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Abstract: Model-based fault diagnosis for dynamical systems is a sophisticated task due to
model inaccuracies, measurement noise and many possible fault scenarios. By presenting faults
in terms of a dictionary, the latter obstacle is recently addressed using well-known techniques for
recovering sparse information (e.g. lasso). However, current state-of-the-art methods still require
accurate models and measurements for adequate diagnosis. In our contribution we address the
problem of data-driven fault diagnosis in the sense that the model of the linear time-invariant
system is unknown in addition to the fault. Moreover, our aim is to diagnose (concurrent) faults
while only having input/output data and the fault dictionary. This implies the user simply
plugs in the data and specifies the set of possible faults in order to know the active faults
together with an estimate of the dynamic model. The problem is formulated within a blind
system identification context resulting in computationally efficient solutions based on convex
optimization.
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1. INTRODUCTION

With the developments of Industry 4.0 inducing increased
dependence on complex automated systems, it is of crucial
importance to recognize abnormalities in early stages of
the process. A survey conducted under IFAC Industry
Committee members reports the field fault detection and
identification within the top-three of control technologies
with high future impact (Samad et al., 2020). Model-based
fault diagnosis methods depend on accurate models, which
are not available for complicated industrial processes (Gao
et al., 2015b). Likewise, signal-based techniques rely on
matching output data with known features (Gao et al.,
2015a), which is deficient for timely recognizing faulty
behavior in complex systems with varying inputs. Al-
ternatively, there is a vast literature that agrees that
knowledge-based fault diagnosis techniques, to be defined
in the next paragraph, are the solution to monitoring
large-scale industrial systems (Venkatasubramanian et al.,
2003; Isermann, 2006; Dai and Gao, 2013; Yin et al., 2014;
Ding, 2014; Gao et al., 2015b; Heirung and Mesbah, 2019;
Simani, 2021).

Knowledge-based fault diagnosis techniques use large
amounts of historical data for extracting features impor-
tant for discrimination between different operating con-
ditions. For its use of large amounts of data, this group
of techniques is often referred to as data-driven (Dai and
Gao, 2013; Yin et al., 2014; Ding, 2014; Gao et al., 2015b;
Simani, 2021). However, these techniques can be effec-
tively partitioned into a (data-based) model acquisition
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phase (for instance neural network training or parameter
estimation in dynamical models) and a model-based fault
diagnosis phase. Therefore, the term data-driven imply-
ing the absence of a model, may be misleading. Fur-
thermore, knowledge-based techniques generally require
labeled data, which can only be acquired when it can be
assured the system is in a certain operating condition.

The purpose of this paper is to introduce a true (model-
free) data-driven fault diagnosis approach, which only re-
quires input/output data and the fault dictionary in order
to diagnose (concurrent) faults in a linear time-invariant
system. Our data-driven approach does not require histor-
ical data of any operating condition acquired at separate
time periods prior to conducting diagnosis. It identifies
simultaneously a model of the underlying system dynamics
plus the active faults. This requires the considered data to
be persistently exciting. The particular requirements on
the input in relation to the fault dictionary information
will be studied in a future extended variant of this pa-
per. For now, we simply assume these requirements are
satisfied. The sparseness assumption entails only a small
number of faults can be active simultaneously out of a
large set of possible faults, which is valid for a large subset
of typical fault diagnosis problems.

Our proposed approach is computationally efficient based
on convex optimization solutions recently proposed for
restricted variants compared to this paper, namely in
Zhang (2021) where a full model is assumed to be a priori
available, and in Scobee et al. (2015) where fault-free data
is assumed. The approach in Chen (2017) deals with a
similar problem, however is only devoted to detecting the



presence of a fault without selecting the fault at hand from
the dictionary. In this contribution, we are also able to
diagnose the active faults together with their magnitude.

The manuscript is organized as follows. Sect. 2 presents
the methodology, starting with Sect. 2.1 introducing the
structured data matrices and Sect. 2.2 recapping the
method of Zhang (2021) for model-based fault diagnosis,
neglecting the effect of the initial state. This negligence is
based on developments in subspace identification (Chiuso,
2007; Verhaegen and Verdult, 2007). The proposed data-
driven approach to fault diagnosis is presented in Sect.
2.3. Afterwards, the approach is evaluated in multiple
simulation experiments in Sect. 3. Conclusions are drawn
in Sect. 4.

