

Delft University of Technology

Uncovering Energy-Efficient Practices in Deep Learning Training
Preliminary Steps Towards Green AI
Yarally, Tim; Cruz, Luís; Feitosa, Daniel; Sallou, June; Van Deursen, Arie

DOI
10.1109/CAIN58948.2023.00012
Publication date
2023
Document Version
Final published version
Published in
Proceedings - 2023 IEEE/ACM 2nd International Conference on AI Engineering - Software Engineering for
AI, CAIN 2023

Citation (APA)
Yarally, T., Cruz, L., Feitosa, D., Sallou, J., & Van Deursen, A. (2023). Uncovering Energy-Efficient
Practices in Deep Learning Training: Preliminary Steps Towards Green AI. In Proceedings - 2023
IEEE/ACM 2nd International Conference on AI Engineering - Software Engineering for AI, CAIN 2023 (pp.
25-36). (Proceedings - 2023 IEEE/ACM 2nd International Conference on AI Engineering - Software
Engineering for AI, CAIN 2023). Institute of Electrical and Electronics Engineers (IEEE).
https://doi.org/10.1109/CAIN58948.2023.00012
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/CAIN58948.2023.00012
https://doi.org/10.1109/CAIN58948.2023.00012

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Uncovering Energy-Efficient Practices in Deep
Learning Training: Preliminary Steps Towards

Green AI

Tim Yarally∗, Luı́s Cruz∗, Daniel Feitosa† June Sallou∗, Arie van Deursen∗
∗Delft University of Technology, The Netherlands - timyarally@hotmail.com, { l.cruz, j.sallou, arie.vandeursen }@tudelft.nl

†University of Groningen, The Netherlands - d.feitosa@rug.nl

Abstract— Modern AI practices all strive towards the same
goal: better results. In the context of deep learning, the term
“results” often refers to the achieved accuracy on a competitive
problem set. In this paper, we adopt an idea from the emerging
field of Green AI to consider energy consumption as a metric
of equal importance to accuracy and to reduce any irrelevant
tasks or energy usage. We examine the training stage of the
deep learning pipeline from a sustainability perspective, through
the study of hyperparameter tuning strategies and the model
complexity, two factors vastly impacting the overall pipeline’s
energy consumption. First, we investigate the effectiveness of
grid search, random search and Bayesian optimisation during
hyperparameter tuning, and we find that Bayesian optimisa-
tion significantly dominates the other strategies. Furthermore,
we analyse the architecture of convolutional neural networks
with the energy consumption of three prominent layer types:
convolutional, linear and ReLU layers. The results show that
convolutional layers are the most computationally expensive by
a strong margin. Additionally, we observe diminishing returns
in accuracy for more energy-hungry models. The overall energy
consumption of training can be halved by reducing the network
complexity. In conclusion, we highlight innovative and promising
energy-efficient practices for training deep learning models. To
expand the application of Green AI, we advocate for a shift in
the design of deep learning models, by considering the trade-off
between energy efficiency and accuracy.

Index Terms—green software, green ai, deep learning, hyper-
parameter tuning, network architecture

I. INTRODUCTION

AI practices are expensive and can have a significant

environmental impact. That is not surprising, since an im-

portant challenge within the AI community is improving

the accuracy of previously reported systems [30]. Now, a

new field is emerging to address this problem: Green AI,

with its roots planted deep into the discipline of Sustainable

Software Engineering. The software engineering community

has increasingly studied the energy efficiency of software

systems by developing energy estimation models [6], [25];

developing code analysis and optimisation tools to improve

energy efficiency [2], [9], [11], [26]; studying practices that

lead to green software [7], [10], [13] and so on. Recently,

a new trend is calling for software engineering approaches

that consider ‘data as the new code’, challenging practitioners

with new software systems that ship AI-based features. This

intersection between Green Software Engineering and AI

Engineering is where we find the origin of Green AI. The

initial contributions in this field consist of positional papers

that are calling for a new research agenda [3], [30], [34].

Since then, the community has developed into studying the

energy footprint of AI at different levels [37]. This involves

the measurement and reporting of energy consumption [14]

next to accuracy, but also the appreciation of research efforts

that do not necessarily rely on enterprise-sized data [36] or

training budgets.

This study focuses on deep learning, a subset of machine

learning and the driver behind many AI applications and

services. All experiments are performed with rudimentary

neural networks that comprise the building blocks of more

complex models. We train these networks on two popular

image vision problem sets: FashionMNIST [40] and CIFAR-

10 [21]. We adopt the idea of designing neural networks

with energy consumption as one of the main considerations.

Specifically, we direct our attention to the early phases of the

deep learning pipeline and formulate the following research

questions:

RQ1: Between Bayesian optimisation, random optimisation

and grid search; which strategy is the most energy-

efficient for training a neural network?

RQ2: Can the complexity of a neural network be reduced

such that it consumes less energy while maintaining an

acceptable level of accuracy?

First, we analyse Bayesian optimisation, random optimisa-

tion and grid search, three popular optimisation strategies, to

identify best practices in terms of energy efficiency consider-

ations. Classically, grid search has served as the most popular

baseline optimisation strategy in the context of hyperparameter

tuning [5]. Nonetheless, there have been studies that present

random search as an alternative baseline that competes with

or even exceeds grid search in multi-dimensional optimisation

problems [4], [5], [24]. Bayesian optimisation is a more

powerful strategy that is also more difficult to implement and

parallelise. Apart from comparing these three strategies, we

demonstrate that further optimisation attempts past a specific

point are met with diminishing returns in performance that

might not be worth the additional cost of training. Training

times can vary greatly depending on the workload and network

architecture and there are no rules that state how many

optimisation rounds one should perform. This is where the

25

2023 IEEE/ACM 2nd International Conference on AI Engineering – Software Engineering for AI (CAIN)

979-8-3503-0113-7/23/$31.00 ©2023 IEEE
DOI 10.1109/CAIN58948.2023.00012

20
23

 IE
EE

/A
C

M
 2

nd
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 A
I E

ng
in

ee
rin

g
–

So
ftw

ar
e

En
gi

ne
er

in
g

fo
r A

I (
C

A
IN

) |
 9

79
-8

-3
50

3-
01

13
-7

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
A

IN
58

94
8.

20
23

.0
00

12

Authorized licensed use limited to: TU Delft Library. Downloaded on July 27,2023 at 14:03:51 UTC from IEEE Xplore. Restrictions apply.

potential opportunity for energy savings lies.
Secondly, we quantify the effect of a network’s architecture

in terms of layers, on the actual energy consumption of the

GPU. In a similar fashion, we show how more complex models

see diminishing returns in their performance, while the energy

consumption keeps increasing at a steady rate. By analysing

the accuracy of a neural network together with its energy

consumption, the perspective of what is currently considered

‘the best’ model could see a dramatic shift. We believe it is

the job of the Green AI community to make such data and

observations available to the public so that software engineers

can make more informed trade-offs, and more sustainable

decisions.
II. RELATED WORK

Given the particularities of different types of software

systems, green software contributions span across multiple

sub-fields of computer science: mobile computing [6], [10],

Web [12], robotics [28], and so on. In our work, we challenge

the green software engineering field to expand to AI systems.

