s − 1 is based on the exciting force Fk
ni at iteration s − 1. The initial solution of the 

iterative procedure is estimated based on the standard Tikhonov regularization [63] which corresponds to p = q = 2, i.e.: 

T̃
(0)
= argmin

T
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‖ P
̅→←̅

− H
̅→←̅

T
̅→←̅
‖

2
2
+ λ‖ T
̅→←̅
‖

2
2

(28) 

or, in an explicit form, to: 

T̃
(0)
=
(

H
̅→←̅

H H
̅→←̅
+ λI

)− 1
H
̅→←̅

H P
̅→←̅

(29) 

where T̃
(0)

is the initial solution, I stands for a unit matrix, and λ is determined according to the L-curve criterion [64]. The 
functional J at iteration s is given by 

J
(

T̃
(s))
=

⃦
⃦
⃦ P
̅→←̅
− H
̅→←̅

T̃
(s)
⃦
⃦
⃦

2

2
+ λ
⃦
⃦
⃦ W
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(s− 1)T̃
(s)
⃦
⃦
⃦

2

2
(30) 

As a result, the relative variation δ of the functional J between two adjacent iterations can be expressed as: 

δ =

⃒
⃒
⃒
⃒
⃒
⃒
⃒

1 −
J
(

T̃
(s))

J
(

T̃
(s− 1))

⃒
⃒
⃒
⃒
⃒
⃒
⃒

(31) 

The algorithm is stopped when the relative variation between two iterations is less than or equal to a given tolerance or when the 
maximum number of iterations is reached. 

It is worth noting that in real-life applications, finding proper values for p and q is not straightforward, because the force distri-
bution is unknown. Some guidelines, based on some research experience [24,30,60,62] and the existing literature on convex and non- 
convex optimizations [27,52,63], can be used. As a rule of thumb, if the excitation field is supposed to be uniform in space, then it is 
reasonable to set p = 2. On the contrary, if the excitation field is rather localized, then choosing p⩽1 allows promoting the sparsity of 
the solution. A prior knowledge of excitation signal can be also used, in particular, it is reasonable to set q = 2 if the time signal is 
supposed to be continuous over the considered duration, while q⩽1 if the signal is rather impulsive. 

Since the main focus of the present research is on the noise generated by thin blades rotating at subsonic tip speed, the aerodynamic 
forces concentrated in the blade tip region are the dominant noise sources. On the other hand, when the rotor operates in quasi- 

Fig. 2. Geometric description of the rotating loading sources, source points and measurement points.  
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quiescent conditions or even in non-axial flow conditions and does not incur in strong blade-vortex interaction conditions, the noise 
signals are rather smooth in time. In this situation, setting p⩽1 and q = 2 is a meaningful choice, because the method takes advantage 
of the spatial sparsity of the excitation field and allows promoting the sparsity of the solution by choosing an lp-norm in space (p⩽1). 
This allows to improve the reconstruction accuracy of the forces when the number of measurement points is less than that of un-
knowns. 

3. Numerical validation of the method 

In this section, numerically computed sound pressure signals are used as an input of the inverse problem to analyze the performance 
of the ST-TDIM in reconstructing the unsteady rotating forces and to compare the reconstruction results of the C-TDIM and the ST- 
TDIM in two different cases, also including undersampling conditions and oversampling conditions. The layout of source points in 
the simulation is shown in Fig. 2, a series of source points are distributed on three rings with the radii of 0.1, 0.2 and 0.3 m, and each 
ring contains ten source points. These source points have identical rotational speed. It is worth pointing out that, in this specific case, 
the second ring radius coincides with the radial location of two “real” point forces located at the initial positions Fa (0.2, 0, 0) m and Fb 
(-0.2, 0, 0) m in the reference system o(x1, x2, x3) centered at the rotation center. This choice allows to a more insightful verification of 
the method, since the space sparsity of the solution is fully recovered. 

