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ABSTRACT
This study introduces a general framework, called Bi-sided facility location, for a wide range of prob-
lems in the area of combined facility location and routing problems such as locating test centres
and designing the network of supermarkets. It is based on a multi-objective optimisation model to
enhance the service quality which the clients received, called client-side, and enhance the intercon-
nection quality and eligibility among the centres, called center-side. Well-known problems such as
k-median and k-centre for the client-side and the travelling salesman problem for the centre-side
are taken into account in this paper. After discussing the complexity of this kind of combination, we
propose a heuristic approximation algorithm to find approximation Pareto-optimal solutions for the
problem. The algorithm is an efficient local search utilising geometric objects such as the Voronoi
diagram and Delaunay triangulation as well as algorithms for computing approximation travelling
salesman tour. In addition to the comprehensive theoretical analysis of the proposed models and
algorithm,weapply thealgorithmtodifferent instances andbenchmarks, andcompare itwithNSGA-
II based on set coverage and spacing metrics. The results confirm the efficiency of the algorithm in
terms of running time and providing a diverse set of efficient trade-off solutions.

Highlights
• Introducing a general bi-side location model considering centres and clients’ utilities
• Discussing and proving the NP-hardness of the model in the general framework
• Considering two instances; k-centre and k-median for client-side and TSP for centre-side
• Proposing an efficient geometric-based algorithm for solving the problems
• Implementing, testing, and comparing the proposed algorithm on several benchmarks

KEYWORDS
Facilities planning; local
search; approximation;
routing; connected facility
location; travelling salesman
problem

1. Introduction

The service quality provided by service centres like com-
panies, hospitals, and government agencies is a primary
yet crucial criterion in their success in today’s competi-
tive world. The location of service centres and the con-
nections between them are two important interrelated
issues in deploying such facility centres. Service providers
(or centres) and customers (or clients) develop complex
networks based on two types of connections; connections
between the clients and centres (Barbati, 2013; Daskin,
2001), and the connections among the centres (Javid &
Azad, 2009; Verhetsel et al., 2015). To manage those con-
nections through high-quality services and at low costs,
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the service centres have to be located in an optimal posi-
tion (Onstein et al., 2020). Taking into account the loca-
tion of clients, the problem of finding that right is known
as the facility location, e.g. the well-known problems
k-median and k-centre (Oded & Hakimi, 1979; Thorup,
2005). Further, transportation planning involves an anal-
ysis of the connections among the centres and identifying
the proper transportation (Bertsimas, 1989). While in
many real-world problems one of the two connection
types might be the focus of a decision-maker, there are
problems in which the two need to be taken into account
simultaneously, where focusing on either of the two could
lead to sub-optimal solutions.
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In order to better understand the necessity of simulta-
neous consideration of the client’s and centre’s objectives,
assumes the nowadays problem of locating some centres
for COVID-19 to provide diagnostic testing centres for
their citizens. For individuals to get tested, the distance or
travelling cost between their home/work and the test cen-
tres is important. Thus, one might analyse the situation
and formulate the goal being to deploy a set of centres
(e.g. k centres) minimising the distance between each
individual and its nearest test centre. This goal can be
formulated as minimising the average distance between
the clients and their nearest centres, i.e. k-median, or as
minimising the maximum distance, i.e. k-centre. On the
other hand, the test centres need to be equipped with
medical and laboratory equipment and also deliver the
tests regularly in a particular period of time, e.g. daily. To
this end, a method is one or more vehicles with particu-
lar containers that collect all the tests from the centres
one by one and deliver them to some diagnostic labo-
ratories. So, a second objective could be formulated as
minimising the travelling cost between the test centres,
i.e. minimising the tour meets the centres, like the objec-
tive of the Traveling Salesman Problem (TSP). We could
think of many other examples where the two types of
connections need to be considered simultaneously, such
as a network of a supermarket chain (see, for exam-
ple, https://www.dairyfreshfarms.com), raw milk collec-
tion (Gheisariha et al., 2023), locating the cantors of a
post company (Meira et al., 2017) or waste collections
(Adeleke & Olukanni, 2020).

In general, there are two different types of costs and
objectives when deploying a set of facility centres. The
two types of objectives are (i) the objective to enhance
utilities for the clients, called client-side, and, (ii) the
objectives to improve the interconnection quality and eli-
gibility between the centres, called center-side. The first
type provides a utility and satisfaction level among the
clients (Drezner &Hamacher, 2004; Farahani &Hekmat-
far, 2009), while, the second type provides a low-cost and
high-quality service for suppliers (Daskin et al., 2005).

Since, usually, the type, size, and scale of the objectives
of the two sides are different, it is not sensible to integrate
them into one single objective. For example, the distance
between the clients and centres (e.g. from home to a post
office) may be a walking distance which is not translated
to monetary costs but a degree of satisfaction. However,
the distance between the centres (e.g. post offices) is a
cost paid by service providers as a vehicle routing cost.
As the nature of objectives for the sides is different it does
not make sense to develop a unifying objective function
for the whole problem. Even in cases where the objec-
tive functions of the two sides seem similar (e.g. cost paid
by clients and cost paid by suppliers), it is not rational

to sum up the two costs as (i) each cost is paid by one
actor (one side of the problem), (ii) the value of one unit
of cost is not similar for both sides. For instance, while
having a marginal cost of 5 euros might be perceived as
a high amount of money, a service provider looks at that
as almost nothing. While we argue that it is important to
look at the objectives of the two sides separately (which
avoids us using a unifying objective function), solving
the two problems separately could lead to sub-optimal
solutions. Therefore, in this paper, we bring both client-
side and centre-side facility location problems together in
a combined framework of a bi-sided optimization prob-
lem. While in general, the framework allows for other
possibilities of combinations, we apply the most well-
known and application-based formulation of objectives
such as k-median, k-centre for the client-side, and TSP
for the centre-side. This combined problem aims to open
a set of k centres whose distance from the clients is min-
imised and simultaneously they can be connected with
minimum tour length.While studying the two sides indi-
vidually has a long history and many valuable studies
have been conducted in recent decades, we think consid-
ering the two sides simultaneously could bring evenmore
value to the picture. This is especially true for cases in
which the objectives of the two sides are the concern of a
decision-maker. For instance, in the case of locating post
offices, this is the postal company that is concerned about
the objectives of the two sides. That is, while the postal
company is concerned about their transportation costs
collecting the items from different offices, they are also
concerned about their clients walking from their homes
to the post offices.We think, in practice,most problems of
this kind are such that the service provider is concerned
about the objectives of the two sides. This necessitates
considering the problem in a combined framework as it
is only when the decision-maker can find solutions that
make a desirable balance/tradeoff among the objectives
of the two sides of the problem. Despite the significance
of such a view in the formulation of the problem, unfor-
tunately, however, we were not able to find a systematic
study that focuses on such objectives simultaneously in
the framework of a multi-objective optimisation prob-
lem, which is themain aim of the current study.We think
this is a significant contribution to the theory andpractice
of facility location and routing problems.

As all of these problems belong to the complexity
class of NP-hard, the model is computationally NP-hard
as well. We deeply discuss the complexity of the model
and show the strongly NP-hardness of the problem by
proving that the size of Pareto-optimal solutions in the
general version of the problem is exponential. Then, util-
ising observations in the search space of the problem and
useful geometric objects such as the Voronoi diagram

https://www.dairyfreshfarms.com
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and Delaunay triangulation, and approximation algo-
rithms, we propose an efficient and customised heuristic
algorithm for solving the problem. The algorithm is pre-
sented in the structure of a multi-objective optimisation,
and its outcome is a set of non-dominated solutions close
to the Pareto-optimal solutions of the problem. Finally,
we implement the algorithm and apply it to a set of
random test problems and some benchmarks. We also
compare the algorithmwith NSGA-II approach based on
set coverage metric and spacing metric. The results con-
firm the efficiency of the algorithm in finding a set of
diverse solutions near the Pareto-optimal solutions and
its effectiveness in terms of computational time. In some
comparisons, the algorithm outperforms twice in terms
of the mentioned metrics.

