
 
 

Delft University of Technology

An analytical model for the velocity and gas fraction profiles near gas-evolving electrodes

Rajora, A.; Haverkort, J. W.

DOI
10.1016/j.ijhydene.2023.03.154
Publication date
2023
Document Version
Final published version
Published in
International Journal of Hydrogen Energy

Citation (APA)
Rajora, A., & Haverkort, J. W. (2023). An analytical model for the velocity and gas fraction profiles near gas-
evolving electrodes. International Journal of Hydrogen Energy, 48(71), 27450-27463.
https://doi.org/10.1016/j.ijhydene.2023.03.154

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.ijhydene.2023.03.154
https://doi.org/10.1016/j.ijhydene.2023.03.154


ww.sciencedirect.com

i n t e rn a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 4 8 ( 2 0 2 3 ) 2 7 4 5 0e2 7 4 6 3
Available online at w
ScienceDirect

journal homepage: www.elsevier .com/locate/he
An analytical model for the velocity and gas
fraction profiles near gas-evolving electrodes
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h i g h l i g h t s
� Using the integral method we derive analytical relations for velocity and gas fraction profiles near a gas-evolving electrode.

� Analytical expressions for the electrolyte flow rate under natural convection conditions are obtained.

� We successfully validate our analytical results using a computational mixture model.

� For a constant bubble diameter, the gas plume thickness first decreases and then increases with increasing current density.

� At high current densities, the velocity boundary layer thickness is approximately independent of current density.
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a b s t r a c t

Understanding multiphase flow close to the electrode surface is crucial to the design of

electrolyzers, such as alkaline water electrolyzers for the production of green hydrogen.

Vertical electrodes develop a narrow gas plume near their surface. We apply the integral

method to the mixture model. Considering both exponentially varying and step-function

gas fraction profiles, we derive analytical relations for plume thickness, velocity profile,

and gas fraction near the electrode as a function of height and current density. We verify

these analytical relations with the numerical solutions obtained using two-dimensional

mixture model simulations. We find that for low gas fractions, the plume thickness de-

creases with an increase in current density for an exponentially varying gas fraction pro-

file. In contrast, the plume thickness increases with increasing current density at high gas

fractions for an approximately step-function-shaped gas fraction profile, in agreement

with experiments from the literature.

© 2023 The Author(s). Published by Elsevier Ltd on behalf of Hydrogen Energy Publications

LLC. This is an open access article under the CC BY license (http://creativecommons.org/

licenses/by/4.0/).
Introduction

Many electrochemical reactions produce gaseous products

with low solubility in the electrolyte. In this case, bubbles are

evolved at the electrode surface, for example, in the produc-

tion of aluminium [1], sodium chlorate [2], chlorine [3,4], and

hydrogen using water electrolysis [5e9]. Bubbles add to the
Rajora), J.W.Haverkort@t

vier Ltd on behalf of Hydroge

/).
resistance of the electrochemical systems by decreasing the

effective conductivity of the electrolyte [7,10e14] and by tak-

ing away the reactive electrode area [15e20]. Bubbles also

induce convection in the electrolyte [21e23], increasing the

mass transport of reactants and products. The efficiency of

the electrochemical cell is, thus, closely related to the two-

phase hydrodynamics of bubbles and the electrolyte [24,25].
udelft.nl (J.W. Haverkort).

n Energy Publications LLC. This is an open access article under the CC BY

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:A.Rajora@tudelft.nl
mailto:J.W.Haverkort@tudelft.nl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhydene.2023.03.154&domain=pdf
www.sciencedirect.com/science/journal/03603199
www.elsevier.com/locate/he
https://doi.org/10.1016/j.ijhydene.2023.03.154
https://doi.org/10.1016/j.ijhydene.2023.03.154
https://doi.org/10.1016/j.ijhydene.2023.03.154
http://creativecommons.org/licenses/by/4.0/


Nomenclature

Dimensionless variables

3 gas fraction

Prb bubble Prandtl number

q ≡ df/dg

Greek variables

df flow boundary layer thickness [m]

dg gas plume thickness [m]

n kinematic viscosity [m2/s]

r liquid density [kg/m3]1

Subscripts and other notation

Hd hydrodynamic diffusion

St Stokes

g gaseous property

m mixture property

max maximum value of the variable

min minimum value of the variable

s slip

Symbols

x wall normal coordinate [m]

z vertical coordinate [m]

CWD average superficial liquid velocity [m/s]

U superficial velocity in the x direction [m/s]

W characteristic velocity in Eq. (8) [m/s]

u interstitial velocity in the x direction [m/s]

w interstitial velocity in the z direction [m/s]

w0 strain rate at the electrode ≡vw
vx

��
x¼0

[1/s]

u interstitial velocity [m/s]

Db bubble dispersion coefficient [m2/s]

db bubble diameter [m]

g acceleration due to gravity [m/s2]

h height of the electrode [m]

j current density [A/m2]

l electrode-wall distance [m]

P reduced pressure ¼ p þ rgz [Pa]

p pressure [Pa]

zeff height at which the analytical flow rate

matches the numerical flow rate [m]
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Gas-evolving electrodes are usually oriented vertically [26]

to avoid bubble accumulation. Once released from the elec-

trode surface, bubbles move primarily in a vertical direction

due to their buoyancy and the resulting electrolyte flow. Their

drag on the fluid induces natural convection of the electrolyte.

