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Abstract— Demand Response (DR) programs offer flexibility that 

is considered to hold significant potential for enhancing power 

system reliability and promoting the integration of renewable 

energy sources. Nevertheless, the distributed nature of DR 

resources presents challenges in developing scalable optimization 

tools. This paper explores a novel data-driven approach in which 

DR resources are modeled through their aggregate forecasts 

using Inverse Optimization. The proposed method utilizes 

historical price-consumption data to deduce DR price-response 

behavior via a flexibility curve. The model is assessed within the 

Belgian single imbalance market context, where a Balance 

Responsible Party (BRP) employs the inferred flexibility curve to 

optimize its strategic imbalance positions by managing DR 

resources through suitable real-time price signals. The accuracy 

of the estimated flexibility provided by the proposed algorithm is 

evaluated by comparing it with the XGboost method. The results 

demonstrate that the model can effectively capture DR behavior 

and generate profit from providing balancing energy. 

Index Terms-- Implicit demand response, Single Imbalance 

Market, Inverse Optimization, Short-term Forecasting 

NOMENCLATURE 

Sets and Indices � Set of time steps in study horizon, indexed by � ℬ Set of demand response consumption blocks, indexed by � ℳ���
 Set of price-demand scenarios for time �, indexed by 	 ℛ�/
 Set of upward (+)/downward (-) regulation bids, indexed by ��/�

Parameters and Constants ����
 Energy price at time � (€/MWh) ���/

 Indicator binary value for system imbalance ����
 Scheduled day-ahead consumption at time � (MW) ���/�,� 

 Upward (+)/Downward (-) activation price of reserves of bid ��/�
at time � (€/MWh)  ���/�,�

 
 Maximum upward (+)/downward (-) regulation energy of bid ��/� at time � (MW) ��� � System Imbalance at time � (MW) ��,� Willingness-to-pay of DR resources for energy block � at time �

(€/MWh) 
 ���� ���� 

Estimated maximum/minimum power consumption of DR 
resources at time � (MW) 

��,� The maximum energy of block � at time � (MW) ��, ��,!"#
 DR demand scenarios of time � scenario $ (MW) 

��, ��,!"#
 Price signal scenarios sent to DR at time � scenario $ (€/MWh) %  Weight of each price-demand scenario $ & Large positive number 

  

Variables ∆(�) ��/
 Upward/Downward balancing energy provided by the BRP at time � (MW) ����

 Consumption of the DR resources at time � (MW) ��!*
 Imbalance price at time � (€/MWh) ����
 Energy price sent to DR resources at time � (€/MWh)  	��/�,� 

 Activated upward (+)/downward (-) regulation energy of bid ��/�
at time � (MW) (�,���

 Activated consumption of the DR resources for energy block � at 
time � (MW) 

I. INTRODUCTION 

In the quest towards a decarbonized energy supply, 
renewable energy resources (RESs) have experienced 
significant growth. However, their intermittent nature 
necessitates scheduling adequate flexible resources, including 
those on the demand side [1]. Demand response (DR) resources 
can be categorized into two groups based on their control 
interface and commitment: Explicit DR (EDR) resources [2], 
such as industrial loads, which are activated through direct 
control signals and have a contractual obligation to adjust their 
setpoints accordingly; and Implicit DR (IDR) resources, like 
small-scale residential loads, which voluntarily modify their 
consumption in response to market prices, taking into account 
their objectives and constraints without any commitment [3]. 
Mass mobilization and coordination of small-scale price-
responsive loads through an aggregating entity can provide 
significant flexibility in the electricity system and promote 
system reliability [4]. For instance, their flexibility can be 
valorized in balancing markets to provide balancing energy to 
the network while reducing the energy bills of the participating 
DR resources [5]. However, the effective integration of IDR 
through price-based coordination remains a challenging task 
because the response of the IDR resources can only be 
measured ex-post after the clearing price of the market has been 
communicated to them. This coordination sequence can result 
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in system volatility as the size of the IDR resources grows, 
making it necessary for the aggregating entity to develop 
behavioral models for the IDR [6]. 