This paper is organised into seven sections. In Section
2, we comprehensively review the related studies in the
literature based on the presented framework. In Section
3, we formally define the bi-sided optimisation facility
location model. In Section 4, we introduce some prelim-
inaries such as multi-objective optimisation and related
concepts, geometric structures, and approximation algo-
rithms used throughout this paper. In Section 5, we first
discuss the complexity of the model for the case the
client-side follows the objective of the k-median prob-
lem (min-sum) and the centre-side follows the objective
of TSP (minimum tour). Then, we propose our general
algorithm to solve the problem as well as the objective
function of the k-centre problem. In Section 6, we imple-
ment the algorithm and apply it to several test exam-
ples and benchmarks. Finally, we conclude the study in
Section 7.

2. Related work

In this section, we reviewed, the most related studies in
the area of facility location and routing. Two well-known
facility location problems with many real-world applica-
tions are k-median and k-centre. LetP = {p1, p2, . . . , pn}
be a set of clients, Q be a set of potential facility centres.
In the primitive version of the k-median, the goal is to
choose k = |C| centres such that the following objective
function is minimised:

Cost(C) =
∑
p∈P

dPQ(p, δ(p)), (1)

where dPQ(p, q) denotes the distance between a client
and a centre and δ(p) denotes the nearest open cen-
tre to p. Similarly, the objective of the k-centre problem
with the applications of emergency FL (Wang, Miao,
et al., 2021) can be defined as minimising the following

function.

Cost(C) = max
p∈P

dPQ(p, δ(p)). (2)

Because of the definition of δ(p), the problems of
k-median and k-centre are not assignment problems
(Bateni & Hajiaghayi, 2012). That is, by choosing C, each
client automatically is assigned to its nearest centre and is
served by it. However, the NP-hardness of both k-median
and k-centres has been proved in such defined simple
versions even in metric space (Hochba, 1997), numerous
variations of them such as capacitated (Khuller & Suss-
mann, 2000), weighted and constrained (Daskin, 2001),
Fault-tolerant (Fernandes et al., 2018) have been intro-
duced and solved using greedy (Jain et al., 2002), heuris-
tic (Drezner & Hamacher, 2004), approximation (Gupta,
2018; Krishnaswamy et al., 2018) and mathematical pro-
gramming approaches (Chakrabarty & Swamy, 2017; Li,
2017). Among many variations of the k-centre problem,
a related version of the k-centre is called the α-connected
bi-centre problem (Huang et al., 2003). In this 2-centre
problem, it is asked to serve the clients using two centres
such that the length of the farthest client from its nearest
centre isminimised under the constraint that the distance
between the centres is less than a given specified bound.

Among the diverse variety of FL problems, connected
FL (CFL) (Eisenbrand et al., 2010; Swamy&Kumar, 2004;
Turkoglu & Genevois, 2020) is more related to the client-
side and centre-side facility location introduced in this
paper. In addition to the opening cost of the centres, CFL
aims to minimise the summation of the Steiner cost and
connection cost as well. Formally, the objective function is

CFL : Cost(C) =
∑
c∈C

open(c) + ρ
∑
p∈P

dPQ(p, σ(p))

+
∑

e=(q,q′)∈ST
dQQ(q, q′), (3)

where open(c) is the opening cost of centre c, σ(p)
denotes a centre that serves p, dPQ(p, q) shows the length
(cost) of the connection between p and q. Also, in CFL,
the opened facilities must be connected, so, ST shows
the Steiner tree connects the centres, and consequently,
the third term in Eq.(3) is the total cost of ST. Finally,
the parameter ρ is a balancing or priority weight of
the objectives. Note that, it is possible that σ(p) �= δ(p),
and consequently, CFL can be interpreted as an assign-
ment problem. CFL has several applications such as for
installing a telecommunication network infrastructure
(Swamy & Kumar, 2004). Figure 1 (a) shows a schematic
view of the CFL problem.

Swamy and Kumar (Swamy & Kumar, 2004) pre-
sented the first primal-dual approach for CFL when
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Figure 1. Connected Facility location problem (a), Location Routing Problem (b), Client-side and Center-side FL problem (c) and (d). The
dashed edges in subfigures show the connection distance (cost) between each client and its assigned centre (e.g. the nearest opened
centre). So, the problem can be seen as the k-median&TSP (for k = 4) in the framework of client-side and centre-side FL. However, if the
maximum length (the solid black connection) is considered on the client-side, the problem will be k-center&TSP. Note that, subfigure (c)
and (d) shows the optimal solutions for the Client-side and Center-side FL problems, respectively.

the opening costs are zero and Q = P . They improved
the previous results and proposed two approximation
algorithms with the factors 8.55 and 4.55 for the par-
ticular cases of CFL. These approximation factors are
also improved by Eisenbrand et al. (Eisenbrand et al.,
2010) to 4 and 2.92, respectively. To this end, they used
a new analytical tool, called core detouring, and pro-
posed a randomised algorithmic framework. Gollowitzer
and Ljubic´ (Gollowitzer & Ljubić, 2011) formulated
CFL in the structure of different mixed integer pro-
gramming models and proposed branch-and-cut algo-
rithms to solve them. However, other variations of CFL
such as Online CFL (San Felice et al., 2014) and Incre-
mental CFL (Arulselvan et al., 2019), formulated the
problem in one single objective using a weighted lin-
ear combination of three types of costs, opening cost,
connection cost and Steiner cost. Regarding the intro-
duced client-side and centre-side facility location prob-
lem, the opening cost and Steiner tree cost in CFL are
two examples of centre-side objective functions, and the
connection cost is an example of the client-side objective
functions.

Vehicle Routing Problem (VRP) and its general ver-
sion, Location Routing Problem (LRP), are other related
problems that can be discussed as centre-side and client-
side facility location problems. The goal of LRP is to open
a set of centres (say depots) and assign a set of clients to

the opened depots, however, the clients are served using
a set of vehicles starting with the opened depots and vis-
iting the clients. In general, the objective is to minimise
the total cost (usually as a function of distance) of the
vehicle’s routes, opening costs, and the fixed costs per
vehicle. LRP is a specific combination of facility loca-
tion and transportation problems and has been signifi-
cantly studied (Drexl & Schneider, 2015; Laporte, 1989,
2009; Nagy & Salhi, 2007; Prodhon & Prins, 2014; Schif-
fer et al., 2019). Both of the objectives in LRP focus on
the client-sides; optimally locating the depots and opti-
mally serving the clients by vehicle tours starting from
the depots. So, the problem is an assignment problem
with a combination of FL and TSP. Figure 1 (b) shows
a schematic view of the problem. So many variations of
LRP as well as multi-objective models of the problem,
dynamic, online, and multi-echelon have been proposed
and solved using linear programming relaxation, branch-
and-cut, and heuristic approaches (Drexl & Schneider,
2015; Jaigirdar et al., 2023; Moon et al., 2020; Sluijk et al.,
2023). Tordecilla et al. (Tordecilla et al., 2023) explored
a version of the LRP with different capacity facilities and
presented three mixed-integer linear formulations. The
VRP can be seen as a specific case of LRP which con-
cerns a routing problem for a fixed depot. One could also
argue that VRP is a general case of TSP where the goal is
to visit all the clients using some vehicle routes starting
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and ending at the depot. Similar to LRP, numerous vari-
ations of VRP as well as different algorithms have been
proposed for solving them (Fahmy & Gaafar, 2023; Lin
et al., 2014; Wang, Miao, et al., 2021).