Several hydrodynamics forces push the bubbles in the lateral

direction, forming a bubble curtain or plume, as shown in

Fig. 1.

The study of velocity plumes near a vertical wall has been

of interest for a long time, particularly for natural convection

effects [27e33]. In electrochemical applications, gas may be
1 From the gas conservation equation [9], if only hydrodynamic
diffusion is present: Um,V 3¼ V,ð 3ð1 � 3ÞusÞ ¼ V,

�
gd3bDV 3=36n

�
¼

V,ðDbDV 3Þ; so the effective diffusion coefficient in the horizontal
direction can be written as Db ¼ dbwSt=2 ¼ gd3b

36n. Here Um is the
superficial mixture velocity.
evolved at electrodes on two opposing surfaces, for example,

in a membraneless electrolyzer [9,34e40] or only one of the

two surfaces, for example, in a zero-gap electrolyzer

[10,41e43] or a conventionally divided electrolyzer in which

the second surface is a membrane or a diaphragm [13,44].

Previously, analytical attempts have been made to study

the case of two adjacent gas-evolving electrodes resulting in

two plumes on opposite walls [6,9,45,46]. Reference [47] de-

rives a criterion for the occurrence of back-flow. In Refs. [9,45],

the relations for the velocity profile and the wall shear stress

are derived assuming a known gas fraction profile. While

Ref. [45] used experiments to characterize the gas fraction

profile, Ref. [9] performed multiple simulations to relate the

plume thickness to the operating parameters. Reference [46]

used a thermal analogy and dimensional analysis to predict

the scaling of plume thickness with geometric and operating

parameters. However, the prefactors for the scaling laws were

not established due to the use of simple dimensional analysis.

In this work, we focus on a single plume, relevant for elec-

trochemical cells where the bubbles are produced at only one

electrode, when there is a membrane or diaphragm in between

the electrodes, or when the two electrodes are placed far apart.

We start from an integral method similar to that previously

used for studyingnatural convection due to solutal and thermal

effects [28e30,33,48]. Our model contains several features

somewhat particular to the diffusion of gas bubbles- for

example, the use of a constant flux boundary condition, the

effect of gas fraction on viscosity and density, and the existence

of a maximum gas fraction. Such a maximum gas fraction is a

feature typical to the diffusion of electrolytic bubbles, owing to

the volume they take up, and does not arise in the case of

diffusion of heat or species. To model this, we consider a step-

function gas fraction profile, in addition to the widely used

exponential profile, in the integral method. Using an assumed

velocity profile, modified here to take into account the effect of

a finite domain, we provide analytical relations for the gas

plume thickness, liquid velocity profile, and liquid flow rate as a

function of the height and current density of the electrolyzer.
Model equations

We use the laminar mixture model formulation [46,49,50] to

describe the two-phase hydrodynamics in the electro-

chemical cell.

The liquid velocities in the x and z direction are denoted by

u and w, respectively and we will use a subscript ‘g’ to denote

the gas quantities. The volume fraction of gas bubbles is

denoted by 3and capital letters are used to denote superficial

velocities: U ¼ (1 � 3)u. We will use Ug here, only to denote the

positive horizontal superficial gas velocity at the electrode

surface. The continuity equation for the gaseous phase at

steady state is given by V , ( 3ug) ¼ 0, which can be integrated

over a Gaussian pillbox bordering the electrode at x ¼ 0 to give

Ug ¼ d
dz

Z l

0

3wdx; (1)

where we assumed that the slip velocity in the vertical di-

rection ws ≡ wg � w is negligible compared to the liquid

https://doi.org/10.1016/j.ijhydene.2023.03.154
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Fig. 1 e A schematic of the gas fraction profile and velocities

near a gas-evolving electrode with natural convection

electrolyte recirculation. Opposite the electrode may be the

membrane in a conventional configuration, or the bipolar

plate or back-wall in a zero-gap configuration. The gas

bubbles are generated at the electrode surface and escape

from the top. The liquid electrolyte recirculates in the cell

through a downcomer. We simulate only a channel

geometry shown on the left. The gas bubbles are generated

at the electrode surface and develop a plume ofwidth dg. The

liquid electrolyte moves vertically with velocity w (x, z). The

boundary conditions used are shown adjacent to each of the

boundary.
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velocity, so ws ≪ w. The superficial gas velocity at the elec-

trode in the x-direction is given by Faraday's law

Ug ¼ Vm

nF
j; (2)

where Vm is the molar volume of the gas and n is the number

of electrons required to produce one gas molecule. Here we

assumed that the gas evolution efficiency [51,52] is 100% so all

of the produced gas is evolved as bubbles. At the surface of the

electrode, x ¼ 0, we can write

Ug ¼ 3ugjx¼0 ¼ 3usjx¼0: (3)