For quantifying the accuracies of the ST-TDIM and the C-TDIM, the phase evaluation factor Ep and the amplitude evaluation factor 
Ea are used as accuracy/error indicators, which are defined as [65]: 

Ep =

⃒
⃒FT

thFre

⃒
⃒

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
FT

thFth

)(
FT

reFre

)√ , (32)  

Ea =

⃒
⃒
⃒

̅̅̅̅̅̅̅̅̅̅̅̅

FT
thFth

√

−

̅̅̅̅̅̅̅̅̅̅̅̅

FT
reFre

√ ⃒
⃒
⃒

̅̅̅̅̅̅̅̅̅̅̅̅

FT
reFre

√ , (33) 

Fig. 3. Comparison of the reconstructed and reference force components of rotating loading sources: (a) the x1 direction components of Fa; (b) the 
x2 direction components of Fa; (c) the x3 direction components of Fa; (d) the x1 direction components of Fb; (e) the x2 direction components of Fb; (f) 
the x3 direction components of Fb. 
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where the superscript “T” denotes the transpose of matrix; Fth and Fre are the theoretical and reconstructed forces, respectively; Ep 

indicates the phase similarity that should tend to 1, and Ea indicates the amplitude difference that should tend to 0. In the simulations, 
three components of theoretical forces on the two unsteady rotating loading sources Fth

a and Fth
b in the Cartesian coordinate system o(x1,

x2, x3) are prescribed as: 

Fth
a

⎧
⎪⎪⎨

⎪⎪⎩

Fth
a1 = FDsin(ϕ1 + Ωτ)

Fth
a2 = − FDcos(ϕ1 +Ωτ)

Fth
a3 = FL = C((τ − τo)/Tv )exp

(
− (τ − τo)

2/T2
v

)
(34)  

Fth
b

⎧
⎪⎪⎨

⎪⎪⎩

Fth
b1 = FDsin(ϕ2 + Ωτ)

Fth
b2 = − FDcos(ϕ2 +Ωτ)

Fth
b3 = FL = C((τ − τo)/Tv )exp

(
− (τ − τo)

2/T2
v

)
(35) 

where ϕ1 and ϕ2 are the initial phases of the two unsteady rotating loading sources, respectively; FD is the magnitude of the drag 
force; FL is the magnitude of the thrust force; C is a constant number; τo is the pulse time delay and Tv is the pulse time spreading width. 
The specific parameter values are given as FD = 50 N, C = 100, ϕ1 = 0, ϕ2 = π, Ω = 2πN̂/60, N̂ = 1020 rpm , τo = 64Δt, and Tv =

12.8Δt with the time step Δt = 1/1700 s, where the sampling frequency is 1700 Hz. 

3.1. Case 1: Oversampling conditions 

In order to analyze the performance of the ST-TDIM and the C-TDIM under oversampling conditions, 120 sampling points are first 
used to reconstruct the unsteady rotating forces. In this situation, 90 unknowns (30× 3 force components) must be determined from 
120 measurement points. The measurement array is arranged as shown in Fig. 2, which is set as multiple rings of the same radius of 
0.25 m located on planes parallel to the rotor disk, and each ring contains 30 measurement points. The position of each ring in the x3 

Fig. 4. Comparison of the reconstructed and reference force components F1, F2 and F3 at all source points: (a) F1 at the selected time step τ60; (b) F2 

at the selected time step τ60; (c) F3 at the selected time step τ60; (d) F1 at the selected time step τ70; (e) F2 at the selected time step τ70; (f) F3 at the 
selected time step τ70. 
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direction is set to be − 0.04 m, − 0.02 m, 0.02 m, and 0.04 m. Additional Gaussian white noise with a signal-to-noise ratio of 30 dB is 
added to the pressure signals for simulating more realistic conditions. Since the real values of two rotating loading sources are known 
in the simulation, they are used as the references for comparison. 

Fig. 3 shows the time histories of the unsteady rotating forces reconstructed by the ST-TDIM and the C-TDIM and compared to the 
reference ones. It can be argued that, in the case of sufficient sampling points, the three direction components of unsteady rotating 
forces reconstructed by the two methods are in good agreement with the reference values during the entire time period. Furthermore, 
based on Eq. (32) and Eq. (33), the phase indicators Ep and the amplitude indicators Ea of the reconstructed unsteady rotating forces 
can be further evaluated. The phase indicator for the C-TDIM is 0.0194 (same value for the two point forces), whereas the amplitude 
indicator is 0.9999. The phase indicator for the ST-TDIM is 0.0028, whereas the amplitude indicator is 0.9999. Compared with the C- 
TDIM, the ST-TDIM can achieve slightly higher temporal reconstruction accuracy of the unsteady rotating forces in oversampling 
conditions. 