The ring star problem (Calvete et al., 2016; Labbé et al.,
2004; Liefooghe et al., 2010) is one of the other related
problems to our study. Indeed, a particular case of the
proposed model in this paper will cover the ring prob-
lem as well. The input of the ring problem is a weighted
graph and the goal is to find a tour (i.e. ring) that min-
imises two costs: the cost of the ring and the cost of
assigning the vertices to the ring. The assigning cost is
computed only for the vertices out of the ring and it is
the minimum distance between the vertices and a ver-
tex on the ring. In this problem, the vertices are assumed
to be the same and both the costs are of the same type
and scale. Labbé et al. (2004) introduced the ring prob-
lem and mentioned some applications for the problem
such as designing telecommunications network planning
rapid transit systems. They formulated the problem in
the framework of a mixed-integer linear programming
model and proposed a branch-and-cut algorithm to solve
it. Liefooghe et al. (2010) considered the ring problem in
the framework of a bi-objective optimisation model and
presented multi-objective heuristic algorithms to solve
it. Calvete et al. (2016) inserted a depot node into the
problem as the starting and ending point of the ring
and presented a multi-objective evolutionary algorithm
to solve it.

In addition to the mentioned well-known problems,
some studies are based on LRP which is customised
for a particular application by inserting an extra objec-
tive. Tavakkoli et al. (Tavakkoli–Moghaddam et al., 2010)
presented an integrated bi-objective optimisation model
for the problem of multi-depot location routing with
the objectives of maximising demand served and min-
imising the cost of opening and delivery. They utilised
a multi-objective scatter search algorithm to find non-
dominated solutions to the problem. Martínez et al.
(Martínez–Salazar et al., 2014) considered an exten-
sion of bi-stage LRP, that is, a bi-objective optimisation
problem with the objectives of minimising the distri-
bution cost and maximising the balance of workloads
for drivers. They used local search and evolutionary
algorithms to solve the problem. See (Pacheco et al.,
2013; Rayat et al., 2017; Tavakkoli–Moghaddam et al.,
2013) as some extensions of LRP. Alijani et al. (Alijani
et al., 2017) presented an approximation algorithm for
a matching problem between online buyers and sellers,
called a two-sided facility location. Delfani et al. (Delfani
et al., 2021) presented a hazardouswaste location-routing
model to consider both the risks of transportation and
population.

3. Bi-sided facility location problem

Let P = {p1, p2, . . . , pn} be a set of clients and Q =
{q1, q2, . . . , qm} be a set of potential facilities. Also, sup-
pose a fully connected network on P ∪ Q, that is, there
is a distance (or cost) function dPP : P × P → R

≥0

between any pair inP , a distance (or cost) function dQQ :
Q × Q → R

≥0 between any pair inQ, and a distance (or
cost) function dPQ : P × Q → R

≥0 between any client in
P and any potential centre in Q. The goal is to choose a
set of facility centres C ⊆ Q such that both objectives on
the client-side and centre-side are optimised. Let δ(p)εC
denote the centre which serves p. In the existing litera-
ture, problems such as k-median and k-centre have been
significantly studied to minimise the service cost among
the facility centres and clients. Also, well-known prob-
lems such as the travelling salesman problem (TSP), aim
at minimising the movement cost among the facilities or
customers. In designing a service system, it is possible
that first a location analysis is performed and the optimal
locations are determined, and then, an optimal plan-
ning strategy, i.e. a minimum TSP tour, is computed for
optimal movement among the locations. Unfortunately,
such a consecutive strategy is not optimal in general, and
considering both locating and planning phases simulta-
neously is important. Among the studies in the literature,
the problems of Connected FL (CFL), Vehicle Routing
Problem (VRP), and Location Routing Problem (LRP)
aims at addressing this issue in a single objective opti-
misation problem, however, as discussed, based on the
application of the problem type utilities and objectives
might be different in the client-side and centre-side. Thus
integrating them into a single optimisation problem is not
plausible in general. In the bi-sided facility location prob-
lem, the goal is to locate (or say openly) a set of facility
centresC ⊆ Q such that both objectives on the client-side
and centre-side are optimised, or precisely,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

minimize F1(C, P)

minimize F2(C)

subject to :
G(C, P) ≤ 0
H(C) ≤ 0
C ⊆ Q

(4)

F1(C, P) shows the objective set on the client-side.
For example, minimising the total setup cost, minimising
the longest distance from the existing facilities, minimis-
ing fixed cost, minimising total annual operating cost,
maximising service, minimising average or maximum
distance travelled, minimiding the number of located
facilities, andmaximising responsiveness (Farahani et al.,
2010). k-median and k-centre are two well-known prob-
lems of this type (Arya et al., 2004). Let δ(p)εC denote
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the opened centre to which client p is assigned, e.g.
the nearest opened facility to p. So, the objective of
k-median is to minimise F1(C, P) = ∑n

i=1 d(pi, δ(pi)),
where d(., .) is a proper measurement distance function,
e.g. Euclidean distance or Manhattan distance. Similarly,
it can be defined as F1(C, P) = max

1≤i≤n
d(pi, δ(pi)) in the

form of a k-centre problem. In addition to k-median and
k-centre problems, TSP is another well-known problem
on this side that has been extensively applied in VRP
(Toth & Vigo, 2002) and LRP (Drexl & Schneider, 2013;
Prodhon & Prins, 2014). In these problems, F1(C, P) is
to minimise the length of one or more tours such that
visit all the clients by starting an opened centre in C.
Also, the demand weight of each client or any other
objective and service priority related to the clients can
be applied to F1(C, P). The objective set F2(C) shows
the cost on the centre-side. Again TSP and Steiner Tree
Problem (STP) (Gouveia et al., 2011) are two interesting
problems on this side that have been extensively applied
to Connected Facility Location (CFL) problems (Arul-
selvan et al., 2019; Gollowitzer & Ljubić, 2011), e.g. the
goal is to minimise connection cost among the centres.
Another interesting example of F2(C) is the problem of
k-balance (Davoodi, 2019 Marín, 2011;), which aims at
making a balance among the workloads of the centres,
e.g. the difference between the maximum and minimum
workload is minimised. Besides, the opening cost for
each centre, which is extensively used in the literature,
can be incorporated into this side of the objective.G(C, P)

shows the constraints on the interconnected transition
between the clients and the centres. For example, max-
imum service capacity (Melkote & Daskin, 2001), limits
on serving some particular clients using some particu-
lar centres, maximum service distance for the clients, and
priority among the clients (Ravi & Sinha, 2004). Finally,
H(C) shows the set of constraints related to the centres.
For example, the serving capacity of the centres, maxi-
mum service distance for the centres (Martínez–Salazar
et al., 2014), limitations in locating the centres (Davoodi
& Mohades, 2011), and maximum budget-constrained
facility location (Wang et al., 2003).

Thus, it is possible to choose different objective func-
tions for the client-side and centre-side of the introduced
bi-sided facility location model. Inspired by several real-
world problems, in this paper, we choose twowell-known
objectivesmin-sumwhich is the objective function of the
k-median problem and min–max which is the objective
function of the k-centre problem for the client-side of
the model, and minimising the length of the visiting tour
which is the objective function of the travelling salesman
problem (TSP) for the centre-side of the model. Con-
sequently, two new bi-objective optimisation location-
routing problems are presented and we denote them by

k-median&TSP and k-center&TSP, respectively. Figure 1
(c) and Figure 1 (d) show two different solutions to these
problems. Figure 1 (c) (compared to Figure 1(d)) repre-
sents a TSP tour with a larger length but smaller service
distance for the clients, which shows a trade-off between
the two objectives.

It is notable that, since the type, measurement, and
scale of the objectives on the client-side and the centre-
side of the model may be completely different, the
weighted summation of them and obtaining a single
objective optimisation problem is not plausible always.
For example, the cost of opening a centre is the type
of cost paid by the service provider and it can be mea-
sured on the scale of the service provider’s cost. While
the service cost between the clients and centres is the
type that may be paid by clients (like the example of the
post office or waste collection). Therefore, unifying such
different types of cost functions is not sensible, and the
problem is a general bi-objective optimisation problem
with different Pareto-optimal solutions.We show that the
size of the Pareto-optimal solutions for combinations of
the objectives may be exponential. As a result, the prob-
lems are strongly NP-hard. So, we propose an efficient
bi-objective local search algorithm that solves both com-
binations of the model, denoted by k-center&TSP and
k-median&TSP. We consider an uncapacitated variation
of the problem and ignore the opening cost of centres.
Indeed, the costs between the clients and centres and the
length of the tour between the opened centres are paid
regularly (e.g. daily) until the system works, however, the
opening cost is paid once. The algorithm presents a set of
non-dominated solutions, and at the final step, it is pos-
sible to choose one of them to apply in the real world.
This can be performed using some higher-level infor-
mation by decision-makers or choosing automatically
using existing approaches such as the knee point solution
(Jurgen et al., 2004), and Kalai- Smorodinsky solution
(Gaudrie et al., 2018; Kalai & Smorodinsky, 1975).