For a gas densitymuch lower than that of the liquid, rg ≪ r,

the vertical z-component of the steady state momentum

conservation equation for the gas-liquid mixture can be

approximated [9] by

vð1� 3Þw2

vz
þ vð1� 3Þuw

vx
¼ �1

r

vP
vz

þ v

vx

�
nm

vw
vx

�
þ 3g; (4)
where P¼ pþ rgz is the reduced pressure and p is the absolute

pressure. Note that in Eq. (4), we neglected the slip velocity in

the vertical direction for the typically small electrochemical

bubbles. This allows us to approximate the mixture velocity

with the liquid velocity. The mixture kinematic viscosity nm

can be expressed empirically using the liquid viscosity n and

gas fraction 3as nm
n
¼ 1

1� 3
� 1 [47,53,54].

The model is completed by using empirical relations

describing the relative velocity between the bubbles and the

electrolyte. While it has been observed that the bubble size in-

creases along the height of the electrode [2,55], we assumehere

a constant bubble diameter db for simplicity. The bubble

diametermay also increase with increasing current density [2],

which can be easily included in the analytical model by

inserting the dependence of db on current density. The relative

velocity of a bubble ismainly Stokes' rise velocity in the vertical

direction, given by uSt ¼ gd2b
18nez, where ez is the unit vector in the

vertical direction. For db a 100 mm, Stokes's velocity should be

corrected for the bubble Reynolds number as this becomes

greater than 1 [56e58]. In this paper, we neglect the effect of

hindrance on the freely rising bubbles. For small gas fractions,

the lateral slip velocity of the bubbles is primarily due to hy-

drodynamic self-diffusion uHd ¼ �gd3b
36n

DV 3

3ð1� 3Þ [46,50]. The non-

isotropic dimensionless dispersion tensor is given by

D ¼
�
1 0
0 8

�
[9,46,50,59] so the bubble diffusion coefficient1

becomes

Db ¼ gd3
b

36n
; (5)

in the horizontal direction. In the case of turbulent flow, a

turbulent contribution may be added. However, this will not

be a constant and it will vanish at the electrode. Also, the

viscosity will be impacted by turbulence. Therefore, we limit

our study to laminar conditions with a spatially constant

bubble dispersion coefficient.

Mono-sized spheres have a maximum theoretical packing

density of p=
ffiffiffiffiffiffi
18

p
z0:74 (Kepler's Conjecture) [60], while a

maximum packing density of 0.6 has been reported for loosely

packed particles [61] and decreases as the particle size de-

creases [62]. As the gas flux from the electrode is increased, the

gas fraction tends to a maximum value [63e67]. In electrolytes,

still smaller maximum values of 3max ¼ 0.2 � 0.5 have been

found and were attributed to the observed coalescence barrier

[63,68]. Electrolytic bubbles have a surface charge, leading to

electrostatic repulsion between bubbles [63]. The resulting

interaction force due to this coalesce inhibition may be

described using the granular/frictional/solid pressure [69e72].

The additional transverse dispersion and vertical rise velocity

can be used to describe maximum gas fraction in plumes.

Additionally, there may be other transverse bubble interaction

forces causing an apparentmaximumgas fraction. For example,

shear-induced diffusion has been shown to lead to an approx-

imately step-function-shaped gas fraction profile [9,50,73] as

well. While the exact expression will depend on the underlying

mechanisms, we propose a heuristic relationship to simulate

the maximum gas fraction by writing the slip velocity as

us ¼ uSt þ uHd

1� 3= 3max
: (6)

https://doi.org/10.1016/j.ijhydene.2023.03.154
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In this expression, the slip velocity will increase primarily

in the horizontal direction, in which the gas fraction gradients

are largest, as the gas fraction approaches amaximum. So, the

maximum gas fraction is heuristically attributed here to the

additional dispersion of the bubbles. This additional slip ve-

locity will push the bubbles away from the region of the

maximum gas fraction. The overall slip velocity, however, will

typically remain small because as the gas fraction approaches

its maximum, 1
1� 3= 3max

increases, but V 3also reduces.
Analytical model

We consider a vertical rectangular channel with width l and

height h as shown in Fig. 1. The gas flows in a thin plume with

a thickness dg(z) and the gas fraction at the electrode surface is

denoted by 30(z), where z is the vertical coordinate. We use the

integral method [28e30,33,48] to find analytical relations for

gas plume thickness dg, wall gas fraction 30, flow boundary

layer thickness df and characteristic velocityW as a function of

height z, and the superficial gas flux Ug entering through the

electrode. Educated guesses for the gas fraction and velocity

profiles that satisfy the boundary conditions as a function of

these parameters are inserted into the governing differential

eqns. (1), (3) and (4), which we subsequently integrate from

x ¼ 0 to x ¼ l. The resulting algebraic equations can then be

solved exactly. In section 3.2, we will consider a step-function

shaped gas fraction, relevant for high current densities and

heights giving gas fractions close to themaximum, but firstwe

assume an exponential variation in the gas fraction.