To the best of our knowledge, related research in Green AI is

still preliminary and does not yet follow the scientific method

that drives the research in green software. We pinpoint below

the most relevant related contributions in Green AI.
Schwartz et al. [30] present an elegant introductory article

into this field of research. The authors introduce two novel

terms to guide future conversations: Green AI, which refers

to AI research that considers computational cost as a primary

metric next to accuracy; and Red AI, the most common form of

AI research that seeks to improve accuracy without any regards

for the computational resources required. Ultimately, Schwartz

et al. call for a research agenda that aims to reduce carbon

emissions and make the deep learning field more accessible

to everyone. Our work takes a preliminary step towards this

goal, by presenting empirical results focused on different parts

of the training pipeline that can lead to energy-efficiency gains

on a larger scale.
Strubell et al. [34] look into the quantity of energy consump-

tion in the domain of Natural Language Processing (NLP). The

authors present preliminary results showing that the accuracy

of trained NLP models has improved substantially at the

expense of a serious amount of energy. Our study aims to

provide scientifically proven advice to help design energy-

efficient AI systems, including NLP.
Li et al. [23] address a similar problem specifically targeted

towards applications of convolutional neural networks (CNNs).

In their work, the authors compare a set of well-known CNN

models in terms of energy efficiency. They also assess to what

degree the different types of layers contribute to the overall

energy consumption. As such, they provide percentages for

the convolutional layers, fully connected (or linear) layers,

pooling layers and ReLU layers. Apart from finding the energy

efficiency of these layer types, our study also includes a

trade-off analysis where we compare energy consumption to

accuracy.
Yang et al. [41] propose a new pruning method, named

energy-aware pruning, that removes layers’ weights to reduce

the energy consumption. They report a reduction in the overall

consumption by a factor between 1.6x and 3.7x, with an

insignificant loss in accuracy. Our approach to optimise the

network architecture is much more coarse-grained compared

to the techniques described in this paper. Rather than focusing

on fine-tuning the weights inside the layers, we investigate

the factor of redundancy of those layers and provide advice

that is more relevant from a design-level perspective. Both

philosophies could be used together.
Two other related studies examine the trade-off between

energy-efficiency and accuracy, either regarding the learning

frameworks PyTorch and TensorFlow during training and

inference [15], or the solvers used for the training of logistic

regression models [16]. For the framework, TensorFlow is

more energy and run-time efficient for training, while Pytorch

is the best for the inference stage. As for the solver, LBFGS

is shown to be more energy-efficient than Newton-CG and

SAG. Moreover, these works demonstrate that prioritizing the

energy efficiency does not necessarily reflect negatively on the

accuracy of the model. In our study, we share the same view

that opting for considering energy efficiency while designing

the deep learning models does not impair their accuracy in a

substantial way. Instead of examining that trade-off regarding

the framework or logistic regression models, we inspect the

deep learning training practices in more details, focusing on

hyperparameter tuning and the network architecture.

III. BACKGROUND

This section introduces the FashionMNIST and CIFAR-

10 datasets; elaborates on grid search, random search and

Bayesian optimisation and establishes a basic understanding of

linear, convolutional and ReLU layers inside a neural network.

A. Datasets
The original MNIST dataset consists of many grey-scale

images of handwritten digits. MNIST has been used exces-

sively as a benchmark to validate many different models.

However, with modern technology, the MNIST problem set

has become too trivial. Because most networks can achieve

near-perfect accuracy on the set, researchers from Zalando

have proposed the use of FashionMNIST as a direct drop-in-

replacement [40]. As such, the dataset is comprised of 28×28

grayscale images of 70,000 different fashion products. Just

like in the original MNIST set, the products are separated into

10 categories. Because both datasets are shaped identically,

FashionMNIST is immediately compatible with any machine

learning package that works with MNIST.
The CIFAR-10 dataset is a subset of the tiny images

dataset [35]. It is composed of 60,000 32×32 RGB images

divided into 10 classes [21]. CIFAR-10 presents a challenge

that is very similar to FashionMNIST, however, the larger

image size and two additional layers increase the complexity

of the task significantly.

B. Optimisation Strategies
Grid search is a traditional optimisation strategy that ap-

plies an exhaustive search over the hyperparameter space. For

26

Authorized licensed use limited to: TU Delft Library. Downloaded on July 27,2023 at 14:03:51 UTC from IEEE Xplore. Restrictions apply.

discrete variables, this means that the algorithm considers the

Cartesian product of all the values. For continuous variables, it

is necessary to select a distribution first. One could for example

choose a uniform or log-uniform distribution to map the con-

tinuous space to a discrete one. The computational complexity

of grid search is exponential in the number of parameters,

therefore it quickly becomes impractical to calculate it all

the way through. Nevertheless, because the search space is

determined at the beginning, the workload can very easily be

parallelised, somewhat offsetting this drawback.

In a random search, the well-defined structure of the grid

is replaced by random selection. Because every drawn sample

is completely independent, parallelisation of this algorithm is

as trivial as with grid search.

In the context of hyperparameter tuning, the Bayesian opti-
misation algorithm creates and refines a probabilistic regres-

sion model of a function f(x) that can be exploited to return

the predicted accuracy and corresponding standard deviation.

An acquisition function is then used to determine the next

most promising set of input variables. For the probabilistic

model, Gaussian Processes (GP) are the most popular choice

amongst many studies [20], [32], [39]. Bayesian optimisation

is especially effective in scenarios where the true value of f(x)
is hard to compute, which is the case with neural network

training. This is because the probabilistic model needs to

evaluate a sufficiently large quantity of samples.

The purpose of the acquisition function is to determine

the most promising sample from a set of randomly selected

input variables. There are many possible choices that can be

considered:

• Probability of Improvement (PI) [22]

• Expected Improvement (EI) [29]

• Upper Confidence Bound (UCB) [33]

• Entropy Search (ES) [17]

• Predictive Entropy Search (PES) [18]

• Knowledge Gradient (KG) [31]

We now elaborate on the PI acquisition function, which is

also the function that we use in all of the experiments.

PI(x) = P (f(x) ≥ f(xbest)) = Φ(
μ(x)− f(xbest)

σ(x) + ε
) (1)

PI(x) = P (f(x) ≤ f(xbest)) = Φ(
f(xbest)− μ(x)

σ(x) + ε
) (2)

Equations 1 and 2 are used to calculate the probability of

improvement for maximisation and minimisation problems re-

spectively. Since we are interested in maximising the accuracy

of a neural network, we will use Equation 1. Here, Φ refers

to the cumulative density function of a normal distribution; μ
and σ are the predicted value and standard deviation retrieved

from the Gaussian regressor, and f(xbest) is the highest

actual accuracy found so far. Algorithm 1 displays an example

implementation of a single PI iteration.

C. Neural Network Layers

Every layer inside a neural network performs some trans-

formation on an input vector x. The obtained output is then

Algorithm 1 Bayesian Optimisation - Probability of Improve-

ment

y = max(Y)
Candidates ← N random input samples

x′, pi′

for x ∈ Candidates do
μ, σ = predict(x)
pi = Φ(μ−y

σ+ε)
if pi > pi′ then

x′ = x, pi′ = pi
end if

end for
X ← x′, Y ← f(x′)
fit(X,Y)

passed on to the next layer. Linear, or fully connected layers,

calculate an output by applying a linear transformation through

a matrix of weights W [27]. The values of W are optimised

and updated during training. The term fully connected comes

from the fact that every element of x is mapped to every other

element in the output by the matrix multiplication WTx.