4. Algorithmic preliminaries

This section contains three following subsections which
are covered in Appendix (A) (Figure 2).

4.1. Bi-objective optimisation and Pareto-optimal Solu-
tions

4.2. Voronoi Diagram and Delaunay Triangulation
4.3. Heuristic and Approximation Algorithms

5. Bi-objective optimisation algorithm

In this section, first, we show that the introduced client-
side and centre-side facility location model is strongly
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Figure 2. Voronoi diagram (left) and Delaunay Triangulation (right) of a set of 30 points

Figure 3. A gadget containing 8 potential facility points (hollow circles) and 6 demand points (solid squares). If we set k = 6 (pick 6 of
8 facilities), there are four different Pareto solutions. Two Pareto solutions are illustrated.

NP-hard in general. To this end, we choose k-median for
the client-side and TSP for the centre-side of the model
and show that the number of Pareto-optimal solutions
is exponential. Then, we propose our algorithm to solve
both k-median&TSP and k-center&TSP problems.

5.1. Size of Pareto-optimal solutions in
k-median&TSP problem

In the following, we consider the objective of minimising
the sum of the distance between the clients and their cor-
responding centres (which is the nearest opened centre)
andminimising the length of the tour visiting the opened
centres.

Theorem5.1: In the problemof k-median&TSP, the num-
ber of Pareto-optimal solutions in the worst case is �(2p),
where p is in order of the problem’s size.we

Proof: See Appendix (B) (Figures 3 and 4). �

5.2. An heuristic approximation algorithm for
k-median&TSP and k-centre&TSP problems

In this section,we propose an efficient heuristic algorithm
forFL&TSP usingDelaunay triangulation andChristofides

Algorithm. Before going into details, we explain it
roughly. The algorithm starts with a population of ran-
dom solutions. It computes the values of the objective
of the solutions. To this end, we use 3

2 -approximation
algorithm for finding TSP tour. Then, algorithms exploit
non-dominated solutions and generate a new population
of solutions using the Delaunay triangulation graph of all
potential facilities. This process is repeated to achieve a
set of admissible non-dominated solutions.

In the initialisation step, we generate a popula-
tion of N random solutions. For each solution C =
{c1, c2, . . . , ck} ⊆ F we determine their objective values
by usingVDofC and its 3

2 -approximation TSP tour using
the Christofides algorithm. Then, we generate a new ran-
domneighbour solutionC′ = DTN(C). So, we obtain 2N
solutions in total. This is the exploring phase and we
need to exploit and enhance the average fitness of the
population by surviving N best solutions. To this end
we utilise a non-dominated ranking procedure, that is,
decomposing all 2N solutions to some non-domination
fronts �i, for i = 1, 2, . . . , etc. By applying the domina-
tion principle, all the solutions that lie on a front are
non-dominated and for each solution sol1 in �i, there is
a solution sol2 in �j (for all j < i) so that sol2 dominates
sol1. For a set ofN solutions in a bi-dimensional objective
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Figure 4. (a) A workspace with p = 3 gadgets which contains n = p ∗ 6 = 18 demand points and m = p ∗ 8 = 24 potential facility
points. If we set k = p ∗ 4 = 12, we have at lease 2p = 8 different Pareto-optimal solutions. There are two possibilities for each gadget.
Two extreme Pareto solutions are shown in the figure: (b) all the gadgets are active, (c) all the gadgets are inactive.

space, the non-dominated sorting can be computed in
O(N logN) time (Jensen, 2003). Finally, we select the N
solutions by considering their non-domination fronts.
We also apply a crowding operator to achieve the sec-
ond goal of multi-objective optimisation problems, i.e.
the diversity among the obtained solutions. There are sev-
eral approaches to hand diversity (Coello et al., 2002),
e.g. for any solution C ∈ �i in the objective space, we
can compute the perimeter of the largest axis-aligned
bounding box that contains C and no other solution of
�i. The value of the perimeter shows the distance of solu-
tion C from its left and right nearest solutions. This step
can be also handled in O(N logN) time by having the
ordered lists of the solutions according to the values of
objectives.

After exploiting and reducing the size of the popula-
tion to N, we iterate the above process until the termi-
nation condition is met, i.e. iterating the process for a
predefined maximum number of generations or iterating
until the set of non-dominated solutions of the popula-
tion (�1) does not change after some generations. The
pseudo-code of the algorithm is proposed below.

Bi-Objective TSP Facility Location Problem

Input: Set of clients P = {p1, p2, . . . , pn}, set of potential facilities
F = {q1, q2, . . . , qm} and an integer 1 < k < m.

Output: Set of non-dominated solutions for the problem of FL&TSP. Each
solution is a set C = {c1, c2, . . . , ck} ⊆ Q.

Step 0. (Parameter setting∗) Set the number of solutions (N) and the
maximum number of iterations (M), and set t = 0 as the iteration
counts. Also, Compute DT(Q).

Step 1. (Initialization) Let St be a set of N randomly selected approximation
solutions.

Step 2. (Computing objective values)
2(a). For each solution C ∈ St , compute VD(C) and objective value

F1(C).
2(b). For each solution C ∈ St , find a 3

2 -approximation TSP tour using
Christofides algorithm. Set the length of the tour as F2(C).

Step 3. (Local search) generate S′t using St .
For any solution C ∈ St , generate a random solution C′ = DTN(C) and
insert C′ to S′t . Compute VD(C′) using VD(C) and compute (update) the
objective values of C′ .

(continued).

Step 4. (Selection)
4(a). Perform a non-dominated sorting to S′t ∪ St , and identify different

fronts �i , for i = 1, 2, . . . , etc.
4(b). Set a new population St+1 = ∅ and i = 1.
Until |St+1| + |�i| ≤ N perform St+1 = St+1 ∪ �i and i = i + 1.
4(c). For reminder capacity in St+1, perform a crowding operator and fill

it using the most diverse solutions in �i .
Step 5: (Termination Condition) Set t = t + 1. If t > M, terminates the

algorithm and report the non-dominated solutions of St . Otherwise go
to Step 3.

∗Based on our results, an efficient setting is N ∼= 2(m + k) and M ∼= km.

5.3. Analysis of the algorithm

See Appendix (C) (Table 1).

6. Simulation and experimental results

In this section, we first apply the proposed algorithm to
some randomly generated instances of k-centre&TSP and
k-median&TSP problems. Then, we use a set of bench-
marks in the literature and show the efficiency of the
algorithm. All the tests are simulated using C# program-
ming language and run on a computer with 4.00 GB
RAM and 3.30GHz CPU. First, we consider a rectangu-
lar workspacewith a size 1500 × 1000.We randomly pick
n = 1000 clients and m = 50 potential points. Figure 5
shows the workspace. We run the proposed algorithm
with N = 2(m + k), and M = mk for different values of

Table 1. Complexity time of the proposed algorithm.

