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Minimizing leakage from computational states is a challenge when using many-level systems like
superconducting quantum circuits as qubits. We realize and extend the quantum-hardware-efficient, all-
microwave leakage reduction unit (LRU) for transmons in a circuit QED architecture proposed by Battistel
et al. This LRU effectively reduces leakage in the second- and third-excited transmon states with up to 99%
efficacy in 220 ns, with minimum impact on the qubit subspace. As a first application in the context of
quantum error correction, we show how multiple simultaneous LRUs can reduce the error detection rate
and suppress leakage buildup within 1% in data and ancilla qubits over 50 cycles of a weight-2 stabilizer
measurement.

DOI: 10.1103/PhysRevLett.130.250602

Introduction.—Superconducting qubits, such as the
transmon [1], are many-level systems in which a qubit is
represented by the two lowest-energy states jgi and jei.
However, leakage to noncomputational states is a risk for
all quantum operations, including single-qubit gates [2],
two-qubit gates [3–5], and measurement [6,7]. While the
typical probability of leakage per operation may pale in
comparison to conventional qubit errors induced by control
errors and decoherence [5,8], unmitigated leakage can build
up with increasing circuit depth. A prominent example is
multiround quantum error correction (QEC) with stabilizer
codes such as the surface code [9]. In the absence of
leakage, such codes successfully discretize all qubit errors
into Pauli errors through the measurement of stabilizer
operators [10,11], and these Pauli errors can be detected
and corrected (or kept track of) using a decoder. However,
leakage errors fall outside the qubit subspace and are not
immediately correctable [12–14]. The signature of leakage
on the stabilizer syndrome is often not straightforward,
hampering the ability to detect and correct it [15,16].
Additionally, the buildup of leakage over QEC rounds
accelerates the destruction of the logical information [8,17].
Therefore, despite having low probability per operation,
methods to reduce leakage must be employed when
performing experimental QEC with multilevel systems.
Physical implementations of QEC codes [18–23] use

qubits for two distinct functions: data qubits store the
logical information and, together, comprise the encoded
logical qubits. Ancilla qubits perform indirect measurement
of the stabilizer operators. Handling leakage in ancilla
qubits is relatively straightforward as they are measured in

every QEC cycle. This allows for the use of reset protocols
[17,24] without the loss of logical information. Leakage
events can also be directly detected using three- or higher-
level readout [19] and reset using feedback [25,26]. In
contrast, handling data-qubit leakage requires a subtle
approach as it cannot be reset nor directly measured
without loss of information or added circuit complexity
[27–29]. A promising solution is to interleave QEC cycles
with operations that induce seepage without disturbing the
qubit subspace, known as leakage reduction units (LRUs)
[12,13,27,28,30–34]. An ideal LRU returns leakage back to
the qubit subspace, converting it into Pauli errors which can
be detected and corrected, while leaving qubit states
undisturbed. By converting leakage into conventional
errors, LRUs enable a moderately high physical noise
threshold, below which the logical error rate decreases
exponentially with the code distance [13,28]. A more
powerful operation called “heralded leakage reduction”
would both reduce and herald leakage, leading to a so-
called erasure error [35,36]. Unlike Pauli errors, the exact
location of erasures is known, making them easier to
correct and leading to higher error thresholds [37–40].
In this Letter, we present the realization and extension of

the LRU scheme proposed in Ref. [33]. This is a highly
practical scheme requiring only microwave pulses and the
quantum hardware typically found in contemporary circuit
QED quantum processors: a microwave drive and a readout
resonator dispersively coupled to the target transmon (in
our case, a readout resonator with a dedicated Purcell
filter). We show its straightforward calibration and the
effective removal of the population in the first two leakage
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states of the transmon (jfi and jhi) with up to > 99%
efficacy in 220 ns. Process tomography reveals that the
LRU backaction on the qubit subspace is only an ac-Stark
shift, which can be easily corrected using a Z-axis rotation.
As a first application in a QEC setting, we interleave
repeated measurements of a weight-2 parity check [16,26]
with simultaneous LRUs on data and ancilla qubits,
showing the suppression of leakage and error detection
rate buildup.
Results.—Our leakage reduction scheme [Fig. 1(a)]

consists of a transmon with states jgi, jei, and jfi, driven
by an external driveΩ, coupled to a resonant pair of Purcell
and readout resonators [41] with effective dressed states
j00i and j1�i. The LRU scheme transfers leakage pop-
ulation in the second-excited state of the transmon, jfi, to
the ground state, jgi, via the resonators using a microwave
drive. It does so using an effective coupling, g̃, mediated by
the transmon-resonator coupling, g, and the drive Ω, which