Inside a convolutional layer, a kernel is used to calculate

a weighted summation of the elements of the input layer. The

kernel slides across the input layer, considering all elements

and their neighbours. A convolutional operation is defined by

stride, kernel size and zero padding [1]. The stride determines

how many places the kernel slides after each calculation; the

kernel size represents the dimensions of the filter and zero

padding adds zeros to the outer edges of the input layer.

Generally speaking, the output layer is always smaller than the

input layer, limiting the maximum number of convolutional

layers that can be implemented. However, by applying zero

padding, one can prevent this shrinking behaviour if desired.

The convolution operation is shown graphically in Figure 1.

Fig. 1: Convolution operation on an input layer using a 3×3

kernel.

The Rectified Linear Unit (ReLU) layer introduces an

activation function that applies non-linearity to the input.

ReLU is the most common form of non-linearity in CNNs [1].

The function is very simple: An element is deactivated (set to

0) if it is negative; otherwise, the value remains the same.

IV. RESEARCH METHODS

The goal of this study is to identify trade-off points with

respect to the energy consumption during the training phase

of the deep learning pipeline.

27

Authorized licensed use limited to: TU Delft Library. Downloaded on July 27,2023 at 14:03:51 UTC from IEEE Xplore. Restrictions apply.

A. Case Selection
Achieving state-of-the-art accuracy results on challenging

data sets is not the main focus. For this reason, we will be

working with rudimentary networks architectures that can be

trained using consumer-grade hardware. The simplicity of the

models facilitates the design of more intricate experimentation

and encourages inclusivity. We choose to direct our efforts to

image recognition problems. Image recognition is a canonical

problem that can be solved with neural networks, and there

are a plethora of easily accessible data sets available.
The experiments are performed using three neural networks

written with the PyTorch framework1. These networks are

trained on a single GeForce GTX-10802 GPU with images

from the FashionMNIST and CIFAR-10 datasets. During every

optimisation round mentioned in this study, an optimisation

algorithm chooses a set of hyperparameter values. An opti-

misation round lasts for 8 repetitions, during which we use

the same set of hyperparameters. A single repetition consists

of 25 training epochs3. After the 8 repetitions, the highest

accuracy and average energy consumption are logged and a

new optimisation round starts. We present this experimental

design schematically in Figure 2. The structure of the different

networks is as follows:

• DenseLinearNN: N linear layers, where the number of

neurons in each layer scales down linearly towards the

number of problem classes.

• DensePolyNN: N linear layers, every layer has half the

number of neurons as the layer before it.

• SimpleCNN: M convolutional layers, each followed by a

BatchNorm2d, ReLU and MaxPool2d layer, and N linear

layers where every layer has half the number of neurons

as the layer before it.

Fig. 2: Methodology process

B. Experimental Tooling
To facilitate and standardise the data collection, we develop

a test suite that automates the execution of the experiments.

This test suite is available online4 and contains the imple-

1https://pytorch.org
2https://www.nvidia.com/nl-nl/geforce/10-series/
3During one optimisation round with eight repetitions, a network under-

goes 25× 8 training epochs with the same set of hyperparameters
4https://zenodo.org/record/7767313

mentations of the aforementioned neural networks that can

be trained on all the visual problem datasets provided by

Pytorch5. The test bed is designed to be modular, and we

encourage other researchers to add additional neural network

designs or different hyperparameter optimisation functions. All

the results in this study have been accumulated with this test

bed.

C. Data Collection

To answer RQ1, we compare the convergence rate of

three different hyperparameter tuning strategies: Grid search,

random optimisation and Bayesian optimisation with the PI

acquisition function. Because grid search is an exhaustive

method, it quickly becomes infeasible to train a network on

every hyperparameter set. To fairly compare grid search to the

other strategies, we first generate the complete search space

and then proceed to pick random samples from that space until

we reach the desired amount of optimisation rounds. Vari-

ables with continuous ranges are divided into five uniformly-

distributed values. Although this is a partial grid search, the

most important difference with random search remains intact:

because we select samples from the grid, a limited number of

values are considered for every hyperparameter.

For RQ2, we examine the effect of the neural network’s

architecture on the absolute energy consumption. To obtain

the power usage of the GPU, we query the NVIDIA System

Management Interface6 every 100 milliseconds. We use this to

compute the total energy consumption of a training iteration

and then factor out the idle energy consumption of the GPU.

D. Data Analysis

To assess the effectiveness of the hyperparameter tuning

strategies, we study the convergence rate of the model ac-

curacy according to the number of optimisation rounds. We

determine the optimum accuracy as the highest accuracy after

which no substantial increase for each additional optimisation

round is observed. Similarly, we define the optimum round

as the number of the optimisation round when the optimum

accuracy is reached. By identifying those values, we can

ascertain the most efficient strategy, and establish the optimal

number of optimisation rounds sufficient to provide the model

with optimum accuracy.

To accurately analyse the effect of the neural network

architecture in relation to the energy consumption, first, we

would like to show that the hyperparameter set does not

contaminate the results. We do so by calculating the coefficient

of variance (CV) of the energy consumption and showing that

it is very low (< 0.01). The CV is calculated as the standard

deviation of a sequence divided by its average.

Prior to any further in-depth analysis, we need to assess

whether the energy results obtained in the experiments follow

a normal distribution. After a visual inspection of the quantile-

quantile (Q-Q) plot, followed by the Shapiro-Wilk test7, we

5https://pytorch.org/vision/0.8/datasets.html
6https://developer.nvidia.com/nvidia-system-management-interface
7https://www.statskingdom.com/shapiro-wilk-test-calculator.html

28

Authorized licensed use limited to: TU Delft Library. Downloaded on July 27,2023 at 14:03:51 UTC from IEEE Xplore. Restrictions apply.

conclude that our data is not normally distributed. Hence, we

opt for a non-parametric analysis and apply the Kruskal-Wallis

test to indicate the significance of our independent variables,

i.e. whether we may conclude that the layer types have a

statistically meaningful impact on the energy consumption.

Additionally, we calculate the η2 as the effect size. We evaluate

these effect sizes based on the rules of thumb for Cohen’s

f [8], which is calculated as f =
√

η2

1−η2 . Cohen suggests

that the values 0.10, 0.25 and 0.40 convey a small, medium

and large effect size respectively. We invert the function to

obtain the effect thresholds for η2: 0.01, 0.06 and 0.14.

V. EXPERIMENTS

In this section, we present the design of two different

experiments, each related to one of the research questions.

Section V-A describes the experiment to compare the hyper-

parameter optimisation strategies. The second experiment, to

investigate the relationship between neural network architec-

tures and energy consumption, is described in Section V-B.

A. Hyperparameter Optimisation

Given that the response function of a hyperparameter op-

timisation problem f(x1, ..., xn) has a low effective dimen-
sionality [5], meaning that the function can be approximated

by another function g(x1, ..., xn−i) with less variables, the

hypothesis for RQ1 is that random search will converge

faster than grid search, because it does not consider two

identical values more than once. Given enough time, Bayesian

optimisation should outperform the other two strategies. How-

ever, with a limited run budget, we might observe that the

Bayesian strategy performs worse because it chooses to exploit

suboptimal solutions rather than explore better ones.