Additionally, detailed information of the unsteady rotating forces reconstructed by the two methods at all source points and at two 
selected time steps are reported in Fig. 4. The reference force values are plotted for a qualitative visual evaluation of the reconstruction 
accuracy. It can be argued that both the ST-TDIM and C-TDIM can reconstruct the unsteady rotating forces, but the ST-TDIM is slightly 
more accurate than the C-TDIM in reconstructing the force components in the three directions at all source points. 

In order to better visualize the spatial localization results of the two methods, the source maps at the time steps of τ26 and τ101 are 
shown in Fig. 5. It can be pointed out that the C-TDIM can accurately localize the locations of the unsteady rotating loading sources at 
different time steps, but some side lobes appear in the map. Conversely, the source maps obtained by the ST-TDIM are significantly 
cleaner. 

All these results indicate that, under oversampling conditions, the ST-TDIM can solve both the spatial and temporal reconstruction 
problems of unsteady rotating forces slightly more accurately than the C-TDIM, thanks to a prior knowledge of space and time 
characteristics of the forces. 

3.2. Case 2: Undersampling conditions 

Although both the ST-TDIM and the C-TDIM can obtain accurate results under oversampling conditions, the two methods are 
essentially different. The ST-TDIM introduces a space–time regularization with a mixed norm in the inverse problem framework, which 
can tackle both spatial and temporal reconstruction problems of the unsteady rotating forces, simultaneously. Furthermore, unlike the 
C-TDIM, the ST-TDIM can take advantage of a prior knowledge of the space–time characteristics of the unsteady rotating forces and 
enhance the sparseness of the solution and reduce the computational cost of the inversion. 

In order to stress the capability of the new method in undersampling conditions, in this subsection, 48 sampling points are used to 
compare the accuracies of the two methods. In this situation, 90 unknowns (30× 3 force components) must be determined from 48 

Fig. 5. Spatial distribution of the reconstructed forces (a) by the C-TDIM at time step τ26; (b) by the C-TDIM at time step τ101; (c) by the ST-TDIM at 
time step τ26; (d) by the ST-TDIM at time step τ101. The white squares indicate the real positions of two rotating loading sources, F indicates the 
total force. 
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measurement points. The arrangement of the measurement array is the same as for Case 1, but each ring contains only 12 measurement 
points. Other simulation parameters are the same as those in Case 1. 

Fig. 6 shows the comparison of the time variation of the reconstructed forces and the reference values. It can be argued that when 
the number of sampling points is reduced to 48, differences between the two methods are remarkable, with a clearly higher accuracy 
achieved by the ST-TDIM. Furthermore, the phase indicators are 0.2281 and 0.0053 for the C-TDIM and ST-TDIM, respectively, 
whereas the amplitude indicators are 0.9920 and 0.9999, respectively. The higher accuracy of the ST-TDIM is confirmed by these 
figures. 

At all source points, the unsteady rotating force components reconstructed by the ST-TDIM and the C-TDIM are compared with the 
theoretical values at two selected time steps, as shown in Fig. 7. It can be seen that the force components at different source points 
reconstructed by the ST-TDIM are remarkably similar to the theoretical ones, while the reconstructed results of the C-TDIM exhibit 
higher discrepancies with respect to the reference values. 

The source maps obtained by the two methods at the time steps of τ26 and τ101 are finally presented in Fig. 8. The maps obtained 
using the two methods are rather continuous. However, the C-TDIM results exhibit a more smeared pattern and several side lobes. 
Conversely, the unsteady rotating forces reconstructed by the ST-TDIM are more concentrated in space at the effective locations. 