Various methods have been explored in the literature for 
modeling demand flexibility. The authors in [7] employed a 
scenario-based approach to assess demand-side capacity 
participation in the reserve market. Similarly, the research in [8] 
explored the effects of strategic aggregator participation by 
leveraging demand response providers in the day-ahead market 
using a scenario-based chance-constrained model. These 
approaches require substantial computing power for generating 
scenarios to solve the resulting stochastic problem, which limits 
their use in time-sensitive applications. To combat this 
problem, data-driven models for price-demand elasticity have 
been proposed in the literature. To this end, in [9], the authors 
propose using Inverse Optimization (IO) to forecast the 
aggregate price-response behavior of a cluster of price-
responsive loads by recasting their flexibility as market bids 
characterized by a set of energy blocks and corresponding 
utility functions. In [10], the authors extend the previous study 
to map the price response of a pool of electric vehicles in the 
form of a bid/offer curve. However, these studies only focused 
on the forecasting task and did not investigate the market 
participation of the IDR. 

In order to bridge the gap between the forecasting task and 
the decision-making task, the authors in [11] propose a 
modified deep learning and reinforcement learning method to 
calculate the best incentive rates for DR at each hour to 
maximize the profit of the energy service provider. Similarly, 
the study in [12] proposes an integrated forecast and decision-
making tool for DR in residential distribution networks. While 
these methods can effectively capture the demand response 
behavior, they necessitate the complete replacement of the 
decision-making optimization problem, which restricts their 
application and integration into existing power system studies. 

Aiming to develop interpretable DR models, another line of 
research has emerged, focusing on DR behavior estimation 
using IO. In [13], the authors propose a data-driven approach 
for predicting price-responsive DR behaviors, incorporating 
prior model knowledge and using a gradient descent method to 
determine the best-fitting model parameters based on the 
historical price and response data. Similarly, in reference [14], 
DR behavior prediction is transformed into a quadratically 
constrained quadratic program and solved through successive 
linear programming. However, both studies primarily 
concentrate on modeling DR behavior without addressing its 
integration into market decision-making processes. 

This paper builds upon the work in [9] and [14] to propose 
a novel data-driven IO framework that uses the past price-
consumption data to infer the price-response behavior of the 
IDRs in the form of a flexibility curve characterizing IDR 
consumption bounds and corresponding willingness-to-pay. 
The model is then integrated into a bi-level Stackelberg market 
framework inspired by the Belgian single imbalance market 
[15] in which an aggregating entity called Balancing 
Responsible Party (BRP) uses the inferred flexibility curve to 
optimize its out-of-balance position and participates in the 
imbalance market. The proposed method can fill the 

information gap between the forecasting and decision-making 
tasks in [9]–[10], enabling the BRP to optimize the price signal 
that needs to be sent to IDR to elicit the desired response. 
Furthermore, unlike [11]–[12], our proposed model does not 
need to replace the optimization problem entirely. Instead, it 
can be integrated into the decision model as a linear lower-level 
problem.  

The rest of the paper is organized as follows: Section II 
provides an overview of the Belgian single imbalance market 
and presents the mathematical formulation of BRP’s bi-level 
optimization problem. Section III describes the methodology 
for obtaining the flexibility characteristics of the price-
responsive loads. The results and the investigated case study are 
presented in section IV. Finally, section V concludes the paper. 

II. MODEL DESCRIPTION 

This section describes the fundamentals of the balancing 
market and the bi-level structure that represents the interactions 
between the BRP, the balancing market, and the IDRs (Fig.1). 

A. Balancing Markets 

With the liberalization of the European electricity sector, 
the responsibility for maintaining equilibrium between 
electricity production and consumption, ensuring power system 
stability, now lies with market participants known as Balance 
Responsible Parties (BRPs). To facilitate the pursuit of this 
objective, the European market structure is divided into distinct 
energy-only and operating reserve services, which are traded 
consecutively through autonomous auctions. In this framework, 
BRPs are tasked with continually balancing their individual 
load and generation. The real-time residual imbalance at the 
system level is then rectified via a balancing mechanism, 
wherein the system operator utilizes reserve capacities provided 
by certain BRPs through the reserve capacity market. The 
expenses associated with the real-time activation of reserves are 
offset by imposing a fee on each imbalanced BRP. These 
charges, calculated (averaged) on a quarter-hour basis, are 
applied as soon as an imbalance arises. This mechanism is 
referred to as imbalance settlement. The European regulatory 
authorities have established guidelines for penalizing such 
imbalances using a single pricing settlement. This paper, 
therefore, examines this single-price imbalance settlement 
model, where all imbalance positions are settled at a uniform 
price [16]. This system rewards BRPs that contribute to 
rectifying system imbalances while penalizing those 
exacerbating the imbalance situation. Generally, the single 
imbalance price ��!*  depends on the actual volume of reserves 
activated by the system operator. In instances of a generation 
deficit within the grid (��� � + 0), the system operator must 