The setup of the experiment, as is depicted in Table I, in-

volves 18 different configurations. Each optimisation strategy

is applied twice to the DensePolyNN, DenseLinearNN and

SimpleCNN mentioned in section IV. The hyperparameters
column in Table I shows how many parameters are optimised

during a run. The five hyperparameters refer to the learning

rate (α), betas (β1, β2), epsilon (ε) and weight decay (w) of

the ADAM optimiser provided by PyTorch8. The entire exper-

iment is repeated for both the FashionMNIST and CIFAR-10

datasets.

For every row in Table I, a network is trained on 64

different hyperparameter settings with 8 repetitions for each

setting, amounting to 512 training iterations. After each set

of repetitions, the optimisation function provides a new set of

values for the hyperparameters. A trained model is evaluated

and the results are logged. In total, we run 18 configurations

× 64 optimisation rounds × 8 repetitions × 2 data sets =
18,432 training iterations.

B. Network Architecture

The second experiment aims to answer RQ2 by collect-

ing empirical data that shows the relationship between the

8https://pytorch.org/docs/stable/generated/torch.optim.Adam.html

TABLE I: Comparison of optimisation strategies.

Strategy Network hyperparameters

Bayesian DensePolyNN α, β1, β2

DenseLinearNN α, β1, β2

SimpleCNN α, β1, β2

DensePolyNN α, β1, β2, ε, w
DenseLinearNN α, β1, β2, ε, w
SimpleCNN α, β1, β2, ε, w

Random DensePolyNN α, β1, β2

DenseLinearNN α, β1, β2

SimpleCNN α, β1, β2

DensePolyNN α, β1, β2, ε, w
DenseLinearNN α, β1, β2, ε, w
SimpleCNN α, β1, β2, ε, w

Grid DensePolyNN α, β1, β2

DenseLinearNN α, β1, β2

SimpleCNN α, β1, β2

DensePolyNN α, β1, β2, ε, w
DenseLinearNN α, β1, β2, ε, w
SimpleCNN α, β1, β2, ε, w

structure of a neural network and its energy consumption.

We present a full factorial design in Table II. The results of

this experiment highlight the energy efficiency or lack thereof

for the linear, convolutional and ReLU layers. The interesting

point for discussion will be whether reducing the network

complexity has a significant, positive influence on the energy

efficiency, without too heavily compromising on the accuracy.

TABLE II: Configurations of the model architecture.

Linear layers Convolutional layers ReLU layers

3 1 0
3 1 1
3 4 0
3 4 4
7 1 0
7 1 1
7 4 0
7 4 4

For every row in Table II, the SimpleCNN model from

Section IV is trained on 8 different hyperparameter settings

with 24 repetitions for each setting, using the random optimi-

sation strategy. Again, the experiment is repeated for both the

FashionMNIST and CIFAR-10 datasets. Because accuracy is

not the main metric for this experiment, we are less interested

in finding different hyperparameter settings as opposed to the

first experiment. For this reason, we reduce the number of

optimisation rounds and increase the number of repetitions.

In total, we run 8 configurations × 8 optimisation rounds ×
24 repetitions × 2 data sets = 3072 training iterations.

VI. RESULTS

In this section, we report the results of the experiments

formulated in Sections V-A and V-B.

29

Authorized licensed use limited to: TU Delft Library. Downloaded on July 27,2023 at 14:03:51 UTC from IEEE Xplore. Restrictions apply.

0 20 40 60
0.2

0.4

0.6

0.8

Optimisation rounds

H
ig

h
es

t
ac

cu
ra

cy

Random

Grid

Bayesian

(a) DensePolyNN

0 20 40 60
0.2

0.4

0.6

0.8

Optimisation rounds

H
ig

h
es

t
ac

cu
ra

cy

Random

Grid

Bayesian

(b) DenseLinearNN

0 20 40 60

0.2

0.4

0.6

0.8

Optimisation rounds

H
ig

h
es

t
ac

cu
ra

cy

Random

Grid

Bayesian

(c) SimpleCNN

Fig. 3: Convergence graphs for the hyperparameter optimisation experiment with 5 parameters on FashionMNIST

0 20 40 60

0.1

0.2

0.3

0.4

Optimisation rounds

H
ig

h
es

t
ac

cu
ra

cy

Random

Grid

Bayesian

(a) DensePolyNN

0 20 40 60

0.1

0.2

0.3

0.4

Optimisation rounds

H
ig

h
es

t
ac

cu
ra

cy

Random

Grid

Bayesian

(b) DenseLinearNN

0 20 40 60

0.5

0.55

0.6

0.65

0.7

Optimisation rounds

H
ig

h
es

t
ac

cu
ra

cy

Random

Grid

Bayesian

(c) SimpleCNN

Fig. 4: Convergence graphs for the hyperparameter optimisation experiment with 5 parameters on CIFAR-10

0 20 40 60

0.2

0.4

0.6

0.8

Optimisation rounds

H
ig

h
es

t
ac

cu
ra

cy

Random

Grid

Bayesian

(a) DensePolyNN

0 20 40 60

0.2

0.4

0.6

0.8

Optimisation rounds

H
ig

h
es

t
ac

cu
ra

cy

Random

Grid

Bayesian

(b) DenseLinearNN

0 20 40 60

0.2

0.4

0.6

0.8

Optimisation rounds

H
ig

h
es

t
ac

cu
ra

cy

Random

Grid

Bayesian

(c) SimpleCNN

Fig. 5: Convergence graphs for the hyperparameter optimisation experiment with 3 parameters on FashionMNIST

0 20 40 60

0.1

0.2

0.3

0.4

Optimisation rounds

H
ig

h
es

t
ac

cu
ra

cy

Random

Grid

Bayesian

(a) DensePolyNN

0 20 40 60

0.1

0.2

0.3

0.4

Optimisation rounds

H
ig

h
es

t
ac

cu
ra

cy

Random

Grid

Bayesian

(b) DenseLinearNN

0 20 40 60

0.2

0.4

0.6

Optimisation rounds

H
ig

h
es

t
ac

cu
ra

cy

Random

Grid

Bayesian

(c) SimpleCNN

Fig. 6: Convergence graphs for the hyperparameter optimisation experiment with 3 parameters on CIFAR-10

30

Authorized licensed use limited to: TU Delft Library. Downloaded on July 27,2023 at 14:03:51 UTC from IEEE Xplore. Restrictions apply.

A. Hyperparameter Optimisation

The line graphs in Figures 3 and 4 show the highest

achieved accuracy by the number of optimisation rounds

for all the settings with 5 hyperparameters (i.e., α, β1, β2, ε
and w) on both the FashionMNIST and CIFAR-10 datasets.

Figures 5 and 6, display the results for all settings with 3

parameters (i.e., α, β1 and β2). The figures are separated

into subfigures to distinguish between the results for the

DensePolyNN (a), DenseLinearNN (b) and SimpleCNN (c)

that were introduced in Section IV. The total runtime of

the hyperparameter optimisation experiment (Section V-A)

amounts to ±85 hours.