Exponential gas fraction profile

For relatively low electrode height and low gas flux at low

current density or elevated pressure, we assume that the gas

fraction decreases approximately exponentially with x as

3¼ 30e
�x=dg ; (7)

where dg is the gas fraction e-folding plume thickness, whose

development with z is yet unknown. For the velocity profile,

we take

w ¼

8><
>:

W
�
1� x

df

��
1� e�x=dg	; x< df

0; x � df :

(8)

here dg primarily determines the velocity gradient at the wall

and the flow boundary layer thickness df determines the dis-

tance overwhich the velocity goes to zero. Since the velocity is

driven by buoyancy, it will always hold that q ≡ df/dg > 1. For

thermal convection in a semi-infinite medium, often e�x=df is

used instead of 1 � x/df, so no separate case w ¼ 0 has to be

introduced to avoid negative values. A polynomial decrease

beyond the maximum is also used in literature [28e30]. In our

case of finite channel width, we find from the simulations that

back-flow precludes an exponential-like shape of the velocity

profile. Instead, we chose a linear decrease of velocity profile

for simplicity. Negative vertical velocities arise far away from

the electrode as a consequence of the adverse pressure

gradient in the boundary conditions shown in Fig. 1. The
boundary conditions model the unavoidable pressure drops

associated with fluid deceleration and give rise to this back-

flow. In the analytical derivation, however, we neglect the

responsible vP/vz term [30]. Eq. (8) does not capture negative

velocities away from the electrode in case of an adverse

pressure gradient. This downflow has to be considered when

estimating the total liquid flow rate. We define the ratio of the

flow boundary layer thickness to the gas plume thickness as

q≡
df

dg
: (9)

Using Eq. (7) and Eq. (8) for vP/vz ¼ 0 and neglecting the

effect of the gas fraction on viscosity, slip velocity, and inertial

terms on the left-hand side of Eq. (4) for small 3, we derive the

following expressions (see Appendix A):

dg ¼
�
nD2

bz
gUg

qþ 2
qHðqÞ

�1=5

; (10)

W ¼
 
Dbg2U2

gz
3

n2
q2

ðqþ 2Þ2HðqÞ3
!1=5

; (11)

30 ¼
 
nU4

gz

gD3
b

ðqþ 2Þ
qHðqÞ

!1=5

; and (12)

w0≡
vw
vx

����
x¼0

¼ W
dg

¼
 
g3U3

g

n3
z2

Db

q3

qðqþ 2Þ3HðqÞ3
!1=5

; (13)

where HðqÞ≡4e�q�e�2qþ2q�3
4q . The value of q can be explicitly

calculated by

qz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
50Prb
7

r
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:3Prb
p

1þ ffiffiffiffiffiffiffi
Prb

p : (14)

where the bubble Prandtl number Prb ¼ n
Db

and Db is given by

Eq. (5). Electrolytically generated bubbles typically have

db < 150 mm, so Db < n and Prb > 1 or q > 2. Note that Ug can be

replaced by the current density j using Eq. (2). The above

analytical results have a different prefactor but the same

scalingswith z andUg as those previously reported for thermal

and solutal natural convection with constant flux (Neumann)

boundary conditions [27e31], shown in Eq. (A.9). We see that

the plume widens very slowly with height, proprtional to z1/5,

but much strongly with the bubble diameter. From Eq. (5),

Dbfd3
b, so that Eq. (10) gives dgfd6=5

b . From Eq. (10), we predict

that the gas plume thickness decreases with increasing Ug or

current density j. This is because the velocity near the elec-

trode increases with current density, increasing the convec-

tive effect, which decreases the plume thickness. The same is

predicted in Ref. [46]. In Ref. [74], the hydrogen bubble plume

thickness decreased in an alkaline electrolyte under normal

gravity. However, the bubble size was found to decrease with

increasing current density in this experiment, which could

possibly by itself also explain this result. However, sometimes

this decreasing plume thickness is not observed experimen-

tally. Reference [75] shows an increase in gas plume thickness

with increasing current density. A likely reason is that

D2
b � d6=5

b increases more than linearly with j.

https://doi.org/10.1016/j.ijhydene.2023.03.154
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Note that the liquid flow rate, proportional to Wdg, in-

creases with z. In the finite domain used in the simulations,

this increase has to be compensated by a downflow away from

the electrode that increases in magnitude with increasing

height. We will discuss in more detail how to do this in

Appendix D.

The scaling dg f z1/5 is commonly obtained for constant

flux while z1/4 is found using a constant gas fraction, or tem-

perature in case of thermal natural convection. As expected

for simulations with constant current density, our scaling

dg f z1/5 is actually a better fit to the simulations of Ref. [46]

than the z1/4 scaling derived there.
Fig. 2 e The assumed gas fraction profile (Dotted:

exponentially varying, Solid: step-function) and the

assumed velocity profile (dashed: Eq. (8)). The peak velocity

wmaxz
Wq
qþ4 occurs at xp ¼ dg

�
qþ 1� LambertWðeqþ1Þ	, where

LambertW(x)eLambertW(x) ¼ x. The approximation of wmax is

obtained from the asymptomatic matching of the exact

expression w (xp) and has a maximum error of only 3%.
Step-function gas fraction profile

The exponential-shaped gas fraction profile is relevant at high

pressure, low current density and small heights or for very

large bubble dispersion coefficients Db due to a large bubble

size. Often above a certain height the gas fraction no longer

decreases approximately exponentially as a maximum gas

fraction is approached. From our simulations, shown later, we

see that the distribution of gas fraction near themaximumgas

fraction is approximately like a step-function profile:

3¼



30; x< dg
0; x � dg:

(15)

Note that we use the same symbol dg here to refer to a

related but slightly different quantity as before (see Fig. 2).