In practical usage of the inversion method, fewer sampling points mean lower computational cost and lower reconstruction ac-
curacy. Therefore, it is interesting to investigate the convergence characteristics of the two methods by estimating the accuracy in-
dicators for increasing number of sampling points, from 16 to 120. Fig. 9 shows the phase and amplitude indicators obtained for 
different sampling points. Both methods exhibit a consistent behavior, with indicators reviling an increasing accuracy as the number of 
sampling points is increased. When 20 sampling points are used, the phase indicator for the C-TDIM is close to 0.8 and the amplitude 
indicator is close to 0.6, whereas a significantly more accurate reconstruction is achieved by the ST-TDIM, which appears to be much 
more robust. Even when only 16 measurement points are used, the ST-TDIM yields satisfactory results. As the number of sampling 
points is increased, the C-TDIM error indicators tend to approach the values of the ST-TDIM, but the accuracy is always lower. When 90 
sampling points are used, the number of equations to solve the force components is the same as the number of unknown force 
components, both phase indicators are close to 1 and the amplitude indicators are close to 0, which indicates that both methods can 
obtain satisfactory reconstruction accuracy under oversampling conditions. 

In addition, in order to study the effects of noise on the two methods, the accuracy indicators of the two methods in reconstructing 

Fig. 6. Comparison of the reconstructed and reference strength components of rotating loading sources: (a) the x1 direction components of Fa; (b) 
the x2 direction components of Fa; (c) the x3 direction components of Fa; (d) the x1 direction components of Fb; (e) the x2 direction components of Fb; 
(f) the x3 direction components of Fb. 
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the unsteady rotating forces at different signal-to-noise ratios (SNRs), in the range from 0 dB to 30 dB, are calculated, as shown in 
Fig. 10. It can be observed that with the decrease of SNRs, the influences of noise on the phase indicators and the amplitude indicators 
of the two methods are slight, and the performance of the proposed method in reconstructing the unsteady rotating forces at different 
SNRs is always better than that of the C-TDIM, thanks to a prior knowledge of space and time characteristics of the forces. 

4. Experimental validation of the method 

In this section, the reconstruction methods are validated by using, as an input, real measurements of noise signals radiated from a 
small rotor. Experiments were carried out in a semi-anechoic chamber. The experimental setup was shown in Fig. 11. An UAV carbon 
fiber rotor was used. The rotor diameter was 0.4 m, the blade thickness was about 0.001 m, and the blade chord at 80% of tip radius 
was 0.025 m. The drive system was constituted by a low-noise direct current brushless motor. A laser speedometer is used to measure 
the blade tip speed, which is 999 rpm, corresponding to a tip Mach number of 0.0615. As sketched in Fig. 12, the blade planform was 
discretized into a series of source points. These source points were distributed along three rings with the radii of 0.1 m, 0.2 m and 0.4 
m. Each ring contained 10 points. The loading sources at these points were supposed to rotate at the same rotational speed as the blade. 

An array of double rings side by side containing 60 omnidirectional microphones (BSWA MPA 451) in total (30× 2) was used to 
perform the measurements. The diameter of the array is 0.5 m. Two measurements were carried out for two axial positions of the 
double array, corresponding to the following axial distances of the microphone rings from the rotor disk: 0.02 m, 0.03 m and 0.04 m, 
0.05 m, 120 sampling points were obtained, as shown in Fig. 12. To guarantee that the sound fields of the two measurements were the 
same, the pulse signals measured by the laser speedometer were set as the triggers to activate the acquisition system recording the data. 
A Müller-BBM acquisition instrument with 60-bit cards is used to simultaneously sample the sound pressure signals at 60 microphone 
locations, and the sampling frequency is 10.24 kHz. 

4.1. Oversampling conditions 

In order to analyze the performance of the ST-TDIM and C-TDIM under oversampling conditions from the perspective of 

Fig. 7. Comparison of the reconstructed and reference force components F1, F2 and F3 at all source points: (a) F1 at the selected time step τ60; (b) F2 

at the selected time step τ60; (c) F3 at the selected time step τ60; (d) F1 at the selected time step τ70; (e) F2 at the selected time step τ70; (f) F3 at the 
selected time step τ70. 
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Fig. 8. Spatial distribution of the reconstructed forces: (a) by the C-TDIM at time step τ26; (b) by the C-TDIM at time step τ101; (c) by the ST-TDIM at 
time step τ26; (d) by the ST-TDIM at time step τ101. The white squares indicate the real positions of two rotating loading sources, F indicates the 
total force. 

Fig. 9. The phase indicators Ep (a) and the amplitude indicators Ea (b) of the unsteady rotating forces at different sampling points.  