With an initial visual assessment, a few observations can

be made. First, Bayesian optimisation proves to be the most

effective strategy when compared with random and grid

search. Regardless of the network or workload, it consistently

outperforms the other strategies, only being overtaken slightly

by grid search twice (4b and 6b) and narrowly matched by

random search three times (3c, 5b and 5c). Second, between

grid search and random search, there is no definitive winner.

Random search performed better than grid search 5 out of 6

times on the FashionMNIST dataset and 2 out of 6 times on

CIFAR-10. We have also summarised this data in Table III.

This table presents the optimum accuracy (cf. Section IV-D)

for every experimental configuration (i.e. network × optimisa-

tion strategy × dataset × #hyperparameters) together with the

number of optimisation rounds it took to achieve that accuracy.

Finally, notice that the Bayesian optimisation strategy con-

verges to an accuracy optimum within 27 optimisation rounds

on average. The two outliers with regard to this rule are marked

by an asterisk (*) in Table III. Nonetheless, a quick inspection

of the corresponding graphs (5a & 5b) shows that there is

only a very slight increase compared to the accuracy that

was achieved after 27 optimisation rounds. The same cannot

exactly be said for random optimisation. Most of the graphs

follow a much more gradual incline with bigger jumps in

accuracy. Overall, this strategy takes longer to converge. Grid

search, on the other hand, does seem to converge rapidly. The

numbers in Table III might suggest otherwise, but similar to

what we observe with Bayesian optimisation, the increases in

accuracy past 27 optimisation rounds are minimal.

B. Network Architecture

The total runtime for all the different configurations of the

network architecture experiment (Section V-B) approximately

amounts to 46 hours. The purpose of this experiment is to

quantify the relationship between the network architecture and

the amount of energy that is being consumed during training.

To reinforce the validity of our results, we first show that

the values of the hyperparameters, as chosen by the random

optimisation function, do not significantly impact the energy

consumption. The coefficient of variance (CV) is a metric that

explains the relative size of the standard deviation to the mean.

Because we assume that the hyperparameter setting has little

to no influence on the energy consumption, we expect a very

small CV (< 1%) for all the optimisation rounds of a network.

The histogram in Figure 7 depicts the CVs for every row in

Table II on both the FashionMNIST and CIFAR-10 datasets.

Every data point is a calculation of 8 optimisation rounds,

including 24 repetitions. We find an average CV of 0.009 and

a maximum value of 0.018.

0 1 2 3 4 5
·10−2

0

1

2

3

4

Coefficient of variance

O
p

ti
m

is
at

io
n

ro
u

n
d

s

CIFAR-10

FashionMNIST

Fig. 7: Histogram of the coefficient of variance for each run

on the CIFAR-10 and FasionMNIST datasets

TABLE III: Summary of the results for the optimisation experiment. Values are reported as x | y, where x represents the results

with 5 hyperparameters (i.e. α, β1, β2, ε, w), and y those with 3 (i.e. α, β1, β2). In bold are the values of the highest accuracy

or lowest number of optimisation rounds among the three strategies for each network and dataset.

CIFAR-10 FashionMNIST
Accuracy Optimisation rounds Accuracy Optimisation rounds

DensePolyNN Random 0.33 | 0.32 56 | 27 0.826 | 0.83 56 | 27
Grid 0.37 | 0.40 42 | 55 0.81 | 0.81 40 | 19

Bayesian 0.40 | 0.41 27 | 11 0.833 | 0.85 29 | 46*

DenseLinearNN Random 0.35 | 0.38 50 | 63 0.81 | 0.84 52 | 23
Grid 0.40 | 0.40 53 | 35 0.81 | 0.81 30 | 54

Bayesian 0.37 | 0.39 4 | 38 0.84 | 0.85 18 | 47*

SimpleCNN Random 0.60 | 0.62 40 | 4 0.8879 | 0.879 29 | 39
Grid 0.58 | 0.59 17 | 55 0.86 | 0.875 14 | 20

Bayesian 0.68 | 0.66 16 | 26 0.8876 | 0.884 20 | 36

31

Authorized licensed use limited to: TU Delft Library. Downloaded on July 27,2023 at 14:03:51 UTC from IEEE Xplore. Restrictions apply.

Now that we have shown that the energy consumption of a

training iteration is independent of the hyperparameter settings

in this experiment, we can analyse the network architecture

in isolation. Because the data is not normally distributed, a

conclusion made following the procedure described in Sec-

tion IV-D, we perform the non-parametric Kruskal-Wallis test

to identify if the energy consumed to train the network archi-

tectures can be distinguished statistically. Table IV presents the

corresponding p-values and effect sizes (η2). Notice that out

of the three layer types, convolutional layers and linear layers

have a large degree of influence on the energy consumption,

while the influence of ReLU layers is small. An additional

post hoc comparison shows that all combinations of indepen-

dent variables are significant as well. To put these statistics

into perspective, we compare the increase in average energy

consumption by fixing each layer type. We use the notation

x|y to distinguish results on the FashionMNIST dataset (x)

from those on the CIFAR-10 dataset (y). The presence of

ReLU layers contributes an average increase of 2.7%|2.9%.

For the linear layers, the jump from 3 to 7 layers accounts

for an increase of 4.9%|6.6%. The convolutional layers are

the largest sources of energy usage. Introducing 3 additional

layers on top of the first one increases the overall consumption

by 95.3%|66.4%.

TABLE IV: Kruskal-Wallis test results. From top to bottom,

the tables refer to the experiments on the FashionMNIST and

CIFAR-10 datasets respectively.

Factor (layer type) Statistic p η2 magnitude

Linear 481.799 < .001 0.155 large
Convolutional 2303.250 < .001 0.749 large
ReLU 176.545 < .001 0.055 small

Factor (layer type) Statistic p η2 magnitude

Linear 496.807 < .001 0.160 large
Convolutional 2303.250 < .001 0.749 large
ReLU 106.655 < .001 0.033 small

Moreover, we carry out a trade-off analysis with respect to

the energy consumption of a neural network and its achieved

accuracy on the problem set. This comparison is visualised

in Figure 8. The scatter plots in this figure highlight the

relationship of the energy consumption in Joules and the

achieved accuracy on the test sets of FashionMNIST (a) and

CIFAR-10 (b). In both scatter plots, we can discern two

clusters; one spread around a higher energy consumption

which we will refer to as E+; the other spread around a lower

energy consumption, we call this cluster E− (notice that the

energy axis is reversed). All data points in E− correspond

to network architectures with a single convolutional layer,

while the E+ cluster contains all the networks with four

convolutional layers.

Table V summarises the data from the scatter plots into

numerical values. The first two columns show the average

energy consumption, average accuracy, maximum accuracy

and the standard deviation of the accuracy for the E+ and

E− clusters on the FashionMINST dataset. The latter two

columns show the same information on the CIFAR-10 set.

Notice that the average and maximum accuracy for both

clusters on the FashionMNIST dataset are particularly close

together, only varying by less than 1%. For CIFAR-10, which

is a more computationally complex set, this difference is more

significant. A little over 6% for the average and almost 12%

for the maximum accuracy.

TABLE V: Low energy performance compared against high

energy performance.