 
Figure 1.  Interactions between the upper level and the lower-level 
problems 
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activate upward reserves, the cost of which is characterized as 
the marginal incremental price (MIP). The BRPs accountable 
for this deficit are required to pay the MIP (typically greater 
than the day-ahead market price and thus less economical), 
while actors possessing excess generation receive this (highly 
attractive) MIP. Conversely, when a generation surplus exists 
(��� � > 0) at the system level, the subsequent activation of 
downward reserves yields the marginal decremental price 
(MDP). BRPs with a generation surplus receive this MDP 
(usually lower and therefore less lucrative than the day-ahead 
energy price) for their surplus, whereas BRPs experiencing a 
generation deficit pay this (appealing) minimal MDP fee for 
their corresponding negative imbalance, as they aid in restoring 
the system balance. 

B. Mathematical Formulation 

The envisioned bi-level participation framework consists of 
three components: the upper level, hereafter referred to as the 
BRP problem, formulates the profit maximization of the BRP; 
the first lower-level problem, hereafter called the SIM problem, 
emulates the quarter-hourly clearing of the single imbalance 
market; and, the second lower-level problem, called the FC 
problem, represents the flexibility curve of the IDRs. 

1) Balancing Service Provider (BRP) 

 

max12 3 ��!*4∆(�) �� − ∆(�) �6
� + ����4���� + ∆(�) � − ∆(�) ��6− ��������∆� 

(BRP.1)

8� : = ;∆(�) ��, ∆(�) �, ���� , (�,���<   

3 (�,���
�

= ���� + ∆(�) � − ∆(�) ��
 ∀� ∈ � (BRP.2)

0 ≤ ∆(�) � ≤ @���� − ����A ��  ∀� ∈ �  (BRP.3)

0 ≤ ∆(�) �� ≤ @���� − ����A��� ∀� ∈ � (BRP.4)

0 ≤ ���� ≤ ����BBBBB
 ∀� ∈ � (BRP.5)

In the problem above, the first term of BRP’s objective function 
(BRP.1) tries to maximize its profit in the single imbalance 
market by increasing its consumption and providing downward 
balancing energy (∆(�) �), or decreasing its consumption and 
providing upward balancing energy (∆(�) ��),  with respect to 
its baseline, cleared day-ahead consumption setpoint (����). In 
this term, the single imbalance price (��!*) is the dual variable 
of the  (SIM) lower-level problem (section II.B.2). Here, it is 
assumed that the only source of flexibility available to the BRP 
is IDR resources whose behavior is captured through the FC 
problem (section II.B.3). Equation (BRP.2) defines how the 
BRP can provide balancing energy by inducing a change in the 
DR energy consumption (by sending ����). The second term of 
the objective function defines the transaction between BRP and 
the IDR resources. Equations (BRP.2)–(BRP.4) define the 
bounds of downward and upward balancing energy and make 
sure that, at each time step, only one of them is activated (�� =1 only if ��� � > 0, and ��� = 1 only if ��� � + 0). Equation 
(BRP.5) enforces the upper bound of the price sent to DR. 

Lastly, the third term of the objective function is the amount of 
money the BRP has already paid for obtaining its baseline ����. 
This term ensures that the BRP participates in the single 
imbalance market only when its profits outweigh the costs of 
deviating from its day-ahead commitment. 