Step Worst case Expected case

Step 1 N ∗ O(k) N ∗ O(k)
Step 2(a) N ∗ O(k1.5log5k) N ∗ O(k1.5log5k)
Step 2(b) N ∗ O(klogk + nlogk) N ∗ O(klogk + nlogk)
Step 3 N ∗ O(k1.5log5k + n log k) N ∗ O(k + n)
Step 4(a) O(N logN) O(N logN)

Step 4(b) O(N) O(N)

Step 4(c) O(N logN) O(N logN)

Total complexity

forM iterations
O(MN(k1.5log5k

+ n log k + logN))

O(MN(k + n
+ logN))
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Table 2. Obtained non-dominated solutions for k = 5 for the workspace displayed in Figure 5.

sol 1 sol 2 sol 3 sol 4 sol 5 sol 6 sol 7 sol 8 sol 9 sol 10 sol 11 sol 12 sol 13

F1 1161.5 1154.6 1126.6 1124.0 789.1 785.1 701.0 684.3 674.3 632.8 597.8 577.5 574.0
F2 400.9 405.6 416.0 601.7 842.8 1157.5 1187.8 1223.7 1250.6 1477.1 1560.8 1618.0 1694.3

sol 14 sol 15 sol 16 sol 17 sol 18 sol 19 sol 20 sol 21 sol 22 sol 23 sol 24 sol 25

F1 567.2 566.7 566.7 559.4 552.4 541.1 493.9 488.6 476.7 466.6 458.3 453.0
F2 1712.5 1733.4 1837.3 1898.1 1937.0 2031.7 2315.1 2356.7 2523.6 2682.5 2755.5 2811.1

Table 3. Obtained non-dominated solutions for k = 10 for the workspace displayed in Figure 5.

sol 1 sol 2 sol 3 sol 4 sol 5 sol 6 sol 7 sol 8 sol 9 sol 10 sol 11 sol 12

F1 880.6 845.7 674.8 632.8 577.5 567.2 566.7 566.7 559.4 552.4 513.7 510.4
F2 1361.5 1533.0 1672.7 1676.4 1713.3 1759.8 1767.1 1856.6 1912.2 1974.2 2055.1 2059.4

sol 13 sol 14 sol 15 sol 16 sol 17 sol 18 sol 19 sol 20 sol 21 sol 22 sol 23 sol 24

F1 493.9 488.6 488.5 486.6 476.7 455.0 454.2 450.5 436.8 397.0 396.5 390.0
F2 2330.9 2366.0 2410.7 2439.8 2530.5 2691.1 2695.0 2716.2 2824.3 2885.5 3084.9 3225.8

sol 25 sol 26 sol 27 sol 28 sol 29 sol 30 sol 31 sol 32 sol 33 sol 34 sol 35

F1 383.7 374.1 370.9 350.5 348.6 344.6 341.2 337.5 336.8 335.8 324.0
F2 3227.9 3234.3 3291.5 3313.8 3323.9 3341.0 3341.8 3380.7 3384.3 3385.4 3448.0

Table 4. Obtained non-dominated solutions for k = 20 for the workspace displayed in Figure 5.

sol 1 sol 2 sol 3 sol 4 sol 5 sol 6 sol 7 sol 8 sol 9 sol 10 sol 11

F1 674.2589 566.746 476.74 454.2345 439.9364 436.8352 402.8809 396.9887 371.8494 367.143 335.7737
F2 2637.432 2796.016 2976.092 3048.555 3102.039 3107.795 3342.441 3396.075 3558.751 3615.96 3627.931

sol 12 sol 13 sol 14 sol 15 sol 16 sol 17 sol 18 sol 19 sol 20 sol 21

F1 323.966 309.8209 306.6464 296.1689 295.6011 292.82 76 280.9306 273.8759 271.4498 270.3128
F2 3692.823 3794.794 3831.388 3859.185 3912.321 3915.954 4016.856 4144.509 4230.076 4255.606

Table 5. Obtained non-dominated solutions for k = 25 for the workspace displayed in Figure 5.

sol 1 sol 2 sol 3 sol 4 sol 5 sol 6 sol 7 sol 8 sol 9 sol 10

F1 510.3577 493.9119 476.74 470.8652 436.8352 418.5272 402.8809 396.9887 375.2612 362.8168
F2 3185.409 3292.162 3361.909 3391.134 3427.32 3703.701 3704.675 3764.5 4006.933 4010.566

sol 11 sol 12 sol 13 sol 14 sol 15 sol 16 sol 17 sol 18 sol 19 sol 20

F1 323.6109 315.192 306.6464 296.1689 296.0152 295.6011 292.8276 280.9306 273.8759 270.3128
F2 4019.666 4023.299 4034.5 4058.835 4088.661 4158.781 4162.414 4263.316 4334.482 4413.412

Figure 5. A workspace of the k-center&TSP and k-median&TSP
problems containing n = 1000 demand points (black squares)
andm = 50 potential facility points (blue circles).

k = 5, 10, 20, 25 and 40. The running time for each case
is about 7k seconds. Tables 2–6 show the obtained non-
dominated solutions in each instance of the problem.

Table 6. Obtained non-dominated solutions for k = 40 for the
workspace displayed in Figure 5.

sol 1 sol 2 sol 3 sol 4

F1 396.9887 296.0152 288.7352 270.3128
F2 5147.321 5371.345 5392.445 5600.582

Each obtained solution has two objective values; F1
which denotes the objective value of the client-side (i.e.
maximum service distance in k-centre&TSP problem
or summation of service distances in k-median&TSP
problem), and F2 which denotes the length of the tour
which visits the open centres. Figure 6 displays a ran-
domly obtained solution for k = 5, 10, 20, 25, and 40.
Also, Figure 7 shows the normalised diagram of the
obtained objective values.

As can be observed from the tables and also the fig-
ures, the proposed algorithm is able to find a set of diverse
trade-off solutions in a reasonable running time. This
helps to decision-maker to choose one of them based
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Figure 6. A randomly obtained solutions for the workspace is shown in Figure 5. Each demand point is assigned to its closest opened
centre and showed by a red line. (a) solution for k = 5, (b) solution for k = 10, (c) solution for k = 20, (d) solution for k = 25 and (e)
solution for k = 40.

on the high-level information and parameters. However,
as a tool, it is possible to cluster the obtained solutions
in some (e.g. 3–5) clusters and choose a proper solution
(usually the centre of the cluster) from each cluster. The
other approach to choosing a solution from the obtained
solutions is choosing the knee point solution (Jurgen
et al., 2004), and Kalai- Smorodinsky solution (Gaudrie
et al., 2018; Kalai & Smorodinsky, 1975). Since it is out
of the scope of this paper, we do not further explain it
here and follow the evaluation of the algorithmwith some
benchmarks.

As the problem statement in this paper is new, there
are no well-defined benchmarks for it. The most sim-
ilar problem with benchmarks is available for the LRP.
So, in this part, we use such benchmarks and apply the
proposed algorithm to them. These problems are avail-
able at (http://sweet.ua.pt/sbarreto/_private/SergioBarre
toHomePage.htm; Baldacci et al., 2011; Harks et al.,
2013). They are some difficulties for the facility location
problemapproaches andLRP solvers.Weuse the position
of clients and potential facility location centres. Table 8
shows the number of clients and potential facility points

http://sweet.ua.pt/sbarreto/_private/SergioBarretoHomePage.htm
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Figure 7. Obtained non-dominated solutions for the benchmark Daskin95. (a) k-centre&TSP for k = 3, and (b) k-centre&TSP for k = 5,
(c) k-median&TSP for k = 3, and (d) k-median&TSP for k = 5.

Table 7. Benchmark instances.

Benchmark n: # of clients

m: # of
potential
centres k: # of centres

Running
Time

(Second)

Daskin95 150 10 3, 5 6, 9
Tuzun 200 20 5, 10 13, 18
Harks 10000 1000 300, 500 192, 267

in each benchmark. We run the proposed algorithm for
different numbers of k determined in the fourth column
of Table 7 on each benchmark for both the problems
k-centre&TSP and k-median&TSP. Further, the last col-
umn of the table shows the average running time of the
algorithm on each instance. Figures 7–9 show the nor-

malised objective values of the obtained non-dominated
solutions and a randomly selected solution for each prob-
lem. We ran the algorithm for the different number of
centres, k. Clearly, in all of the cases, the obtained solu-
tion fronts provide good trade-off sets. Each set provides
a smooth change of the objective values among the solu-
tions. For example, in Figure 7 (a), solutions 1, 4, and 7,
and in Figure 7(b) solutions 1, 2, and 5 represent solu-
tions that are most favourable from the client-side up to
the centre-side. Besides, in Figure 7 (d) there are signif-
icant improvements among the solutions 4, 5, and 6 on
the client-side while the objective values on the centre-
side change a little. There are similar cases in Figure 8



12 M. DAVOODI AND J. REZAEI

Figure 8. Solutions for the benchmark Tuzun (a) k-centre&TSP for k = 5, and (b) k-centre&TSP for k = 10, (c) k-median&TSP for k = 5,
and (d) k-median&TSP for k = 10.

and Figure 9. Therefore, considering the scale and type
of the cost and objective, one of them may be efficiently
selected by the decision-maker.