2. METHODOLOGY

Consider the observer for a multivariable linear time-
invariant system (Verhaegen and Verdult, 2007):

x̂(k + 1) = (A−KC)x̂(k) +Bu(k) +Ky(k)

ŷ(k) = Cx̂(k)
(1)

with estimated state x̂(k) ∈ Rnx , input u(k) ∈ Rnu and
estimated output ŷ(k) ∈ Rny . Using this model, we can
write the estimated output ŷ(k) as:

ŷ(k) = C(A−KC)sx̂(k − s)

+

s∑
i=1

C(A−KC)i−1
(
Bu(k − i) +Ky(k − i)

)
(2)

If the system is detectable and K is designed such that
A − KC is asymptotically stable, the effect of the state
x̂(k − s) decreases to zero for increasing s. This leads to
the following approximate Vector Auto-Regressive model
with eXogenous input (VARX):

ŷ(k) ≈
s∑

i=1

Biu(k − i) +

s∑
i=1

Kiy(k − i). (3)

The matrices Bi and Ki of compatible size refer to the so-
called observer Markov parameters (Phan and Longman,
1996). The VARX model description covers a wide range
of multiple-input multiple-output (MIMO) systems and
is studied comprehensively in Lütkepohl (2005); Chiuso
(2007).

2.1 VARX model identification

To introduce the structured data matrices, we first con-
sider the fault-free identification problem. It should be
noted that this step is not required for the execution of
the proposed approach introduced later, however essential
for building up the relevant knowledge.

Regard the available information

[u(k) u(k + 1) . . . u(k +N − 1)] ,

[y(k) y(k + 1) . . . y(k +N)] .

Then with

Y =


y⊤(k + s)

y⊤(k + s+ 1)
...

y⊤(k +N)

 , B =


B⊤

1

B⊤
2

...

B⊤
s

 , K =


K⊤

1

K⊤
2

...

K⊤
s

 , (4)

and the Toeplitz matrices

Tu =


u⊤(k + s− 1) u⊤(k + s− 2) . . . u⊤(k)

u⊤(k + s) u⊤(k + s− 1) . . . u⊤(k + 1)
...

...
. . .

...

u⊤(k +N − 1) u⊤(k +N − 2) . . . u⊤(k +N − s)



Ty =


y⊤(k + s− 1) y⊤(k + s− 2) . . . y⊤(k)

y⊤(k + s) y⊤(k + s− 1) . . . y⊤(k + 1)
...

...
. . .

...

y⊤(k +N − 1) y⊤(k +N − 2) . . . y⊤(k +N − s)


(5)

the following least-squares problem aims at finding the
system parametersB andK for the 1-step ahead predictor:

min
B,K

∥∥∥Y − [Tu Ty]

[
B
K

] ∥∥∥2
F
. (6)

The solution to this problem is unique if the matrix [Tu Ty]
has full column rank. This condition requires the input to
be persistently exciting (Verhaegen and Verdult, 2007).

2.2 Model-based fault diagnosis under sparseness
assumption

Suppose now that the input term consists of a known
element µ(k) ∈ Rnµ and unknown fault d(k) ∈ Rnd . Then
we can substitute in (1):

Bu(k) =
[
B̃ F

] [µ(k)
d(k)

]
. (7)

Furthermore, the fault can be modeled as

d(k) = θ(k)z (8)

with θ(k) ∈ Rnd×nz a dictionary of known fault scenarios
(patterns) and z ∈ Rnz their corresponding weighing
terms. For example, the dictionary θ(k) can represent
sinusoidal, triangular or square waveforms with various
frequencies, unit steps with various starting points, or
user-defined fault progressions.