2) Single Imbalance Market (SIM) 

 

minFG�,2� ,FG�,2� 3 ���,�  	��,� 
��

− 3 ���,�  	��,� 
��

 (SIM.1) 

3 	��,� 
��

− 3 	��,� 
��

+ ∆(�) � − ∆(�) �� − ��� � = 0 ∶ ��!*
 (SIM.2) 

 ∀� ∈ �  

0 ≤  	��,� ≤  ���,�
 

 ∀� ∈ �, ∀�� ∈ ℛ�
 (SIM.3) 

0 ≤  	��,� ≤  ���,�
 

 ∀� ∈ �, ∀� ∈ ℛ
 (SIM.4) 

This subproblem emulates the market clearing problem of the 
TSO [15], which aims to minimize the cost of reserve 
activation (SIM.1). The impact of the BRP’s imbalance 
position on the reserve activation can be seen in (SIM.2). 
Moreover, the maximum amount of energy for upward and 
downward bids are observed in (SIM.3) and (SIM.4), 
respectively.  

3) IDR Flexibility Curve (FC) 

 

maxIJ,2KL 3 (�,���4��,� − ����6∆�
�

  (FC.1) 

���� ≤ 3 (�,���
�

≤ ���� ∀� ∈ � (FC.2) 

0 ≤ (�,��� ≤ ��,� ∀� ∈ �, ∀� ∈ ℬ  (FC.3) 

This subproblem represents the price response of the IDR 
resources. This price response is captured through three main 

parameters i.e. ��,� , ����, and ���� (Fig. 2), which are all 

obtained through IO (Section III). The objective of this 
problem (FC.1) is to maximize the consumption of the DR 
resources based on the matching between the energy price 
signal communicated by the BRP (����) and the estimated 

willingness-to-pay (��,�). In (FC.2), the constants ����, and ���� define the maximum and minimum DR consumption, 

respectively, and (�,��� defines the consumption block activated  
by the price signal (����). The maximum amount of energy 

 
Figure 2.  Flexibility curve of price-responsive loads at time t 

Willingness to Pay 
(€ / MWh)

(MWh)
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activated in each block (��,�) is observed in (FC.3). It should 
be noted that the parameter ��,� is calculated based on the 
estimated consumption bounds and a pre-defined number of 
energy blocks in the flexibility curve. 

��,� =  
⎩⎪
⎨
⎪⎧����                QR � = �S ���� − ����|ℬ| QR � > �S  

∀� ∈ �  (FC.4) 

III. DATA-DRIVEN INVERSE OPTIMIZATION 

This section delves into the details of how the main 
parameters of the (FC) problem are inferred from the 
anticipated price-demand data pair (Fig. 3). In the first step, the 
historical data of price-demand (Fig. 3(a)) are used to generate 
random price-demand pairs (Fig. 3(b)-(c)). Next, the generated 
demand scenarios ��, ��,!"# enter the objective of the upper level 
(IO.1), and the corresponding price scenarios ��, ��  enter the 
objective function of the flexibility curve at the lower level 
(IO.4) as inputs. The goal of the IO problem is to determine the 

main parameters of the flexibility curve (i.e. ��,� , ���� , ����) 

such that the distance between ��, ��,!"# and estimated demand 
by the FC (��, ��) corresponding to ��, ��,!"#  (IO.4) is minimum 
(IO.1), taking into account all the scenarios of the training set 
(	 U ℳ���).  

Equation (IO.2) forces the estimated willingness-to-pay 
values to decrease monotonically. Similarly, (IO.3) ensures that 
the willingness-to-pay of the first energy block corresponding 
to the minimum DR demand gets activated regardless of the 
price signal. In the lower-level problem, which corresponds to 
the FC problem, the objective is to maximize the utilization of 
the DR resources with respect to the transmitted energy price 
(IO.4). Equation (IO.5) defines the aggregate DR demand, and 
its bounds are observed in (IO.6). The maximum amount of 
energy activated in each block (��,�) and its relationship to the 
main FC parameters are detailed in (IO.7) and (IO.8). The 
resulting IO cannot be directly solved in a tractable manner and 
necessitates the implementation of various techniques (e.g., 
linearization of the absolute value in the objective function and 
reformulation of the lower level). For further details on the IO 
problem, readers are encouraged to refer to [9]. 

minV  3 % W��, �� − ��, ��,!"#W
  X ℳ2YL

 (IO.1) 

Z : = ;��, �� , ��,�< 
  

��,� [ ���S,� ∀� ∈ ��� , ∀� ∈ ℬ (IO.2) 

��\,� [ ��],� + & ∀� ∈ ��� , ∀� ∈ ℬ (IO.3) 