FashionMNIST CIFAR-10
E+ E− E+ E−

Average energy 1674 J 857 J 4588 J 2758 J
Average accuracy 0.872 0.864 0.639 0.572
Max accuracy 0.889 0.887 0.725 0.609
Std accuracy 0.011 0.010 0.056 0.021

8001,0001,2001,4001,600

0.8

0.82

0.84

0.86

0.88

Energy (J)

A
cc

u
ra

cy

E+ E−

(a) FashionMNIST

3,0003,5004,0004,500

0.2

0.3

0.4

0.5

0.6

0.7

Energy (J)

A
cc

u
ra

cy

E+ E−

(b) CIFAR-10

Fig. 8: Scatter plots of the energy consumption vs the achieved accuracy

32

Authorized licensed use limited to: TU Delft Library. Downloaded on July 27,2023 at 14:03:51 UTC from IEEE Xplore. Restrictions apply.

VII. DISCUSSION

This empirical study aims to provide insights into possible

improvements for deep learning pipelines out of environmen-

tal considerations. In this section, we answer both research

questions by analysing the results of the experiments.

A. Hyperparameter Optimisation

The conclusion to RQ1 is that Bayesian optimisation is

the most energy-efficient strategy during the training of a

machine learning model. Out of all three strategies, Bayesian

optimisation consistently finds hyperparameter sets that result

in the highest accuracy and it does so within the least amount

of optimisation rounds (±27). Because this strategy requires

the storage and constant fitting of a probabilistic model, one

downside is the difficulty of parallelisation, but even that is

not impossible [32]. Based on our results, there seems to be

no good argument to choose one of the other methods.

Nevertheless, we cannot deny the presence of grid search

and random search within the deep learning field. Both al-

gorithms are easy to understand and implement, and could

serve a purpose during early exploration or calibration. In this

context, does one of the algorithms dominate the other? Solely

based on our results, we cannot make any decisive claims.

We can, however, assess the practicality of both solutions.

Grid search is an exhaustive method with a search space that

increases exponentially by the number of hyperparameters.

Considering every set in that search space is not feasible and

goes against our philosophy of energy-efficient training. As a

consequence, we can only consider a portion of the complete

search space, which defeats the purpose of the grid search.

By randomly selecting samples from the search space, grid

search devolves into a random search with a finite number

of options. Furthermore, as Bergstra and Bengio [5] explain:

hyperparameter optimisation problems in high-dimensional

spaces have a low effective dimensionality. What this entails

in our context is that some parameters will have a much larger

influence on the accuracy than others. Figure 9 illustrates how

random search exploits this property more effectively than grid

search. The cubes in the image represent a three-dimensional

problem where only one parameter has a significant influence

on the function value. With the grid search (left), although we

consider 27 distinct samples, only 3 values of the important

parameter are tested. On the contrary, the random search

(right) tests a new value for every sample.

Furthermore, random search facilitates the job of AI engi-

neers as it does not require any human guidance apart from

selecting the bounds. For these reasons, we recommend the use

of random search over grid search for the early stages of the

training. Our results show that random search is not worse

than grid search for problems with ≤ 5 hyperparameters.

Additionally, random search should remain a valid baseline

strategy with an increasing number of parameters, while grid

search will fall short due to the expanding search space.

Fig. 9: Grid search (left) vs Random search (right) on a

problem with a low effective dimensionality.

B. Network Architecture

To answer RQ2: reducing the layer complexity of a neural

network is a valid option to lower the energy consumption of

a deep learning pipeline. Besides computer vision, we believe

that our results can be generalised to other fields such as

speech recognition or natural language processing as well. The

computational complexity of different layer types is a constant

that will present similar effects on the energy consumption

in a different context. The observation of diminishing perfor-

mance is also not a very bold claim. However, whether the

loss in accuracy resulting from architecture simplifications is

acceptable, depends largely on the context. As the visuals in

Figure 8a and the corresponding summarised data in Table V

make apparent, the accuracy gain for introducing complexity

on a relatively simple problem (FashionMINST) is very small.

In this case, we would argue that the diminishing return

in accuracy is not worth doubling the number of expended

Joules. For the CIFAR10 problem set, although there are still

diminishing returns, the difference in accuracy we observe is

quite significant. Ultimately, what it comes down to is how

much error is acceptable for the application in question. To aid

this decision, it is important that researchers monitor the per-

formance slope of their model and that they report some metric

that relates to the energy efficiency throughout the pipeline,

such as Joules or FLOPs. By combining the accuracy and

energy trends, we can make more considerate design choices,

reduce the layer complexity, and improve the efficiency of

the pipeline. As we have shown, these changes could lower

the overall energy consumption of a training pipeline by half

(i.e., increasing the number of layers from 1 to 4 leads to

a 95% energy consumption increase). Many state-of-the-art

models could also benefit from this philosophy. Following the

current trend, new models are becoming exponentially larger

and more costly, while the performance only sees marginal

increases. If all these models would also report their energy

consumption, it would vastly change the perspective of which

one is ‘the best’ and give rise to new research efforts that

focus on energy-efficient design.

C. Extra: optimising GPU load

While collecting energy measurements and analysing re-

sults, we were faced with a natural follow-up question: do

33

Authorized licensed use limited to: TU Delft Library. Downloaded on July 27,2023 at 14:03:51 UTC from IEEE Xplore. Restrictions apply.

we really need to measure energy consumption or could we

simply rely on time efficiency? While looking at our data, we

noticed that different experiments yield a different GPU load.

Hence, a model that trains faster might be using the GPU more

efficiently, but one cannot immediately draw conclusions w.r.t.

the pipeline’s total energy consumption.

Nevertheless, we know from previous research that AI

systems that optimise GPU usage can reduce their energy

consumption by a factor of 10 [38]. When we look at our

experiments, model training resulted in a GPU load that ranged

between 40% and 60%. Similar values have been reported

by a study conducted at Facebook AI [38]: a large portion

of machine learning model experimentation only utilise their

GPUs at 30–50%. This shows that an important step for Green

AI engineering is to monitor and optimise GPU acceleration

in pipelines. One should also consider the embodied carbon

from the GPU hardware. This is a serious problem because

underutilising models require more GPUs than what should

be theoretically sufficient [42].

Hence, we argue that AI frameworks ought to feature GPU-

enabled operations out of the box. Tools should be improved

to support both AI practitioners and software engineers to

monitor and optimise the GPU usage of their AI systems

and pipelines. Developing AI systems is already a transdisci-

plinary field that requires expertise across different domains.

Therefore, making energy consumption a first-class citizen for

designing these systems will facilitate communication across

disciplines and boost Green AI efforts substantially.

VIII. IMPLICATIONS

In this section, we highlight the implications for different

stakeholders in AI systems.

Implications to AI Practitioners. Practitioners should be

aware of the differences between Green AI and Red AI and

the energy-efficient practices that we have laid bare in this

study. As such, when developing and tuning new deep learning

models, developers should look beyond the realm of baseline

optimisation strategies and opt for more advanced techniques

such as Bayesian optimisation. Another valid approach is to

outsource this part of the training pipeline and implement

existing solutions such as the population-based training algo-

rithm from Ray Tune9.