We restrict our analysis to a constant 30 ¼ 3max. This means

that we consider a constant gas fraction with a constant flux

at the electrode surface. This boundary condition does not

have an analogy in thermal or solutal natural convection.

Since in our simulations, the shape of the velocity profile

does not change significantly when the gas fraction reaches a

maximum, we use the same velocity profile as before. The

assumed profiles of Eq. (8) and Eq. (15) are schematically

shown in Fig. 2.

Rewriting Eq. (4) using the no-slip condition w (x ¼ 0) ¼ 0,
vP
vz ¼ 0, and Eq. (15), we get

W ¼ g 30d
2
g

nm

q
qþ 2

; (16)

where nm ¼ n
1� 3max

is a constant. Substituting Eq. (8) and Eq. (15)

in Eq. (4), integrating between y ¼ 0 and y ¼ l for dg < df < l, and

using Eq. (16) gives

0 ¼ 2nmW
qdg

� d
dz

ðfðqÞdgW2Þ; (17)

where fðqÞz�0:5e�2qþ8e�qþ0:67ðq�2:05Þððq�1:22Þ2þ3:98Þ
2q2 � 0:34 30

ðq�0:71Þ2þ0:04
2q2 .

Note that we round off the coefficients in f(q), and also sub-

sequent expressions, to two significant digits. The depen-

dence on 30 derives from the gas fraction dependence of

inertial terms in Eq. (4). Finally, Eq. (1) can be rewritten as

Ugz ¼ hðqÞdg 30W; (18)

where hðqÞ ¼ 1þð2q�4Þe�1

2q . We wish to find the scalings of the

relevant quantities with a power of z, similar to Eqs. 10e13.
Therefore, we express Eqs. 16e18 as power law expressions in

q so

W ¼ qa
g 30d

2
g

3nm
; (19)

0 ¼ 2nmW
qdg

� fð1Þ d
dz

ðqbþ1dgW2Þ; (20)

Ugz ¼ hð1Þqcdg 30W; (21)

where a≡
ln
�

3q
qþ2

	
lnðqÞ , b≡

ln

�
f ðqÞ
qfð1Þ

�
lnðqÞ and c≡

ln

�
hðqÞ
hð1Þ

�
lnðqÞ . Assuming that q, dg W

are proportional to some power of z, Eqs. 19e21 give q f zm,

Wfz
2
3þma�2c

3 and dgfz
1
3�maþc

3 with

m ¼ � 1
6þ 3b� 4c� a

¼ lnðqÞ
ln
�

3f ð1Þ3hðqÞ4
q2ðqþ2Þf ðqÞ3hð1Þ4

�; (22)

where we used the definitions of a, b, and c in the final

expression. Since a, b and c vanish as q / ∞, m ¼ �1/6 in this

limit. Inserting the scalings for q, W, and dg, Eq. (20) can be

rewritten as

qbþ2d2gW ¼ 2nm
kfð1Þ z: (23)

here k ¼ ðbþ1Þmþ 1
3 � m

3 ðaþcÞ þ 4
3 þ 2m

3 ða�2cÞ and lies between

1.43 and 1.73, using Eq. (22). Therefore, we choose a constant

value, k ¼ 1.54, with a maximum relative error of 12% to

https://doi.org/10.1016/j.ijhydene.2023.03.154
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simplify Eq. (23). Eliminating W and dg, we can solve Eq. (19),

Eq. (21), and Eq. (23) for q to give

q ¼
�
z

zc

�m

; (24)

where

z≡
zU4

g

g 350n
2
m

; and zc ≡
0:73hð1Þ4

fð1Þ3 z
24

ð1� 30Þ3
: (25)

Equation (24) is implicit since m itself is a function of q, as

given by Eq. (22). Combining Eq. (22) and Eq. (24) gives

2:2hðqÞ4
q2ðqþ 2ÞfðqÞ3 ¼ z: (26)

A good approximation, obtained by trial-and-error, to the

solution of Eq. (26) is given by

qz

8>>><
>>>:

z�1=6; z � 10�9

1:65z�1=7; 10�9 < z � 10�4

ðz=zcÞ�
ð1� 30 Þ1=4

7 ; 10�4 < z � zc

: (27)

The power m ¼ �ð1� 30Þ1=4=7 in the last approximation

depends weakly on 30 and varies between �0.11 and �0.14

for 30 ¼ 0.7 and 30 ¼ 0, respectively. Eq. (26) or (27) can be used

to obtain the value of q. As z/zc, q / 1. The first two ap-

proximations in Eq. (27) have a maximum error of 5% for the

respective ranges of z, while the last expression has a

maximum error of 12% for the given range of z.