As confirmed in Zhang (2021), the diagnosis of additive
faults in the framework of (1), (7) and (8) is widely studied
(see e.g. Basseville and Nikiforov (1993), Blanke et al.
(2006), Ding (2013)), both for time-invariant and time-

variant systems with known system matrices A, B̃, C, F
and K. Whereas conventional approaches only permit a
small number of possible faults nz, Zhang (2021) proposes
a computationally efficient method to diagnose from a
large set of possible faults. Neglecting the effects of initial
condition (given the fact that A − KC is asymptotically
stable (Chiuso, 2007; Verhaegen and Verdult, 2007)) the
approach in Zhang (2021) can be (accurately) approxi-
mated as follows.

Let F and B̃ be constructed from F and B̃ similarly to B
from B in (4). Consider the Kronecker product

F(z) = F⊗ z (9)

and the Toeplitz matrices Tµ and Tθ constructed as Tu in
(5) with all elements u⊤(k) replaced respectively by µ⊤(k)
and vec(θ⊤(k))⊤, such that the VARX approximation
becomes

Y ≈ [Tµ Tθ Ty]

 B̃
F(z)
K

 . (10)



With the sparseness assumption on z entailing only a small
number of faults is active simultaneously, this results in a
lasso optimization problem:

min
z

∥∥∥Y − [Tµ Ty]

[
B̃
K

]
− TθF(z)

∥∥∥2
F
+ λ∥z∥1 (11)

with F(z) given in (9). This approach has shown good
performance on both time-invariant and time-variant sys-
tems by Zhang (2021), where also the (negligible) effect of
the initial condition is taken into consideration. However,
this method is sensitive to the provided model parameters
which may be erroneous or inaccurate. Furthermore, in
some cases the fault has already occurred before the model
parameters are identified. This motivates the development
of a (‘true’) data-driven approach to fault diagnosis.

2.3 Data-driven approach to fault diagnosis

In our case of data-driven fault diagnosis the system
matrices B̃, K and F are unknown in addition to the
fault(s). This implies (11) becomes a bilinear optimization
problem, which is computationally expensive due to its
nonconvexity. However, from F(z) it is possible to derive
the matrix

F∗(z) = vec
(
F⊤) z⊤ (12)

which has rank one (Scobee et al., 2015). Besides, the
variable F(z) has by construction in (9) a degree of sparsity
(defined as the ratio of nonzero components) equal to that
of z. As a result, the bilinear optimization problem can be
replaced by the rank-constrained minimization problem

min
B̃,F(z),K

∥∥∥Y − [Tµ Tθ Ty]

 B̃
F(z)
K

∥∥∥2
F

+ λ∥F(z)∥1,1

s.t. rank
(
F∗(z)

)
= 1.

(13)

Note that in contrast to (11) where z is the optimization
variable, in (13) the quantity F(z) is an explicit optimiza-
tion variable. The solution of F and z can be found up to
a multiplicative scalar from singular value decomposition
of F∗(z). Problem (13) can be relaxed to a convex opti-
mization problem by replacing the rank constraint with an
additive weighted nuclear norm to the objective function.
The eventual unconstrained convex optimization problem
is then

min
B̃,F(z),K

∥∥∥Y − [Tµ Tθ Ty]

 B̃
F(z)
K

∥∥∥2
F

+ λ1

∥∥∥F∗(z)
∥∥∥
∗

+ λ2∥F(z)∥1,1.
(14)

Like optimization problem (6), the solution to B̃, F(z) and
K is unique if the matrix [Tµ Tθ Ty] has full column rank.
This is now a condition on the persistency of excitation
of the joint input (µ⊤(k), vec(θ⊤(k))⊤). However, due to
the regularization terms, full column rank of [Tµ Tθ Ty] is
not a necessary condition for uniqueness of the solution to
(14).

The faults can be isolated using (14) only, however their
magnitudes will be biased toward zero due to the addi-
tional penalties to the least-squares term. Also, the iden-
tified VARX matrices B̃ and K may be affected by the

bias in F(z). For refined estimation of the fault magnitudes
and system parameters, a second optimization without the
1-norm can be performed over the nonzero elements of ẑ
found in (14). In practice, this means that the components
of the dictionary θ(k) and the weighing variables z in (7)
are in the second optimization neglected according to the
‘zero’ (in practice below a threshold) elements of ẑ found
in the first optimization, and in the second optimization
λ2 = 0.