Fig. 10. The phase indicators Ep (a) and the amplitude indicators Ea (b) of the unsteady rotating forces at different SNRs when 48 sampling points 
are used. 
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experiments, 116 sampling points on sub-arrays at the positions 0.02 m, 0.03 m, 0.04 m and 0.05 m shown in Fig. 12 were first used to 
reconstruct the rotating forces. 

Fig. 13 shows the localization results of the ST-TDIM and the C-TDIM for the two rotating blades at two different time steps τ460 and 
τ615. It can be seen that although the two methods can localize the loading sources on the rotating blades at different time steps clearly 
under oversampling conditions, the ST-TDIM can obtain clearer source maps than the C-TDIM. The loading sources mainly concentrate 
at the tips of the blades, where the rate of change of the Mach number projected in the observer direction is largest at this radius and the 
velocity is higher, corresponding to higher force magnitudes. As expected, the loading sources in the blade tip region are the most 
significant part of the signature. From these results, it can be asserted that the ST-TDIM can achieve accurate source localizations at 
different time steps in the case of sufficient sampling points. 

Fig. 14 shows the time histories of unsteady rotating forces reconstructed by the ST-TDIM and C-TDIM at 116 sampling points. It is 
clear that, when a sufficient number of sampling points is used, the unsteady rotating forces reconstructed by the two methods are 
similar. As expected, the reconstructed force components in both x1 and x2 directions exhibit the sine and cosine harmonic form due to 
the projection of the drag force component at different azimuthal locations of the blade. The difference between the initial phases of 
the unsteady forces on two rotating blades is 180 degrees. In addition, it can be observed that the time average reconstructed force 
components in the x3 direction is negative, meaning that it is a positive thrust component applied to the blade. There are periodic 
fluctuations in force components in the x3 direction when the blade is interacting with the unsteady wake, or vortex [54]. 

Considering that the C-TDIM can accurately reconstruct the unsteady rotating forces on the rotating blade under oversampling 
conditions [43], the present results confirm that also the ST-TDIM can accurately reconstruct the unsteady rotating forces in similar 
conditions. 

Fig. 11. Experimental setups for measuring the UAV rotating blade noise: the UAV blades and the microphone array, and the laser speedometer.  

Fig. 12. Geometric description of the rotating blades, source points, measurement points and prediction points.  
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Fig. 13. The localization results of the two rotating blades (a) by the C-TDIM at time step τ460; (b) by the C-TDIM at time step τ615; (c) by the ST- 
TDIM at time step τ460; (d) by the ST-TDIM at time step τ615, F indicates the total force. 

Fig. 14. The reconstructed strength components in the three directions on the tip of two rotating blades: (a) the x1 direction components of Fa; (b) 
the x2 direction components of Fa; (c) the x3 direction components of Fa; (d) the x1 direction components of Fb; (e) the x2 direction components of Fb; 
(f) the x3 direction components of Fb. 
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The reconstruction accuracy of the proposed method is further evaluated by comparing the predicted sound field based on the 
reconstruction forces with the measured ones. Fig. 15 shows the comparison of sound pressures at four prediction points M1 (0.2, 0, 
0.02) m, M2 (0, 0.2, 0.02) m, M3 (-0.2, 0, 0.02) m, and M4 (0, − 0.2, 0.02) m. It can be seen that the results predicted by the ST-TDIM 
and C-TDIM are in good agreement with the measured ones, except for the slight oscillations in the amplitudes of the pressure signals. 
Furthermore, the phase indicators Ep and the amplitude indicators Ea of sound pressures at the prediction point M1 are calculated to 
evaluate the accuracy of the predicted pressures based on the ST-TDIM and C-TDIM. Ep and Ea for the ST-TDIM are 0.9163 and 0.0126, 
respectively, while those for the C-TDIM are 0.8965 and 0.0646, respectively. Therefore, the ST-TDIM performs slightly better than the 
C-TDIM in the present validation case. 

4.2. Undersampling conditions 

Similarly to the analysis carried out using numerical signals, 45 sampling points are used in the experiment to analyze the per-
formance of the two methods. The data of 45 sampling points are uniformly selected from the sound pressure data of the 90 sampling 
points at the positions 0.03 m, 0.04 m and 0.05 m, by using only 15 measurement points per ring. Other settings remain unchanged. 