Finally, dg solving Eq. (19) and Eq. (21) gives

dg ¼
�
nmUgzðqþ 2Þ

g 320qhðqÞ
�1=3

; (28)

W ¼
 

gU2
gz

2q

nm 30ðqþ 2ÞhðqÞ2
!1=3

: (29)

where q is given by Eq. (26). We can write in the limit q [ 1:

dg ¼
�
enmUgz

320g

�1=3

and W ¼
 
e2gU2

gz
2

nm 30

!1=3

: (30)

and for the limit q / 1, derived in Appendix C:

dg ¼ 2:83n0:13m U0:73
g z0:43

g0:43 31:170 z0:10c

and W ¼ 2:67g0:21U1:15
g z0:79

n0:55m 30:930 z0:12c

: (31)

where we used the last approximation in Eq. (27), evaluated at

30 ¼ 0.4.

For dg, the scaling with height changes from z1/5 for an

exponential plume, at small heights, to z1/3 � z0.43 for a step-

function gas fraction profile, at large heights. The plume

thickness, thus, increases much faster with z as the height

increases. The plumes are exponential for very low current

densities and dgfU�1=5
g , see Eq. (10). As the current density

increases and amaximumwall gas fraction is approached, the

step-function gas fraction profile results in the scaling of dg

between U1=3
g � U0:73

g , see Eqs. (30) and (31).
The dependence of velocityW on height increases from z3/5

for an exponential plume to z2/3 � z0.79 for a step-function gas

fraction profile. The scaling for W with current density

changes from U2=5
g at low current densities to U2=3

g at higher

current densities when the gas fraction approaches a

maximum. For the higher current densities, this dependence

becomes approximately linear, U1:15
g , according to Eq. (31). The

velocity thus also increases much faster with increasing cur-

rent density.

In electrolyzers, the wall strain rate is often a quantity

of interest, for example, to estimate heat and mass

transfer to the electrode. The wall strain rate also has an

effect on the removal of bubbles attached to the surface.

From Eqs. (29) and (28), we can estimate the wall strain

rate w0≡vw
vx

��
x¼0

as

w0 ¼ W
dg

¼
 

g2Ugz 30q2

n2mðqþ 2Þ2hðqÞ

!1=3

: (32)

which gives, as shown in Appendix C:

w0 ¼
8<
: 6:4

�
30Ugzn

�1
m

	1=3
; q[1

3:9ð1� 30Þ0:06 3
0:24
0 U0:41

g z0:35n�0:70
m ; q/1

: (33)

Interestingly, the expression for w0 has a minimum power

of Ug and z near q ~ 5. This is because even though the powers

ofUg and z in the expression of dg andW increase as the height

and the current density increase, the powers in dg increase

faster than the powers inW for q< 5. For q> 5, the powers ofUg

and z in dg increases slower than in W. For q ~ 5, we find in

Appendix C

w0 ¼ 4:8ð1� 30Þ0:05 3
0:42
0 U0:27

g z0:31n�0:63
m : (34)

From Eqs. (32)e(34), we find that the scaling for w0 changes

from U3=5
g for an exponential gas fraction profile to U0:27

g � U0:41
g

for a step-function gas fraction profile.

Another important quantity for electrolyzers is the liquid

flow rate. We can calculate the average superficial liquid ve-

locity, CWD ¼ 1
l

R l
0 wð1 � 3Þdx, to be

CWD ¼ Ugz

30l
1þ ðq� 1Þ2 � 2e�q � 2e�1 30ðq� 0:64Þ

2qhðqÞ ; (35)

where q is calculated at an effective height zeff for which the

actual average velocity between df and l is negligible. Since we

assumed vP/vz ¼ 0 and did not consider any boundary condi-

tion for large x we effectively considered a semi-infinite

domain in our analysis. In our simulations and in practice,

there will usually be an opposing wall and a slight adverse

pressure gradient vP/vz, causing some backflow w < 0 beyond

the plume region, which is neglected in Eq. (35). In Appendix

D, simulations show that a good approximation for the su-

perficial velocity is obtained by evaluating Eq. (35) at z ¼ zeff ~

h/3 may be used as a rough approximation for relatively wide

channels.

It should be noted that while deriving the results for the

step-function gas fraction profile, the diffusion equation is not

https://doi.org/10.1016/j.ijhydene.2023.03.154
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used. As such, these relations will be valid as long as we have

an approximately step-function gas fraction profile with

constant 30, irrespective of the mechanism of transverse

bubble transport.
Verification using numerical solutions

We solve themixture model formulation for multiphase flow

[9,46,49,50] using COMSOL Multiphysics v5.6, update 2 [76].