Finally, to compare the proposed algorithm, we imple-
ment a standard version of the robust and popular
Non-dominated Sorting Genetic Algorithm (NSGA-
II) (Deb et al., 2000). NSGA-II as a fast and effi-
cient algorithm has been extensively applied to many
intractable problems. We represent each chromosome

by a binary vector with size m and utilise a one-point
crossover operator. We always force the number of
opened centres to be exactly m in each chromosome. To
this end, we randomly close or open centres when a child
is generated by crossing bi-parent solutions. We also use
the exchangemutation operator with a probability 0.1. To
have a fair comparison in terms of the number of fitness
evaluations in both algorithms, we set the population size
to 40 and the number of generations to 100 and run them
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Figure 9. Solutions for the benchmark Herks. The connection between the clients and the centres are skipped anf the TSP tour is shown
with blue. (a) k-centre&TSP for k = 300, and (b) k-centre&TSP for k = 500, (c) k-median&TSP for k = 300, and (d) k-median&TSP for
k = 500.

on a randomly generated test problem with 1000 clients
and 50 potential facility centres with k = 10, 15, 20, 25.
Finally, to measure the efficiency of the algorithms we
apply the set coverage metric (scm), (Deb, 2001) to com-
pare the Pareto-optimality of the final obtained solutions,
and the spacing metric (sm) (Deb, 2001) to compare the
diversity goal. In each run, we separately compute the
set coverage metric and spacing metric. Tables 8 and
9 show the average values of the set coverage and the

spacing metrics, respectively. Based on these results, the
proposed algorithm outperforms NSGA-II in terms of
achieving solutions close to the Pareto-optimal solutions,
however, its running time is almost 1.2 times more than
NSGA-II’s running time. Based on the multi-objective
optimisation literature, NSGA-II is an efficient algorithm
for finding the Pareto-optimal solutions, however, the
obtained set of solutions by the proposed algorithm in
our study dominates the ones by NSGA-II. For example,
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Table 8. Average comparison results of 30 runs between NSGA-
II and the proposed algorithm under the set coverage metric.
A is the obtained non-dominated solutions by the proposed
algorithm and B is the obtained non-dominated solutions by
NSGA-II.

C(A, B) C(B, A)

k-centre&TSP k = 10 0.84 0.27
k = 15 0.82 0.18
k = 20 0.79 0.26
k = 25 0.85 0.19

k-median&TSP k = 10 0.81 0.22
k = 15 0.80 0.20
k = 20 0.77 0.27
k = 25 0.80 0.23

Table 9. Average comparison results of 30 runs between NSGA-II
and the proposed algorithm under the spacing metric.

Proposed Algorithm NSGA-II

k-centre&TSP k = 10 21.16 19.63
k = 15 25.81 26.16
k = 20 22.49 22.90
k = 25 26.08 24.35

k-median&TSP k = 10 23.34 20.95
k = 15 24.81 24.08
k = 20 19.26 21.27
k = 25 27.53 27.36

in case k = 10, 84 percent of the solutions obtained by
the proposed algorithm dominate the solutions obtained
by NSGA-II, while only 27 percent of the obtained solu-
tions byNSGA-II dominate the solutions by the proposed
algorithm. Note that, this does not mean the proposed
algorithm is strictly better than NSGA-II also for other
problems, but it shows that our proposed algorithm is
very well customised to the presented bi-sided facility
location problem with objectives k-centre and k-median
for the client-side and TSP for the centre-side of the
problem.

In general, based on the simulation results of the ran-
domly generated test problems, benchmarks and com-
parison with NSGA-II, it can be concluded the pro-
posedDelaunay triangulation heuristic search algorithm,
is simple to implement and efficient for both k-centre and
k-median objectives. Also, since it uses 3

2 -approximation
Christofieds algorithm for computing TSP tour, it effi-
ciently optimises the objective in the centre-side. Note
that 3

2 is a guaranteed factor in the worst-case and it is
much better in the average case.

7. Conclusion

Enhancing the efficiency and quality of service centres
and increasing the satisfiability and utility of the clients
are two important sides of designing service provider
systems. Numerous studies focus on either the clients

or on the centre side individually. We introduced a bi-
side optimisationmodel, called client-side and center-side
facility location, as a general framework to consider both
increasing the efficiency of service centres and increasing
the utility of the clients. It takes into account major
problems such as ‘Where to locate the centers?’ and
‘Which clients are assigned to which centers?’, and helps
decision-makers by providing a diverse set of solutions.
The model includes a wide range of well-known prob-
lems such as facility location, connected facility location,
vehicle routing, and location-routing problems as well
as other variations of these problems. In this paper, we
considered well-known problems k-median and k-centre
for the client-side and travelling salesman for the centre-
side of the model. Thus, two bi-objective optimisation
versions of the model, denoted by k-median&TSP and k-
center&TSP, were constructed. In addition to discussing
the complexity of the problems, we proposed an efficient
heuristic approximation algorithm to solve the problems.
The algorithm uses the geometric properties of the prob-
lem and it unlike heuristic algorithms does not need any
user predefined parameter. Finally, we test the algorithm
on randomly generated instances of the problems as well
as somebenchmarks. The results confirm the efficiency of
the algorithm in terms of finding a set of diverse trade-off
solutions and running time. Considering different prob-
lems in the real world and choosing different objective
functions for the client-side and centre-side of the model
are future extensions of this study.
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Appendices

Appendix (A)

4.1. Bi-objective optimisation and Pareto-optimal
solutions

While single-objective optimisation problemshave one optimal
solution, multi-objective optimisation problems have several
and possibly infinite optimal solutions, called Pareto-optimal
solutions. Let s and s′ be two (feasible) solutions to a multi-
objective optimisation problem.We say s dominates s′, if s is not
worse than s′ in all objectives, and also there is some objective
in which s is better than s′. Thus, for two solutions s and s′, three
cases may happen: (i) s dominates s’, (ii) s′dominates s, and (iii)
neither of s and s′ dominates the other one. In the third case,
s and s′ are called non-dominated solutions. Pareto-optimal
fronts are the image of all non-dominated feasible solutions in
the objective space. Finding all Pareto-optimal solutions is the
main goal of solving amulti-objective optimisation problem (as
we are not interested in dominated solutions). However, there
are problems such that the size of such solutions is exponential
in the size of the problem or even infinite in continuous search
spaces. Since reporting all of such solutions is inefficient, the
second goal in multi-objective optimisation is reporting a set
of Pareto-optimal solutions that are as diverse as possible in the
objective space (Deb, 2001).

A classical approach to solving a multi-objective optimisa-
tion problem is to convert it to a single-objective one aggre-
gating the objectives. To this end, we need to choose a prior-
ity weight for each objective and combine them into a single
weighted objective. So, different priority weights result in dif-
ferent Pareto-optimal solutions. There are three main issues in
this approach. First, in most real-world optimisation problems,
such priority weights are unavailable, and they depend on some
high-level information. Second, some Pareto-optimal solutions
cannot be found using this approach, e.g. when Pareto fronts
are non-convex (Coello et al., 2002). Third, if the objective
set represents independent problem-owners, there is a need to
find solutions that represent the tradeoff between the (conflict-
ing) preferences of different problem-owners. To tackle these
issues, several approaches such as multi-objective evolutionary
algorithms and other heuristic algorithms have been developed
in the last two decades. Most of these approaches work based
on the domination principle and try to explore the search space
using generating a random neighbour of a solution. Since such

algorithms work based on making a balance between explo-
ration and exploitation in the search space, unfortunately, their
efficiency depends on the parameters which are defined by the
user. For example, in the evolutionary algorithms, in addition
to the size of the population and the number of generations,
other parameters such as crossover and mutation rates need to
be predefined and tuned. Thus, proposing algorithms that have
the least number of parameters to solve multi-objective opti-
misation problems is valuable. In this section, we propose an
efficient heuristic approach based on the geometric facts in the
search space of the problem.