couples states jf00i and jg1�i. Driving at the frequency of
this transition,

ωf00 − ωg1� ≈ 2ωQ þ α − ωRP; ð1Þ

transfers population from jf00i to jg1�i, which in turn
quickly decays to jg00i provided the transition rate, g̃, is
small compared to κ. Here, ωQ and α are the transmon qubit
transition frequency and anharmonicity, respectively, while
ωRP is the resonator mode frequency. In this regime, the
drive effectively pumps any leakage in jfi to the computa-
tional state jgi. We perform spectroscopy of this transition
by initializing the transmon in jfi and sweeping the drive
around the expected frequency. The results [Fig. 1(c)] show
two dips in the f-state population corresponding to
transitions with the hybridized modes of the matched
readout-Purcell resonator pair. The dips are broadened
by ∼κeff=2π ≈ 8 MHz, where κeff ¼ κ=2 is the effective
linewidth of the dressed resonator (see Ref. [42] for device
characteristics and metrics), making them easy to find. We
achieve typical couplings of g̃=2π ∼ 1 MHz for this tran-
sition [42].
To make use of this scheme for a LRU, we calibrate a

pulse that can be used as a circuit-level operation. We use
the pulse envelope proposed in Ref. [33]:

AðtÞ ¼

8
>>><

>>>:

Asin2
�
π t

2tr

�
for 0 ≤ t ≤ tr;

A for tr ≤ t ≤ tp − tr;

Asin2
�
π

tp−t
2tr

�
for tp − tr ≤ t ≤ tp;

ð2Þ

where A is the amplitude, tr is the rise and fall time, and tp
is the total duration. We conservatively choose tr ¼ 30 ns
to avoid unwanted transitions in the transmon. To measure
the fraction of leakage removed, R, we apply the pulse on
the transmon prepared in jfi and measure it [Fig. 2(a)],
correcting for readout error using the measured 3-level
assignment fidelity matrix [Fig. 2(c)]. To optimize the pulse
parameters, we first measure R while sweeping the
pulse frequency and A [Fig. 2(d)]. A second sweep of tp
and A [Fig. 2(e)] shows that R > 99% can be achieved
by increasing either parameters. This value is limited by
thermal population in the resonator modes. We estimate
values of Pðn ¼ 1Þ ≈ 0.5% [42]. Simulation [33] suggests
that R ≈ 80% is already sufficient to suppress most of the
impact of current leakage rates, which is comfortably
achieved over a large region of parameter space. For
QEC, a fast operation is desirable to minimize the impact
of decoherence. However, one must not excessively drive
the transmon, which can cause extra decoherence (see
Fig. 6 in Ref. [33]). Considering the factors above, we opt
for tp ¼ 220 ns and adjust A such that R≳ 80%.
Additionally, we benchmark the repeated action of the
LRU and verify that its performance is maintained over

FIG. 1. Leakage reduction unit scheme. (a) Schematic for the
driven transmon-resonator system. A transmon (T, yellow) with
three lowest-energy levels jgi, jei, and jfi is coupled to a readout
resonator (R) with strength g. The latter is coupled to a frequency-
matched Purcell resonator (P) with strength J. The Purcell
resonator also couples to a 50 Ω feedline through which its
excitations quickly decay at rate κ. The transmon is driven with a
pulse of strengthΩ applied to its microwave drive line. (b) Energy
level spectrum of the system. Levels are denoted as jT; R; Pi,
with numbers indicating photons in R and P. As the two
resonators are frequency matched, the right-most degenerate
states split by 2J, and g is shared equally among the two
hybridized resonator modes j1−i and j1þi. An effective coupling
g̃ arises between jf00i and the two hybridized states jg1�i via
je00i and je1�i. (c) Spectroscopy of the jf00i ↔ jg1�i tran-
sition. Measured transmon population in jfi versus drive fre-
quency, showing dips corresponding to the two transitions
assisted by each of the hybridized resonator modes.
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repeated applications, thus restricting leakage events to
approximately a single cycle (see Fig. S2 [42]).
With the LRU calibrated, we then benchmark its impact

on the qubit subspace using quantum process tomography.
The results (Fig. 3) show that the qubit incurs a Z-axis
rotation. We find that the rotation angle increases linearly
with tp [Fig. 3(g)], consistent with a 71(9) kHz ac-Stark
shift induced by the LRU drive. This phase error in the
qubit subspace can be avoided using decoupling pulses or
corrected with a virtual Z gate. Figures 3(h) and 3(i) show
the Pauli transfer matrix (PTM) for the operation before and
after applying a virtual Z correction, respectively. From the
measured PTM [Fig. 3(i)] and enforcing physicality
constraints [43], we obtain an average gate fidelity
Favg ¼ 98:ð9Þ%. Compared to the measured 99.(2)%
fidelity of idling during the same time (tp ¼ 220 ns), there
is evidently no significant error increase.