The physical properties of the electrolyzer used for the

simulations are listed in Table 1. We consider an electrolyzer

setup as shown in Fig. 1. The gas is generated at the electrode

on the left and escapes from the top boundary. The liquid

electrolyte is recirculated back into the electrode channel

through a downcomer section. We simulate only the elec-

trode channel as shown in Fig. 1. This requires proper

boundary conditions at the top and the bottom of the

channel.
Boundary conditions

The mixture model allows only the mixture and gas bound-

ary conditions. At the electrode surface, we want to prescribe

a no-slip condition for liquid and the gas flux. In the hori-

zontal direction at the electrode surface, we use an inlet

boundary condition such that the gas flux is equal to Ug. In

the vertical direction, we impose a zeromixture velocity with

zero slip velocity at the boundary nodes. This ensures that a

no-slip boundary condition is imposed for the liquid phase.

At the opposite boundary, we use a no-slip condition at the

boundary nodes with zero mixture velocity. When the flow at

the top is in the positive z � direction, a pressure boundary

condition (p ¼ 0) is used with gas escaping from the top

boundary. When the flow at the top is in the negative

z � direction, we specify a local Bernoulli condition p ¼ � rw2

2

with no gas recirculating back into the channel. At the bot-

tom, we specify a local Bernoulli condition p ¼ rgh� rw2

2 with

no gas flux. The boundary conditions are also shown in Fig. 1.

Similar boundary conditions have been previously used for

modeling natural thermal convection [77e79]. We compared

the results obtained using these boundary conditions with

the simulation of the full configuration of Fig. 1 in Appendix

B. Using these boundary conditions, we get the results

almost indistinguishable from those in the full configuration,
Table 1 e Dimensions and operating conditions used in
numerical simulations for verification cases.

Properties Value

Channel Width, l 10 mm

Entrance height, hen 50 mm

Exit height, hexit 50 mm

Electrode height, h 900 mm

Electrolyte density, r 1000 kg/m3

Kinematic viscosity, n 10�6 m2/s

Bubble Diameter, db 75 mm

Maximum gas fraction, 3max 0.4
and we could achieve faster and easier convergence of nu-

merical results at larger heights.

Verification of step-function gas fraction profile relations

We verify our analytical expressions by comparing them with

various numerical results obtained using COMSOL. The nu-

merical plume thickness is calculated by dg;n ¼ R l0 3dx= 30 and

the numerical value of the characteristic velocity Wn is

calculated by Wn ¼ w0
ndg;n. We consider different cases

involving different current densities, electrode heights,

maximum gas fractions, and bubble diameters. All these

simulation results are obtained using the properties listed in

Table 1.

Fig. 3 and Fig. 4 show the development of the gas fraction

profile and the velocity profile as a function of height for

Ug ¼ 1 mm/s with a maximum gas fraction 3max ¼ 0.4. This

corresponds to a current density of 8 kA/m2 at atmospheric

conditions for hydrogen evolution and is a representative case

for the step-function gas function profile. Under some simu-

lated conditions, a degree of turbulence can arise in actuality,

which is not included in the simulations. Therefore, these
Fig. 3 e The development of gas fraction profile and the

velocity profile for the step-function gas fraction profile at

Ug ¼ 1 mm/s for the properties used in Table 1. The gas

fraction profile is shown in color, and the numerical

velocity profile is overlaid as an arrow plot at z ¼ 0.3 m,

z¼ 0.6 m and z¼ 0.9 m. The solid lines show the analytical

velocity profile given by Eq. (8) at the same heights. We

used Eqs. (28) and (29) to determine df ¼ qdg and W, after

solving Eq. (26) numerically for q. (For interpretation of the

references to color in this figure legend, the reader is

referred to the Web version of this article.)
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Fig. 4 e Numerical results for gas fraction profiles (dashed)

and the velocity profiles (solid) at different current

densities at z ¼ 0.9 m for the properties listed in Table 1.

Here, the gas fraction at the electrode surface approaches a

maximum value, and we see that the plume thickness,

peak velocity and strain rate increase with increasing

current density.

Fig. 5 e Plot showing in our analytical model, the variation

of q and df with Ug at z¼ 0.9 m and a relatively high current

density at which a step-function can approximate the gas

fraction profile. While q decreases, df remains relatively

constant. This causes all velocity profiles to cross the same

point around x¼ 3mm in. The power q ∝ U¡0.47 is obtained

using a least squares fit on the analytical results of Eq. (26).

It is close to the power of U�4ð1� 30Þ1=4=7
g predicted by the last

approximation in Eq. (27), which gives U�0:5
g for 30 ¼ 0.4.
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results should be used with caution. We see an increasing

plume thickness and peak velocity as the height increases.We

also see that the gas fraction remains close to the maximum

gas fraction and drops quickly to 0 near the edge of the plume,

justifying our assumption of a step-function gas fraction

profile. Interestingly, Fig. 4 shows that the velocity profiles all

cross in the same point around x z 3 mm, indicating that df
should be approximately independent of Ug in this range. This

implies that while dg increaseswith increasingUg, q decreases,

so that df ¼ qdg does not change. This is also indeed predicted

by our analytical solution, as shown in Fig. 5.

The characteristic velocity W, gas plume thickness dg, and

strain rate w0 as a function of height are shown in Fig. 6. We

see that the analytical results obtained using Eq. 29e32 show a

reasonably good agreement with the numerical results ob-

tained using COMSOL. The dotted lines show the analytical

results when q is calculated using Eq. (26).