4.2. Voronoi diagram andDelaunay Triangulation

Voronoi Diagram (VD) is a well-known decomposition of the
space for a set of sites such as points, segments, or circles. In a
bi-dimensional space, it partitions the plane into a set of regions
such that the points that lie in each region have the same near-
est site. The diagram’s edges are the points with more than one
nearest site. So, each point in the plane is assigned to its near-
est site. Let C = {c1, c2, . . . , cm} be a set of k sites (i.e. points)
in the plane. The Voronoi region of each site, ci, denoted by
VRi, is a convex polygon such that all points that lie in it, are
closer to ci compared to the other sites of C. Formally,VRi =
{p ∈ R2 : d(p, ci) ≤ d(p, cj),∀j �= i}, where d(., .) is the distance
function. Voronoi Diagram (VD) is the boundary of Voronoi
regions, and it can be computed in O(m logm) time by a
sweep line algorithmnamed Fortune’s algorithm (de Berg et al.,
2008). Having VD, the nearest neighbour query is founded in
O(logm) time.

Delaunay Triangulation (DT) is the geometric dual of the
Voronoi diagram. It is constructed by connecting a line seg-
ment between any two neighbour sites in VD. It can also be
constructed directly by checking the empty circle property (de
Berg et al., 2008) between any three sites. That is, any three sites
ofC form a triangle of DT if and only if the (unique) circle pass-
ing through the three sites is empty, there is no other site that
lies interior of the circle. Figure 2 shows the Voronoi diagram
of 30 randomly selected sites and their corresponding Delau-
nay triangulation. For a set ofm given sites, DT is a planar graph
with at most 3m edges. Themaximum degree of each site in the
DT graph is O(m) in the worst case, however, it is constant on
average. Since in the problem FL&TSP each client is assigned
to its closest opened centre, we use DT as an efficient adjacency
structure to generate neighbours of a solution in the proposed
local search algorithm.

Let F be a set of m potential facility centres. Suppose C =
{c1, c2, . . . , ck} ⊆ F is a solution, a set of k opened centres, and
letDT(ci), i = 1, 2, . . . ,m, be the neighbours of the site ci in the
Delaunay Triangulation graph of F . A new random solution
C′ = {c1, c2, . . . , ci−1, c′i, ci+1, . . . , ck} can be simply obtained
using C by changing ci to a random non-opened centre c′i ∈
DT(ci). This relocation is a local change and can be handled effi-
ciently (Gowda et al., 1983). Let denote this simple process by
C′ = DTN(C).

4.3. Heuristic and approximation algorithms

When the size of a problem, e.g. the number of cities in TSP
or the number of clients and potential facilities in FL problems,
becomes large, there is no efficient algorithm to find the exact
optimal solution. More precisely, for the problems belonging
to the class of NP-hard, no polynomial-time algorithm has

https://doi.org/10.1016/j.jtrangeo.2014.12.002
https://doi.org/10.1016/j.tre.2021.102529
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been presented to find their optimal solution. While, most of
the optimisation problems arising in application areas such as
TSP, clustering, and FL problems are NP-hard. So, to handle
this issue, two general approaches have been suggested: heuris-
tic algorithms and approximation algorithms. Both of these
approaches are efficient in time but they find an approximation
solution instead of the optimal one. Heuristic algorithms are
popular and usually simple as a general framework to optimise
a function, however, they cannot guarantee the extent to which
the solution is near to the optimal solution, the final obtained
solution.

Heuristic approaches, such as evolutionary algorithms
(Davoodi & Mohades, 2011), particle swarm optimisation
(Guan et al., 2019), simulated Annealing (Redi et al., 2020),
meta-heuristics (DePuy et al., 2005) have been widely applied
to real-world optimisation problems such as facility location
(Hakli & Ortacay, 2019) and vehicle routing and TSP (Bajaj &
Dhodiya, 2023; Braekers et al., 2014). All of these approaches
are objective-based random search algorithms. They include
two general phases, exploring the search space and exploit-
ing the obtained solutions. They usually have an operator to
increase the rank of a solution with high fitness, and another
operator to generate a newneighbour solution using some solu-
tions. One of the main disadvantages of heuristic approaches is
that some predefined parameters need to be tuned by the user.
For example, the size of the solution population, termination
conditions, crossover and mutation rates in EA, or cognition
and social weights in Particle Swarm Optimization (PSO).

Approximation algorithms can guarantee that their obtained
solution is not worse than an approximation ratio α in com-
parison to the optimal solution of a problem. More precisely,
let 	 be a minimisation problem and Alg be an approximation
algorithm for 	. Also, let I be an instance of 	 with optimal
value opt(I). IfAlg(I) denotes the value of the obtained solution
by Alg for I, the approximation factor α(alg) is

α(Alg) = max
all valid instances I of	

Alg(I)
opt(I)

. (5)

Indeed, α(alg) shows the worst approximation factor of Alg
among all possible instances of the problem. So, it guarantees
the output solution of the algorithm is never worse thanα times
of the optimal solution (Williamson & Shmoys, 2011). There
have been a bunch of heuristic and approximation algorithms
for the TSP and FL problems, particularly for metric TSP, k-
median and k-centre problems discussed in this paper (see the
surveys Charikar et al., 2002; Laporte, 1992; Svensson et al.,
2020; Vazirani, 2013).

There are also so many heuristics and approximation algo-
rithms for many variations of TSP. While the TSP prob-
lem is not approximable in the general case, the Christofides
algorithm is a 3

2 -approximation algorithm for solving TSP in
metric space (Christofides, 1976). This algorithm first com-
putes a minimum spanning tree (MST) of the cities in the
problem and then inserts a minimum matching on the odd-
degree nodes of the MST. Consequently, it obtains a graph of
all even-degree nodes. Finally, it computes an Euler tour on the
graph. It may also use the shortcut edges in the metric space.
Since the optimal solution for TSP is always greater thanMST’s
length, and greater than half of the minimum matching, the
approximation ratio of the Christofides algorithm is 3

2 . More
details can be found in (Vazirani, 2013). The minimummatch-
ing can be computed in O(k1.5log5k) time in Euclidean space,

where k is the number of cities (Varadarajan 1998), and com-
puting MST and Euler Tour in the plane takes O(k log k) time
(Cormen et al., 2009; Shamos & Hoey, 1975). So, the complex-
ity time of the Christofides algorithm is O(k1.5log5k). Recently,
Karlin et al. (Karlin et al., 2020) succeed in slightly improving
this bound to 3

2 − ε for ε > 10−36. Also, different variation of
TSP including Multimodal Multiobjective variation (Liu et al.,
2023) and a minimax multiple depots variation (He & Hao,
2023) have been studied recently.

To solve a problem using heuristic algorithms, two prereq-
uisites are needed, first represent each solution of the problem
as a well-defined structure, and second, define an evaluation
method for each structure (or at least a method to compare
two structures). So, they are simple and general purpose. To
enhance their efficacy, it is necessary to customise them using
facts and observations in the search space of the problem. In
the next section, we propose a new heuristic approach based on
the Delaunay triangulation. Our algorithm has not had many
parameters to tune by the user. It also applies approximation
algorithms for TSP and k-centre in generating solutions. This
helps the algorithm benefits from approximation algorithms’
advantages as well.

Appendix (B)
TheoremA.1: In the problem of k-median&TSP, the number of
Pareto-optimal solutions in the worst case is�(2p), where p is in
order of the problem’s size.