The choice of the tuning parameters may be nontrivial.
However, it can be deduced that a rank one solution is
encouraged by increasing λ1, and the sparsity of z by
increasing λ2. A possible tuning strategy is to set λ2 to
zero first and tune λ1 such that the predictor performance
of (3) (for instance calculated as Variance Accounted For
(VAF)) with parameters found in (14) is optimized on a
validation data set. While fixing λ1 to the value found in
the first step, λ2 can be adapted gradually by optimizing
the performance of (3) on validation data, with parameters
found in (14) after refinement.

3. RESULTS

The simulation results will be presented in three parts.
First, the isolation performance of (14) is evaluated under
varying conditions. Also the timing results are analyzed
in this part. The second part consists of estimating the
fault magnitudes and system parameters after reducing
bias induced in (14) in the refinement step. The third part
compares isolation rates with the model-based approach in
(11) based on Zhang (2021) in case of model inaccuracies.

The simulation experiments are performed using an ex-
ample from Zhang (2021), restricted to a time-invariant
system with known inputs except for the faults. The state-
space representation is given as

x(k + 1) = Ax(k) + Fθ(k)z + w(k)

y(k) = Cx(k) + v(k)
(15)

detectable with (unknown) system matrices

A =

[−0.8 0.7 0.1
−0.6 0 0.1
0 −0.5 −0.4

]
, C =

[
1 0 0
0 0 1

]
, F = I3

and w(k) and v(k) zero-mean white noise sequences with
covariance I3 and 0.5I2, respectively. The fault dictionary
θ(k) ∈ R3×50 is generated element-wise from a uniform
distribution within [−17.3, 17.3], and the fault parameter
vector z ∈ R50 consists of zeros with randomly drawn
entries set to one. With a sample size of N = 100 and
VARX model order s = 3, the Toeplitz matrix Tθ ∈
R98×450 is far from having full column rank. Optimization
problem (14) is solved using CVX (Grant and Boyd, 2014).
Each simulation experiment is run 100 times for statistical
evaluation.

3.1 Fault isolation rates

The rates of successful fault isolation for a varying number
of active faults are presented in Fig. 1. The isolation
is regarded successful if each nonzero component of ẑ
satisfying |ẑ| > ϵ∥ẑ∥∞ with ϵ = 10−2 is diagnosed
while the other components are not, i.e. no misdetection
nor overdetection. For up to four simultaneous faults,



the algorithm diagnosed the faults without misdetections
nor overdetections, even while many columns of Tθ have
linear dependence. For increasing numbers of simultaneous
faults, the validity of the sparseness assumption weakens,
resulting in decreasing detection performances.

With increasing measurement noise, Fig. 2 shows the
performance of the data-driven algorithm in the case of
three simultaneous faults. Even in the case of very small
signal-to-noise ratios (SNR) around 3 dB, the algorithm
is able to diagnose the three faults correctly for a part of
the realizations. Furthermore, Fig. 3 shows even in case of
low SNR of 3.58 dB, a high performance can be achieved
by increasing the number of measurements.

The timing results are shown in Fig. 4 and 5. Optimization
(14) is computationally efficient for being convex and
unconstrained. The computational time – based on an
implementation using CVX version 2.2 in Matlab R2021a
on an Intel i7-9750H CPU – appears to increase linearly
with respect to the sample size N within the considered
domain, however nonlinearly with respect to the VARX
model order s. The exact operation count for solving the
data-driven fault diagnosis problem will be studied in a
future extended variant of this paper.

3.2 Estimation of fault magnitudes and system parameters

As stressed before, the additional penalties in (14) cause a
bias in the estimations of F(z). Hence, a second (refining)
optimization similar to (14) but over the elements of ẑ
determined as nonzero in the first step, and with λ2 = 0
is performed in order to refine the estimation of fault
magnitudes and system parameters.

Since the data-driven diagnosis problem is originally bilin-
ear, naturally the results F and z can only be found up to a
multiplicative scalar. Therefore, instead of solely analyzing
ẑ, the combined estimated magnitude of F̂ and ẑ is verified
by comparing the model output ŷ(k) with the noise-free
system output Cx(k) through the Variance Accounted For
(VAF) as defined in Verhaegen and Verdult (2007).