;��, �� , ��,�< ∈ argmax
 ̀

3 (�,�, �� 4��,� − ��, ��,!"#6
�

 (IO.4) 

a : = b(�,�, �� , ���� , ����c  

��, �� = 3 (�,�, ��
�

 ∀� ∈ ��� , ∀� ∈ ℬ, ∀$ ∈ ℳ 
(IO.5) 

���� ≤ 3 (�,�, ��
�

≤ ���� ∀� ∈ ��� , ∀� ∈ ℬ, ∀$ ∈ ℳ 
(IO.6) 

0 ≤ (�,�, �� ≤ ��,� 
∀� ∈ ��� , ∀� ∈ ℬ, ∀$ ∈ ℳ 

(IO.7) 

��,� =  
⎩⎪⎨
⎪⎧����                QR � = �S ���� − ����|ℬ| QR � > �S  ∀� ∈ ���

 (IO.8) 

IV. CASE STUDY 

In this section, we analyze the performance of the method 
developed for inferring the parameters of the flexibility curve 
and its implementation into the Single Imbalance Market.  

A. Input Data and Assumptions 

The historical price-demand data for DR (Fig .3 (a)) are 
obtained by solving the cost minimization problem of EV smart 
charging [17] for the span of 90 days before the test date 
(January 29th, 2020) based on data from the Caltech University 
EV database [18]  and day-head energy prices of Belgium [19]. 
In the next step, the historical EV charging data were used to 
generate 500 random samples from the joint distribution of the 
EV consumption and the corresponding day-ahead energy 
prices (Fig. 3(b)). In the third step, the generated data pairs (Fig. 
3(c)) were used to infer the parameters of the flexibility curve 
(Fig. 3(d)). Once the flexibility curve of the DR gets calculated, 
it can be incorporated into the decision-making process (Fig. 1) 
as the lower-level problem. The flexibility curve obtained for 
the test time slot (first quarter of hour 6 on the test day) as well 
as the maximum amount of upward and downward flexibility 
available to the BRP, based on its DA position, is depicted in 
Fig. 4. The merit order data for reserve providers for the test 
time slot are presented in Table I [20].  

 
Figure 3.  The overall schematic of data flow for obtaining the values of IDR flexibility curve 

TABLE I.  THE RESERVE BIDS ON THE TEST TIME SLOT 

 de�/
 df�/

 dg�/
 dh�/

 di�/
 ���  (€/MWh) 55.85  58.23 58.33 58.43 4500 ���  (€/MWh) 5.63 -110.2 -168.3 -278.9 -279  	��/� (MW) 100 100 100 300 300 
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B. Results 

The performance of the proposed method has been assessed 
in different cases to examine how the new information provided 
by the flexibility curve can help the BRP make more informed 
decisions about participating in the Single Imbalance Market by 
deviating from its DA setpoint. Five cases have been defined to 
represent different system-level imbalance states (Table II): 
C1–C3 for generation surplus conditions and C4–C5 for 
generation deficit conditions. In Table II, the ��� �  column 
displays the system imbalance for each case, while the ��!*  
column indicates the single imbalance price taking into account 
the deployment of IDR resources. The ���� column represents 
the price signals sent by the BRP to IDR to attain the optimal 
out-of-balance position (∆(�) �� or ∆(�) �), maximizing profit 
in the single imbalance market. The table also contains the 
profits projected by the proposed method. The SIM column 
reveals the expected profit from providing the balancing 
energy. To achieve this profit, the BRP must alter the price sent 
to the IDRs, consequently compromising the potential for 
selling energy at the DA volume and prices. The “DR Net” 
column accounts for the compromised retail profit in each case, 
illustrating the difference between the amount charged to the 
DR and the cost of procuring the DA working point: 

jk lm� =  ����4���� − ∆(�) �� + ∆(�) �6 −  �������� 

The “Net” column shows that by compromising the prospect of 
selling energy at the DA prices, the BRP was able to make a 
substantial profit from participation in the balancing market. 
Furthermore, the results show that the flexibility curve allows 
the BRP to participate in the balancing market only when its 
costs are covered by ��!* . For example, in the case C1, the BRP 
fully deploys downward balancing flexibility and gains 
919.84 €. Case C2 illustrates the optimal decision for the BRP 
when ��!*  drops to 20 € (by altering the reserve bids presented 
for the base case in Table I). At this price, it is no longer 
profitable for the BRP to fully deploy its downward balancing 
flexibility, as the cost of the required subsidy to achieve full 
deployment exceeds the potential earnings from the balancing 
market. Case C3 shows that if ��!*  falls even further, it becomes 
more profitable for the BRP to maintain its DA energy levels 
by sending (��!*=����) and not participate in the balancing 
market.  