Implications to Software Engineers. Software engineers

are already incorporating transdisciplinary AI teams to enable

the productionisation of AI models. We argue that the role of

software engineers is quintessential to enable energy-aware AI

pipelines. One cannot ask regular AI practitioners to engineer

the collection of energy-efficiency metrics – it is important that

software engineers have the right knowledge and experience

to help include energy as an important factor when developing

AI pipelines.

Implications to AI tool developers. Our results show that AI

frameworks have to provide green alternatives. For example,

there are not many options when selecting hyperparameter

9https://docs.ray.io/en/latest/tune/tutorials/tune-advanced-tutorial.html

strategies. Moreover, there is no information about the energy

efficiency of these alternatives. Hence, our results call for more

energy-efficient options and better documentation with sustain-

ability tips, in line with previous findings in Green AI [15].

Implications to Researchers. In the past four years, several

works have emerged that call for a research agenda that

considers energy efficiency in AI [3], [30], [34]. Past these

positional papers, the number of hands-on studies is still very

limited. Researchers should answer the call by building on our

results w.r.t. hyperparameter tuning and efficient network ar-

chitectures, or explore new areas of energy-efficient practices.

Implications to Tech Organisations. Large corporations are

the biggest consumers in the field of AI. In this study, we

have shown that the energy consumption of a deep learning

model rises at a much faster pace than the performance. Tech

organisations should make an effort to measure and report

their energy consumption as a metric of equal importance

to accuracy. This will change how we evaluate state-of-the-

art deep learning models and encourage the development of

Green AI.

IX. THREATS TO VALIDITY

In this section, we go through potential threats to the inter-

nal, external and construct validity, as well as the reliability.

Internal validity. It could be argued that our method of

measuring energy for RQ2 does not provide an unbiased value.

Different tasks running in the background could introduce

noise to our measurements. To reduce the influence of this

threat, the experiment was performed on a clean installation

of Ubuntu 20.04. The only redundant program that might have

had a slight impact on the measurements was a running in-

stance of TeamViewer10 that was used for periodic monitoring.

Every optimisation round included 24 repetitions to drown out

this effect. Moreover, when calculating the effect sizes of the

layer types, we omit the hyperparameter sets. It is possible that

different hyperparameter settings change the overall energy

consumption of a neural network, however, in Section VI-B

we calculate the coefficient of variance to show that this effect

is negligible.

External validity. During the experiments, we did not

consider the optimal utilisation of the GPU. This might have a

negative impact on the generalizability because the relation be-

tween utilisation and power is not necessarily linear. Kistowski

et al. [19] find that for CPUs, there is a steep increase in power

output starting at around 80% utilisation. Furthermore, we per-

formed the study by using the PyTorch framework only, which

is deemed less energy-efficient compared to TensorFlow [15].

Yet, we kept the same framework for all the experiments to

limit the impacting factors on the measured variables, and to

mitigate the associated threats.

Construct validity. Because we solely consider the power

usage of the GPU and ignore the contributions of other

components, such as memory access, we do not capture the

actual energy consumption for training a model. Nevertheless,

we specifically selected GPU-heavy workloads and made sure

10https://www.teamviewer.com/nl/

34

Authorized licensed use limited to: TU Delft Library. Downloaded on July 27,2023 at 14:03:51 UTC from IEEE Xplore. Restrictions apply.

to factor out the idle energy consumption. The results are

therefore still valuable to compare relative to each other.

Reliability. To increase the reliability, we made an effort

to assemble a complete replication package. The source code

for training the neural networks, along with the results of the

experiments and the statistical analysis, are all available on-

line11. These components were created by a single developer,

but all the involved authors reviewed and approved the entire

process. The statistical analysis was replicated by one of the

authors to confirm the findings.

X. CONCLUSION

In this study, we have expanded the horizon of green

software to the realm of AI applications. Our empirical study

shows that Bayesian optimisation can find the most optimal

set of hyperparameters within the least number of iterations,

where 27 should be sufficient in most instances (RQ1). Grid

search and random search have their purposes as baseline

algorithms. If the parameter bounds are chosen with care,

neither of those two strategies significantly dominates the

other. Nevertheless, we advocate the use of random optimi-

sation since the exhaustive nature of grid search often implies

that one cannot consider the complete search space anyway.

Additionally, because the function of hyperparameters has a

low effective dimensionality, it is more reasonable to introduce

randomness to the search space.

Furthermore, we have investigated the impact of a neural

network’s architecture on its energy consumption, followed

by a trade-off analysis regarding the accuracy (RQ2). We

found that for a substantial increase in energy consumption,

the increases in accuracy see diminishing returns. We advise

reducing the number of convolutional layers to a point where

the accuracy is still within a reasonable margin. This entirely

depends on the project in question and should be evaluated

case by case.

We hope that our study sheds light on the lopsided rela-

tionship between accuracy and energy; that it sparks interest

in efficient design practices and helps to shift the evaluation

criteria for neural networks to more conservative models.

REFERENCES

[1] Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolu-
tional neural network. In: 2017 international conference on engineering
and technology (ICET). pp. 1–6. Ieee (2017)

[2] Banerjee, A., Roychoudhury, A.: Automated re-factoring of android
apps to enhance energy-efficiency. In: Proceedings of the International
Conference on Mobile Software Engineering and Systems. pp. 139–150
(2016)

[3] Bender, E.M., Gebru, T., McMillan-Major, A., Shmitchell, S.: On the
dangers of stochastic parrots: Can language models be too big? In:
Proceedings of the 2021 ACM Conference on Fairness, Accountability,
and Transparency. pp. 610–623 (2021)

[4] Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-
parameter optimization. Advances in neural information processing
systems 24 (2011)

[5] Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimiza-
tion. Journal of machine learning research 13(2) (2012)

11https://zenodo.org/record/7767313

[6] Chowdhury, S., Borle, S., Romansky, S., Hindle, A.: Greenscaler: train-
ing software energy models with automatic test generation. Empirical
Software Engineering 24(4), 1649–1692 (2019)

[7] Chowdhury, S., Di Nardo, S., Hindle, A., Jiang, Z.M.J.: An exploratory
study on assessing the energy impact of logging on android applications.
Empirical Software Engineering 23(3), 1422–1456 (2018)

[8] Cohen, J.: Statistical power analysis for the behavioral sciences. Rout-
ledge (2013)

[9] Cruz, L., Abreu, R.: Performance-based guidelines for energy efficient
mobile applications. In: 2017 IEEE/ACM 4th International Conference
on Mobile Software Engineering and Systems (MOBILESoft). pp. 46–
57. IEEE (2017)

[10] Cruz, L., Abreu, R.: Catalog of energy patterns for mobile applications.
Empirical Software Engineering 24(4), 2209–2235 (2019)

[11] Cruz, L., Abreu, R., Rouvignac, J.N.: Leafactor: Improving energy effi-
ciency of android apps via automatic refactoring. In: 2017 IEEE/ACM
4th International Conference on Mobile Software Engineering and
Systems (MOBILESoft). pp. 205–206. IEEE (2017)

[12] De Macedo, J., Abreu, R., Pereira, R., Saraiva, J.: On the runtime
and energy performance of webassembly: Is webassembly superior to
javascript yet? In: 2021 36th IEEE/ACM International Conference on
Automated Software Engineering Workshops (ASEW). pp. 255–262.
IEEE (2021)