Proof: The idea behind the proof is to construct an instance of
the problem with n demand points that contains at least �(2p)
Pareto-optimal solutions, where p = O(n). �

Definition A.1: Let gadget(i) be a set of 6 demand points
located on the positions (2Li, 0), (2Li, L), (2Li, L + 2i),
(2Li + L, 0), (2Li + L, L), (2Li + L, L + 2i), and 8 potential facil-
ity points located on the positions (2Li, 0), (2Li, L), (2Li, L + 2i),
(2Li + L, 0), (2Li + L, L), (2Li + L, L + 2i),

(
2Li + L

2 ,
L
2
)
,(

2Li + L
2 ,

L
2
)
, where L is a sufficiently large positive value (see

Figure 3).
There are at least two different ways to solve the k-

median&TSP problem for a gadget(i) with k = 6. We may pick
the facility centres (2Li, L + 2i) and (2Li + L, L + 2i) or not. If
we pick them, we call such a structure an active gadget, other-
wise, we call it an inactive gadget. See Figure 3. Let denote the
objective value for k-median (sum of the distance between the
clients and centres) with F1, and the length of the TSP tour with
F2. So, for an inactive gadget(i), F1 = 4 and F2 = 2 ∗ 2i while
for an active gadget(i), F1 = 0 and F2 = 4L + 2 ∗ 2i. Therefore,
F1 + F2 = 4L + 2 ∗ 2i.

Now, we are ready to show aworkspace containing p gadgets
gadget(0), gadget(1), . . . , gadget(p) with a large value L > 2p.
For k = 6p, we have two extreme Pareto-optimal solutions, the
solution with minimum TSP tour and the solution with mini-
mum k-median value. Figure 4 shows such a workspace for p =
3 and the two extreme Pareto-optimal solutions. If all the gad-
gets are active, we find the Pareto-optimal solution F1 = 0 and
F2 = 4pL + 2

∑p
i=0 2

i, while if all the gadgets are inactive, we
find the Pareto-optimal solution and F1 = 2

∑p
i=0 2

i and F2 =
4Lp. Also, for constructing the other Pareto-optimal solutions,
we can activate or inactivate gadget(i), for i = 1, 2, . . . , p. Note
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that, the value F1 + F2 = 2
∑p

i=0 2
i + 4pL holds for all such

solutions. Therefore, if s1 and s2 are two different such solu-
tions, since F1(s1) + F2(s1) = F1(s2) + F2(s2), so they have
different values of the objectives; consequently, they are non-
dominated. On the other hand, it is straightforward to show by
induction on p, there is no solution s such that F1(s) + F2(s) <

4pL + 2
∑p

i=0 2
i. Consequently, by activating or inactivating

the gadgets it is possible to have�(2p) different Pareto-optimal
solutions. �

Appendix (C)
Table 1 shows the time complexity of the proposed algorithm in
the worst and expected cases. As can be seen, the bottleneck of
the algorithm is computing the objective functions, the length
of TSP tour and k-centre or k-median objective values. In Step
2, we compute VD and 3

2 -approximated TSP tour for a solution
of k centres. As mentioned before, Christofides algorithm for k
cities runs in O(k1.5log5k) time in the Euclidean space in Step
2(a). Running it for allN solutions takesO(N(k1.5log5k)) time.
In Step 2(b) VD can be computed inO(klogk) time. Having the
VD, helps to demand points takes O(logk) time. So, comput-
ing the nearest centre for all demand points needs to O(nlogk)
time together. So, Step 2(b) takes O(N(klog k + nlog k)) time
for all N solutions. Note that Step 1 and Step 2 run just one
time in the algorithm, and Step 3 and step 4 iterateM times. As
explained above, generating new solutions is simply performed
usingDelaunay triangulation and the procedure of reducing the
size of the population from 2N to N can be done in O(NlogN)

time. Therefore, the most critical step is to compute objec-
tive values of generated solutions which iterates MN times in
general. Notably since each solution C′ is constructed locally
(changing between two neighbouring potential facilities inDT)
using a solution C, we can also obtain (update) objectives value
of C′ using objective values of C instead of re-computing. To
this end, note that the degree of each vertex in DT (or the
number of neighbouring cells) is 6 on average. Besides, the
nearest opened centre of O

( n
k
)
demand points are changed in

the expected case. So, the objective value F1(C′) can be com-
puted in O(n) time in the expected case. Similarly, updating
MST, minimum matching and Euler tour using the depth-first
search idea results in O(k) expected 3

2 -approximated TSP tour
for C′.

The size of the search space in the problem of FL&TSP is

O
(
k!

(
m
k

))
. Indeed, there are

(
m
k

)
choices for pick-

ing k centres from m centres and each of them has k! possible
TSP tours. So, we tune the number of solutions (N) and the
maximum number of iterations (M) concerning k andm. That
is, the number of demand points does not play a role in the
value of N and M. Clearly, increasing N and M increases the
probability of achieving real Pareto-optimal solutions, how-
ever, it also increases the complexity time of the algorithm.
This issue always happens in heuristic search algorithms and
there is a trade-off between the efficiency and complexity of
such algorithms. On the other hand, when a population con-
vergence, it (almost) does not progress anymore. So, there
needs to have a balance between the size of the population
and the number of generations. Thus, as a strong sugges-
tion and to let the algorithm be user-defined parameter-free,

we set N ∼= 2(m + k) and M ∼= km. This setting is based on
our simulation results, and such a setting works efficiently
in general and achieves admissible solutions in a reasonable
running time.

Most of the popular heuristic search algorithms such as
Genetic Algorithm (GA) and PSO are population-based algo-
rithms, that is, a set of solutions have been initialised and an
operator, e.g. crossover, tries to explore the search space by
generating a new solution, called child, using randomly com-
bining two or more solutions, called parents. In the proposed
algorithmwe have a set of solutions but exploration or generat-
ing a new solution is just based on one solution, say a parent
slightly evolves to a child. So, in this regard, our proposed
algorithm is an individual-based algorithm. However, we use
the power of population information for enhancing exploita-
tion, that is, in each iteration, only half of the combined parents
and child solutions survive considering their fitness value in the
population.

The proposed algorithm involves two main phases, explo-
ration and exploitation. Step 3 is a smooth local exploration
using connectivity information in the search space of the prob-
lem. We may image the search space of the problem as an
m-vector in a binary m-dimensional space. Each feasible solu-
tion is a 0\1 vector with lengthm that contains exactly k entries
1. Generating a new solution C′ using DTN(C) in Step 3, is
exploring a new solution in the search space. TheHamming dis-
tance betweenC′ andC is exactly 2. So, this is a local search that
smoothly results in a global search. Note that, we always admit
C′ as a new solution in the population, even if it is dominated
by C or any other solution. Indeed, one greedy way to gener-
ate a new solution is generating a solution that is not worse
than C, that is, at least it is not dominated by C. Based on
our simulation results and theories in the literature of heuristic
algorithms, it is better to letC′ survive even if it is dominated by
C. This idea helps to escape from the local optima and to per-
form a global search.However, for applying exploitation, we use
a non-dominated sorting procedure in Step 4 and pick half of
the solutions. This method lets us implement a global elitism
strategy in each iteration of the algorithm.

Note that, the idea of VD is useful for both k-median&TSP
and k-centre&TSP problems. Also, the proposed algorithm can
be extended easily to weighted demand points. Weight on the
demand point just affects the second objective and the length of
the TSP tour remains unchanged. So, this can be automatically
handled when we compute the second objective value without
increasing the complexity time.

The proposed algorithm is a bi-objective algorithm inher-
ently. However, it can be extended for one or more than two
objectives. For example, we might be interested to find Pareto-
optimal solutions of a three-objective optimisation problem
with objectivesmin-sum andmin-max in the client-side simul-
taneously (Roostapour et al., 2016). Also, as mentioned before,
if in some applications priority weights among the objectives
provided by the decision-maker, wemay convert the problem to
a single objective optimisation using a weighted linear aggrega-
tion of the objectives. The only difference, in this case, is that the
non-dominated sorting procedure in Step 4(a) reports a sorted
list of 2N solutions concerning their combined objective value,
and N bests of them will easily be selected for the next gener-
ation in Step 4(b). So, the proposed algorithm is adaptable for
such priority weights as well.
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