In a single experiment under the latter conditions in Fig.
3 (N = 220), optimization problem (14) results in a
VAF on validation data of 61.7% and 65.7% for the two
outputs, respectively. The successive refinement results in
the VAF being increased to 92.1% and 91.8% for the two
outputs, respectively. Fig. 6 presents the corresponding
signals belonging to the first system output. It can be
confirmed that the refined estimation follows the noise-
free system output better and also allows larger signal
magnitudes.

From this we can conclude that simultaneously to diagnos-
ing faults, the proposed approach is also able to identify
the system parameters. The obtained model parameters
can be used afterwards to continue with model-based fault
diagnosis and/or to design a suitable controller for refer-
ence tracking and disturbance rejection.

3.3 Comparison of data-driven and model-based approach

As mentioned earlier, the proposed data-driven approach
in (14) does not require the model parameters in order
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Fig. 1. Successful isolation rate against number of active
faults. The results are generated using (14) with λ1 =
1.5× 103 and λ2 = 2× 103.
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Fig. 2. Successful isolation rate against variance of mea-
surement noise (corresponding average SNRs indi-
cated) in the case of three active faults. The results are
generated using (14) with λ1 = {2, 2, 5, 5, 7, 10}× 103

and λ2 = {2, 10, 12, 12, 12, 12}×103 chosen separately
for each noise condition.
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Fig. 3. Successful isolation rate against sample size
N in the case of three active faults with SNR
3.58 dB. The results are generated using (14) with
λ1 = {5, 10, 10, 10, 15, 15, 20} × 103 and λ2 =
{12, 15, 15, 17, 17, 17, 17} × 103.
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Fig. 4. Timing results of optimization (14) against sample
size N corresponding to the experiment in Fig. 3. The
computations were performed using Matlab R2021a
with CVX version 2.2 on an Intel i7-9750H CPU.
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Fig. 5. Timing results of optimization (14) against model
order s with sample size N = 100.
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Fig. 6. Noise-free first system output and its estimations
after (14) and the refinement in a validation experi-
ment, for a realization of three active faults, SNR 3.58
dB and sample size N = 220.

Table 1. Successful isolation rate in case the
true system deviates in the left-upper element
of A with addition ε. The model-based ap-
proach optimizes (11), and the data-driven ap-

proach (14).

Model error ε 0.0 1.0 2.0

Model-based (Zhang, 2021) 100% 94% 1%
Data-driven (this paper) 100% 100% 100%

to diagnose the faults. The model-based approach from
Zhang (2021), on the other hand, does require an accurate
model. In the following experiment, the performances of
both approaches are tested in the case when the true
system parameters deviate from the model in (15). The
conditions and parameters in (14) are equivalent to those
in Fig. 1 in the case of three active faults.

For implementing the model-based approach in (11), the
model (15) is approximated by a VARX-model using (2)
with K the Kalman gain, and the model order s = 8
chosen such that (A−KC)p ≈ 0 for all p ≥ s. The tuning
parameter λ = 20× 103 is chosen for optimal performance
in the case of perfect knowledge of the system parameters.

The results are shown in Table 1. Whereas the performance
of the model-based approach degrades for increasing model
error, the proposed data-driven approach maintains its
accurate diagnostic performance.

4. CONCLUSIONS

This paper introduces a novel model-free data-driven ap-
proach to fault diagnosis for which historical data of
any operating condition is not required. By providing
input/output data and the dictionary of possible additive
faults, the approach is able to diagnose the active faults
together with the VARX matrices using convex optimiza-
tion. Simulation results show its diagnosis performance for
a varying number of active faults, measurement noise and
sample size. The second step of the approach reduces the
bias in estimation of fault magnitudes. The resulting diag-
nosis and system identification can be used for performing
model-based fault diagnosis and/or designing a suitable
controller for reference tracking and disturbance rejection.
The latter is subject for later study.

Further research is planned at extending the presented ba-
sic (elementary) solution for linear time-invariant systems
given in this paper for handling two practically highly
relevant conditions. First, it is aimed at handling linear
systems for which the parameters vary over time. Second,
the data-driven methodology should be extended to the
case when active faults (dis-)appear during operation.
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