On the other side of the system imbalance spectrum, cases 
C4 and C5 demonstrate how the BRP can contribute to the 
upward balancing service by reducing its consumption. The DR 
Net column reveals that although the BRP sells energy at higher 
prices during those time slots, the reduced consumption leads 

to lower retail revenues, which are offset by remuneration in the 
balancing market.  

To verify the performance of sthe proposed method, an 
XGboost forecasting module has been trained using the 
historical data (Fig. 3 (a)). It was then used to calculate the 
values in the ex-post column. To that end, the ���� price 
calculated by BRP is fed into the XGBoost forecasting module 
to predict the actual demand response pertaining to the 
transmitted price. Based on this new forecast value, the actual 
values of upward or downward balancing are determined, and 
profits are adjusted according to the actual responses. However, 
as can be observed in the ex-post columns, the flexibility curve 
slightly overestimated the actual deployment of DR, resulting 
in reduced actual profit for the BRP. Although the flexibility 
curve tends to overestimate the amount of response in the cases 
presented above, there are situations where it underestimates 
the response. This underestimation could lead to financial 
penalties if the BRP's portfolio is large enough to tip the system 
imbalance in the opposite direction. 

V. CONCLUSION 

This paper has proposed a novel data-driven approach to 
model DR resources through their aggregate forecasts using IO. 
The proposed method utilizes historical price and consumption 
data to deduce IDR price-response behavior via a flexibility 
curve, which can then be used to optimize a BRP's strategic 
imbalance positions by managing DR resources through 
suitable price signals. The accuracy of the estimated flexibility 
provided by the proposed algorithm was evaluated by 
comparing its outcomes with those obtained from the XGboost 
method. The comparison results demonstrated that the model 
could effectively capture IDR behavior and generate profit. The 
insights obtained from this study can provide valuable 
information for BRPs and system operators to understand the 
price-response of DR resources better and facilitate their 
economic integration into electricity markets. 

 
Figure 4.  Generated price scenarios for the test time slot 

TABLE II.    RESULTS OF BRP PARTICIPATION IN BALANCING MARKET UNDER DIFFERENT SCENARIOS 

Case ��� � ��!* ���� 
Proposed Method Ex-Post Verification 

∆(�) �� ∆(�) � 
Profit ∆(�) �� ∆(�) � 

Profit 
SIM DR Net Net SIM DR Net Net 

C1 150 -110.2 21.32 0 41.42 1141.2 -221.42 919.84 0 41.08 1131.9 -223.24 908 
C2 150 -20 27.55 0 27.61 138 23.1 161.19 0 23.21 116 -7.2 108 
C3 150 2 31.35 0 0 - 0 - 0 0 - 0 - 
C4 -150 55.85 49.63 89.75 0 1253.2 -307.45 945.7 89.75 0 1253.2 -307.45 945.76 
C5 -84 55.85 47.44 84 0 1172.8 -286.68 886 83.76 0 1169.6 -283.94 885.68 

 

Authorized licensed use limited to: TU Delft Library. Downloaded on July 31,2023 at 11:57:29 UTC from IEEE Xplore.  Restrictions apply. 



 

REFERENCES 

[1] G. Kariniotakis, Ed., Renewable energy forecasting: From models to 

applications. Cambridge, England: Woodhead Publishing, 2017. 
[2] C. Chen, J. Wang, and S. Kishore, “A distributed direct load control 

approach for large-scale residential demand response,” IEEE 

Transactions on Power Systems, vol. 29, no. 5, pp. 2219–2228, 2014. 
[3] R. Fernández-Blanco, J. M. Morales, and S. Pineda, “Forecasting the 

price-response of a pool of buildings via homothetic inverse 
optimization,” Applied Energy, vol. 290, p. 116791, 2021. 