Finally, we implement the LRU in a QEC scenario by
performing repeated stabilizer measurements of a weight-
2X-type parity check [16,26] using three transmons
(Fig. 4). We use the transmon in Figs. 1–3, D1, plus an
additional transmon (D2) as data qubits together with an
ancilla, A. LRUs for D2 and A are tuned using the same
procedure as above. A detailed study of the performance of
this parity check and of the impact of simultaneous LRUs is
shown in [42] Figs. S6 and S5. Given their frequency
configuration [44],D1 and A are most vulnerable to leakage
during two-qubit controlled-Z (CZ) gates, as shown by the
avoided crossings in Fig. 4(a). Additional leakage can
occur during other operations: in particular, we observe that
leakage into states above jfi can occur in A due to
measurement-induced transitions [6] (see Fig. S10 [42]).
Therefore, a LRU acting on jfi alone is insufficient for A.
To address this, we develop an additional LRU for jhi
(h-LRU), the third-excited state of A (see Fig. S9 [42]). The
h-LRU can be employed simultaneously with the f-LRU
without additional cost in time or impact on the jfi removal
fraction, R. Thus, we simultaneously employ f-LRUs for
all three qubits and an h-LRU for A [Fig. 4(a)]. To evaluate
the impact of the LRUs, we measure the error detection
probability (probability of a flip occurring in the measured
stabilizer parity) and leakage population of the three
transmons over multiple rounds of stabilizer measurement.
Without leakage reduction, the error detection probability

FIG. 2. Calibration of the leakage reduction unit pulse.
(a) Pulse sequence used for LRU calibration. (b) Single-shot
readout data obtained from the experiment. The blue, red,
and green areas denote m0, m1, and m2 assignment regions,
respectively. The mean (white dots) and 3σ standard deviation
(white dashed circles) shown are obtained from Gaussian fits to
the three input-state distributions. The blue data show the first
3 × 103 (from a total of 215) shots of the experiment described in
(a), indicating 99.(3)% jfi-state removal fraction. (c) Measured
assignment fidelity matrix used for readout correction. (d),(e)
Extracted jfi-state removal fraction versus pulse parameters.
Added contours (white dashed curves) indicate 80%, 90%, and
97% removal fraction. The purple star indicates the pulse
parameters used in (b).

FIG. 3. Process tomography of the leakage reduction unit.
(a)–(f) Measured density matrices after the LRU gate for
input states j0i, jþi, j þ ii, j1i, j−i, and j − ii, respectively.
(g) Z-rotation angle induced on the qubit versus the LRU pulse
duration. The linear best fit (black dashed line) indicates an ac-
Stark shift of 71(9) kHz. (h),(i) Pauli transfer matrix of the LRU
with (i) and without (h) virtual phase correction [tp ¼ 220 ns
and R ¼ 84:ð7Þ%].
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rises ∼8% in 50 rounds. We attribute this feature to leakage
buildup [17,22,34]. With the LRUs, the rise stabilizes faster
(in ∼10 rounds) to a lower value and is limited to 2%,
despite the longer cycle duration (500 versus 720 ns
without and with the LRU, respectively). Leakage is overall
higher without LRUs, in particular forD1 and A [Fig. 4(c)],
which show a steady-state population of ≈10%. Using
leakage reduction, we lower the leakage steady-state
population by up to one order of magnitude to ≲1% for
all transmons. Additionally, we find that removing leakage
on other transmons leads to lower overall leakage,

suggesting that leakage is transferred between transmons
[15,34]. This is particularly noticeable in A [Fig. 4(c)],
where the steady-state leakage is always reduced by adding
LRUs on D1 and D2.
Discussion.—We have demonstrated and extended the

all-microwave LRU for superconducting qubits in circuit
QED proposed in Ref. [33]. We have shown how these
LRUs can be calibrated using a straightforward procedure
to deplete leakage in the second- and third-excited states of
the transmon. This scheme could potentially work for even
higher transmon states using additional drives. We have
verified that the LRU operation has minimal impact in the
qubit subspace, provided one can correct for the static ac-
Stark shift induced by the drive(s).
This scheme does not reset the qubit state and is therefore

compatible with both data and ancilla qubits in the QEC
context. We have showcased the benefit of the LRU in a
building-block QEC experiment where LRUs decrease the
steady-state leakage population of data and ancilla qubits
by up to one order of magnitude (to ≲1%), and thereby
reduce the error detection probability of the stabilizer and
reaching a faster steady state. We find that the remaining
ancilla leakage is dominated by higher states above jfi (see
Fig. S10 [42]) likely caused by the readout [6,7]. Given the
observation leakage transfer between transmons, which can
result in higher excited leakage states [34], data qubits can
also potentially benefit from h-LRUs. Compared to other
LRU approaches [17,34], we believe this scheme is
especially practical as it is all-microwave and very quan-
tum-hardware efficient, requiring only the microwave drive
line and dispersively coupled resonator that are already
commonly found in the majority of circuit QED quantum
processors [19,20,22]. Extending this leakage reduction
method to larger QEC experiments can be done without
further penalty in time as all LRUs can be simultaneously
applied. However, we note that when extending the LRU to
many qubits, microwave crosstalk should be taken into
account in order to avoid driving unwanted transitions. This
can be easily avoided by choosing an appropriate resonator-
qubit detuning.

The data supporting the plots and claims within this
Letter are available online at [49]. Further data can be
provided upon reasonable request.
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