[13] Feitosa, D., Alders, R., Ampatzoglou, A., Avgeriou, P., Nakagawa,
E.Y.: Investigating the effect of design patterns on energy consumption.
Journal of Software: Evolution and Process 29(2) (2017)

[14] Garcı́a-Martı́n, E., Rodrigues, C.F., Riley, G., Grahn, H.: Estimation
of energy consumption in machine learning. Journal of Parallel and
Distributed Computing 134, 75–88 (2019)

[15] Georgiou, S., Kechagia, M., Sharma, T., Sarro, F., Zou, Y.: Green AI:
do deep learning frameworks have different costs? In: ICSE ’22: Pro-
ceedings of the 44th International Conference on Software Engineering,
pp. 1082–1094. Association for Computing Machinery, New York, NY,
USA (May 2022). https://doi.org/10.1145/3510003.3510221

[16] Gutiérrez, M., Moraga, M.Á., Garcı́a, F.: Analysing the energy impact
of different optimisations for machine learning models. In: 2022 Interna-
tional Conference on ICT for Sustainability (ICT4S), pp. 13–17. IEEE.
https://doi.org/10.1109/ICT4S55073.2022.00016

[17] Hennig, P., Schuler, C.J.: Entropy search for information-efficient global
optimization. Journal of Machine Learning Research 13(6) (2012)

[18] Hernández-Lobato, J.M., Hoffman, M.W., Ghahramani, Z.: Predictive
entropy search for efficient global optimization of black-box functions.
arXiv preprint arXiv:1406.2541 (2014)

[19] v. Kistowski, J., Block, H., Beckett, J., Lange, K.D., Arnold, J.A.,
Kounev, S.: Analysis of the influences on server power consumption and
energy efficiency for cpu-intensive workloads. In: Proceedings of the 6th
ACM/SPEC International Conference on Performance Engineering. pp.
223–234 (2015)

[20] Klein, A., Falkner, S., Bartels, S., Hennig, P., Hutter, F.: Fast bayesian
optimization of machine learning hyperparameters on large datasets. In:
Artificial Intelligence and Statistics. pp. 528–536. PMLR (2017)

[21] Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features
from tiny images (2009)

[22] Kushner, H.J.: A new method of locating the maximum point of an
arbitrary multipeak curve in the presence of noise. Journal of Basic
Engineering 86(1), 97–106 (1964). https://doi.org/10.1115/1.3653121

[23] Li, D., Chen, X., Becchi, M., Zong, Z.: Evaluating the energy efficiency
of deep convolutional neural networks on cpus and gpus. In: 2016 IEEE
international conferences on big data and cloud computing (BDCloud),
social computing and networking (SocialCom), sustainable computing
and communications (SustainCom)(BDCloud-SocialCom-SustainCom).
pp. 477–484. IEEE (2016)

[24] Liashchynskyi, P., Liashchynskyi, P.: Grid search, random search,
genetic algorithm: a big comparison for nas. arXiv preprint
arXiv:1912.06059 (2019)

[25] Linares-Vásquez, M., Bavota, G., Bernal-Cárdenas, C., Oliveto, R.,
Di Penta, M., Poshyvanyk, D.: Mining energy-greedy api usage patterns
in android apps: an empirical study. In: Proceedings of the 11th working
conference on mining software repositories. pp. 2–11 (2014)

[26] Linares-Vásquez, M., Bernal-Cárdenas, C., Bavota, G., Oliveto, R.,
Di Penta, M., Poshyvanyk, D.: Gemma: multi-objective optimization of
energy consumption of guis in android apps. In: 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion (ICSE-
C). pp. 11–14. IEEE (2017)

35

Authorized licensed use limited to: TU Delft Library. Downloaded on July 27,2023 at 14:03:51 UTC from IEEE Xplore. Restrictions apply.

[27] Ma, W., Lu, J.: An equivalence of fully connected layer and convolu-
tional layer. arXiv preprint arXiv:1712.01252 (2017)

[28] Malavolta, I., Chinnappan, K., Swanborn, S., Lewis, G.A., Lago, P.:
Mining the ros ecosystem for green architectural tactics in robotics
and an empirical evaluation. In: 2021 IEEE/ACM 18th International
Conference on Mining Software Repositories (MSR). pp. 300–311. IEEE
(2021)

[29] Mockus, J., Tiesis, V., Zilinskas, A.: The application of bayesian
methods for seeking the extremum. Towards global optimization 2(117-
129), 2 (1978)

[30] Schwartz, R., Dodge, J., Smith, N.A., Etzioni, O.: Green ai. Communi-
cations of the ACM 63(12), 54–63 (2020)

[31] Scott, W., Frazier, P., Powell, W.: The correlated knowledge gradient for
simulation optimization of continuous parameters using gaussian process
regression. SIAM Journal on Optimization 21(3), 996–1026 (2011)

[32] Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization
of machine learning algorithms. Advances in neural information pro-
cessing systems 25 (2012)

[33] Srinivas, N., Krause, A., Kakade, S.M., Seeger, M.: Gaussian process
optimization in the bandit setting: No regret and experimental design.
arXiv preprint arXiv:0912.3995 (2010)

[34] Strubell, E., Ganesh, A., McCallum, A.: Energy and policy considera-
tions for deep learning in nlp. arXiv preprint arXiv:1906.02243 (2019)

[35] Torralba, A., Fergus, R., Freeman, W.T.: 80 million tiny images: A
large data set for nonparametric object and scene recognition. IEEE
transactions on pattern analysis and machine intelligence 30(11), 1958–
1970 (2008)

[36] Verdecchia, R., Cruz, L., Sallou, J., Lin, M., Wickenden, J., Hotellier,
E.: Data-centric green ai an exploratory empirical study. In: 2022
International Conference on ICT for Sustainability (ICT4S). pp. 35–45
(2022). https://doi.org/10.1109/ICT4S55073.2022.00015

[37] Verdecchia, R., Sallou, J., Cruz, L.: A Systematic Review of Green AI.
arXiv (Jan 2023). https://doi.org/10.48550/arXiv.2301.11047

[38] Wu, C.J., Raghavendra, R., Gupta, U., Acun, B., Ardalani, N., Maeng,
K., Chang, G., Behram, F.A., Huang, J., Bai, C., et al.: Sustainable ai:
Environmental implications, challenges and opportunities. arXiv preprint
arXiv:2111.00364 (2021)

[39] Wu, J., Chen, X.Y., Zhang, H., Xiong, L.D., Lei, H., Deng, S.H.:
Hyperparameter optimization for machine learning models based on
bayesian optimization. Journal of Electronic Science and Technology
17(1), 26–40 (2019)

[40] Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset
for benchmarking machine learning algorithms (2017)

[41] Yang, T.J., Chen, Y.H., Sze, V.: Designing energy-efficient convolutional
neural networks using energy-aware pruning. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. pp.
5687–5695 (2017)

[42] Yeung, G., Borowiec, D., Friday, A., Harper, R., Garraghan, P.: Towards
{GPU} utilization prediction for cloud deep learning. In: 12th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 20) (2020)

36

Authorized licensed use limited to: TU Delft Library. Downloaded on July 27,2023 at 14:03:51 UTC from IEEE Xplore. Restrictions apply.