[4] E. Koliou, C. Eid, J. P. Chaves-Ávila, and R. A. Hakvoort, “Demand 
response in liberalized electricity markets: Analysis of aggregated load 
participation in the German balancing mechanism,” Energy, vol. 71, pp. 
245–254, 2014.  

[5] K. Baltputnis, Z. Broka, and A. Sauhats, “Analysis of the potential 
benefits from participation in explicit and implicit demand response,” 
2019 54th International Universities Power Engineering Conference 

(UPEC), 2019.  

[6] M. Roozbehani, M. A. Dahleh, and S. K. Mitter, “Volatility of power 
grids under real-time pricing,” IEEE Transactions on Power Systems, 
vol. 27, no. 4, pp. 1926–1940, 2012 

[7] M. Vahedipour-Dahraie, H. Rashidizadeh-Kermani, M. Shafie-Khah, 
and J. P. S. Catalao, “Risk-averse optimal energy and reserve scheduling 
for virtual power plants incorporating demand response programs,” IEEE 
Trans. Smart Grid, vol. 12, no. 2, pp. 1405–1415, 2021. 

[8] K. Bruninx, H. Pandzic, H. Le Cadre, and E. Delarue, “On the interaction 
between aggregators, electricity markets and residential demand 
response providers,” IEEE Trans. Power Syst., vol. 35, no. 2, pp. 840–
853, 2020. 

[9] J. Saez-Gallego, J. M. Morales, M. Zugno, and H. Madsen, “A data-
driven bidding model for a cluster of price-responsive consumers of 
electricity,” IEEE Transactions on Power Systems, vol. 31, no. 6, pp. 
5001–5011, 2016.  

[10] R. Fernández-Blanco, J. M. Morales, S. Pineda, and Á. Porras, “Inverse 
optimization with kernel regression: Application to the power forecasting 
and bidding of a fleet of electric vehicles,” Computers & Operations 

Research, vol. 134, p. 105405, 2021.  

[11] L. Wen, K. Zhou, J. Li, and S. Wang, “Modified deep learning and 
reinforcement learning for an incentive-based demand response model,” 
Energy, vol. 205, p. 118019, 2020. 

[12] S. Bahrami, Y. C. Chen, and V. W. S. Wong, “Deep reinforcement 
learning for demand response in distribution networks,” IEEE Trans. 

Smart Grid, vol. 12, no. 2, pp. 1496–1506, 2021. 

[13] Y. Bian, N. Zheng, Y. Zheng, B. Xu, and Y. Shi, “Demand response 
model identification and behavior forecast with OptNet,” Proceedings of 

the Thirteenth ACM International Conference on Future Energy 

Systems, 2022.  

[14] A. Kovács, “Inverse optimization approach to the identification of 
electricity consumer models,” Central European Journal of Operations 

Research, vol. 29, no. 2, pp. 521–537, 2020.  

[15] J. Bottieau, L. Hubert, Z. De Greve, F. Vallee, and J.-F. Toubeau, “Very-
short-term probabilistic forecasting for a risk-aware participation in the 
single Price imbalance settlement,” IEEE Transactions on Power 

Systems, vol. 35, no. 2, pp. 1218–1230, 2020.  

[16] ACER, “Recommendation of the agency for the cooperation of energy 
regulators No 03/2015–on the network code on electricity balancing,” 
New Taipei City, Taiwan, 2015. 

[17] B. Vatandoust, A. Ahmadian, M. A. Golkar, A. Elkamel, A. Almansoori, 
and M. Ghaljehei, “Risk-averse optimal bidding of electric vehicles and 
energy storage aggregator in day-ahead frequency regulation market,” 
IEEE Transactions on Power Systems, vol. 34, no. 3, pp. 2036–2047, 
2019.  

[18] Z. J. Lee, T. Li, and S. H. Low, “ACN-Data,” Proceedings of the Tenth 

ACM International Conference on Future Energy Systems, 2019.  

[19] “Central Collection and publication of electricity generation, 
transportation and consumption data and information for the pan-
European market.,” ENTSO. [Online]. Available: 

https://transparency.entsoe.eu/.  

[20] “Balancing,” Elia. [Online]. Available: https://www.elia.be/en/grid-
data/balancing.  

 

Authorized licensed use limited to: TU Delft Library. Downloaded on July 31,2023 at 11:57:29 UTC from IEEE Xplore.  Restrictions apply. 