The source maps obtained by of the ST-TDIM and C-TDIM in undersampling conditions at the time steps τ460 and τ615 are presented 
in Fig. 16. Both methods are able to predict the source locations, but the C-TDIM exhibit side lobes and its spatial resolution is lower. 
Compared to the previous oversampling results, the accuracy of the C-TDIM is significantly lower, whereas the ST-TDIM performs 
similarly, except for the presence of few minor side lobes. 

Fig. 17 shows the time histories of the unsteady rotating forces reconstructed by the ST-TDIM and the C-TDIM with 45 sampling 
points. It can be seen that the unsteady rotating force signals reconstructed by the C-TDIM are less smooth and the force fluctuations 
exhibit significantly lower amplitudes than in oversampling conditions (Fig. 14). Conversely, the ST-TDIM results present similar 
accuracy as in oversampling conditions. 

In order to further evaluate the accuracy of the two methods in undersampling condition, Fig. 18 shows the comparison of the 
predicted sound pressures at four different prediction points M1 (0.2, 0, 0.02) m, M2 (0, 0.2, 0.02) m, M3 (-0.2, 0, 0.02) m and M4 (0, 
− 0.2, 0.02) m. It is clear that the ST-TDIM predictions are in much better agreement with the measurements. The phase and amplitude 
indicators at the prediction point M1 are calculated. The phase indicators are 0.9075 and 0.8505 for the ST-TDIM and C-TDIM, 
respectively, whereas the amplitude indicators are 0.0826 and 0.5865, respectively. A clearly higher accuracy is thus achieved by the 
ST-TDIM. This conforms that, also in a realistic usage scenario, the proposed method performs better than the conventional one. 

5. Conclusions 

A time-domain inverse method based on a space–time regularization with a mixed norm has been presented and validated. The 
method allows to calculate unsteady forces acting on rotor blades from microphone array measurements. The proposed method takes 

Fig. 15. Comparison of the predicted and measured pressures at four prediction points: (a) M1 (0.2, 0, 0.02) m; (b) M2 (0, 0.2, 0.02) m; (c) M3 (-0.2, 
0, 0.02) m; (d) M4 (0, − 0.2, 0.02) m. 
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Fig. 16. The localization results of the two rotating blades (a) by the C-TDIM at time step τ460; (b) by the C-TDIM at time step τ615; (c) by the ST- 
TDIM at time step τ460; (d) by the ST-TDIM at time step τ615, F indicates the total force. 

Fig. 17. Comparison of the reconstructed and reference strength components in the three directions on the tip of two rotating blades: (a) the x1 

direction components of Fa; (b) the x2 direction components of Fa; (c) the x3 direction components of Fa; (d) the x1 direction components of Fb; (e) 
the x2 direction components of Fb; (f) the x3 direction components of Fb. 
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advantage of a prior knowledge of the spatial and temporal characteristics of the rotating forces and is well suited to tackle both spatial 
localization and temporal reconstruction problems simultaneously. Compared to the conventional methods, the proposed one pre-
serves high reconstruction accuracy in undersampling conditions, when a reduced number of input signals are used, thus reducing the 
measurement and computation cost of the inversion. The method has been initially validated using synthetic noise signals and then 
validated using measured rotor noise signals. The results of the two validation tests are consistent and confirm the higher accuracy and 
robustness of the proposed method. Future studies will be carried out to apply the method to real-time source characterization and 
control. 

In addition, it should be pointed out that although the proposed method has no strict limit on the length of the measured data 
theoretically, it will affect the calculation time. For example, it takes about 5 s to reconstruct the force signals when sound pressure 
data containing 20 time steps is used. And, as the number of time steps increases, the required calculation time will increase. Therefore, 
when a long period of sound pressure data needs to be processed, it can be divided into multiple time periods for parallel processing, 
thus reducing the calculation time. 
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Fig. 18. Comparison of the predicted and measured pressures at four prediction points: (a) M1 (0.2, 0, 0.02) m; (b) M2 (0, 0.2, 0.02) m; (c) M3 (-0.2, 
0, 0.02) m; (d) M4 (0, − 0.2, 0.02) m. 
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