In Fig. 7, we showW, dg andw0 as a function ofUg at a height

of 0.9 m for the properties listed in Table 1. Due to the large

range of Ug, we see a transition in scalings for all quantities. At

small values of Ug, the results for the exponential-shaped gas

fraction profile are valid, so WfU2=5
g , dgfU�1=5

g and w0fU3=5
g . In

contrast, the results for step-function gas fraction profiles are

valid at large values of Ug and we find, from a least squares fit

of the numerical results, that WfU0:68
g , dgfU0:42

g and w0fU0:26
g .

To obtain these scaling analytically, we first calculate q by

using Eq. (14) for the exponential profile or by numerically

solving Eq. (26) for the step-function profile. Once the value of

q is known, we use Eqs. (10), (11) and (13) for the exponential
profile, while Eqs. (28), (29) and (32) are used for the step-

function gas fraction profile. We see a good agreement with

the numerical results and that the analytical results capture

the transition very well. The small offset in the predicted

values may be due to the discrepancy in the assumed and

actual profiles, also seen in Fig. 3.

Reference [80] observes that w0fU0:64
g for oxygen bubbles

andw0fU0:43
g for hydrogen bubbles for a current density range

of 0.005e0.11 A/cm2. In alkaline electrolytes, oxygen bubbles

are substantially larger than hydrogen bubbles [74]. Therefore,

it is plausible that the oxygen gas fraction profile was

approximately exponential, while the hydrogen gas fraction

profile was more similar to a step function. The scaling

w0fU0:64
g , observed for oxygen bubbles in Ref. [80] is in agree-

mentwithU3=5
g derived for the exponential gas fraction profile.

While the scaling w0fU0:43
g for hydrogen bubbles lies close to

the range U1=3
g � U0:41

g derived in Eq. (33) for the step-function

gas fraction profile.

In Fig. 7, we observe a transition from a higher power

ðw0 fU3=5
g Þ to a lower power ðw0 fU0:26

g Þ around Ug z 0.08mm/s

or 800 A/m2, see Eq. (A.6). A similar transition from a higher

power at current densities around 50 A/m2 to the mentioned

w0fU0:43
g was observed for hydrogen. The transition from an

exponential to step-function gas fraction profile could there-

fore be an explanation of the increasing slope of w0 with Ug

observed in Ref. [80], particularly for hydrogen bubbles, even

though there is a lot of scatter in the experimental data at low

https://doi.org/10.1016/j.ijhydene.2023.03.154
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Fig. 6 e Log-log plot of W, plume thickness dg, and wall

shear rate w′ as a function of height z for Ug ¼ 1 mm/s

using the properties listed in Table 1. It can be seen that

the analytical results (dashed line) have a reasonably good

agreement with the numerical results (solid line). There are

small differences in the magnitude, possibly due to the

discrepancy in the assumed velocity and gas fraction

profiles. We used Eq. (26) to numerically solve for q and

found that it decreases as the height increases, highlighted

explicitly in Eq. (27).

Fig. 7 e Log-log plot of W, plume thickness dg, and shear

rate w′ with Ug at z ¼ 0.9 m using the properties in Table 1.

The solid line represents the numerical solution using

COMSOL while the dashed lines correspond to our

analytical solution. Here, we used Eq. (26) to solve for q

numerically. We see a transition from an exponential gas

fraction profile to a step-function gas fraction profile,

evident from the change of slope. For a hydrogen evolution

reaction, Ug ¼ 1 mm/s corresponds to a current density of

8 kA/m2 at atmospheric conditions.

Fig. 8 e Log-log plot of the flow rate CWD with Ug for the

properties listed in Table 1. For the step-function gas

fraction profile, Eq. (35) valid at high Ug, we used zeff ¼ 0.4h

for l ¼ 10 mm as indicated by Fig. D.11(a). For the

exponential gas fraction profile, Eq. (A.7) valid at small Ug,

we used zeff ¼ 0.75h for l ¼ 10 mm as indicated by

Fig. D.11(b). It can be seen that the analytical results

(dashed line) predict the flow rate with good accuracy.
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current density. The step-function gas fraction profile analysis

will be relevant for many experimental results with small

bubbles. For bigger bubbles, the exponential gas profile anal-

ysis may be more appropriate.

In Fig. 8, we show the natural convection electrolyte flow

rate as a function of the superficial gas flux. We see that the

flow rate increases as the gas flux is increased due to the

presence of a larger amount of bubbles, resulting in increased

buoyancy. We also see that Eq. (35) predicts the numerical

results with good accuracy using z ¼ 0.4h, in agreement with

Fig. D.11 for l ¼ 10 mm.

For the verification of our step-function gas fraction profile

results in Figs. 3e8, we used a fixed bubble diameter of 75 mm

and a maximum gas fraction of 0.4. We also verified our re-

sults at a smaller bubble diameter of 50 mm and different

maximum gas fractions of 0.3, 0.4, and 0.5. We used a smaller

Ug ¼ 0.2mm/s, as themaximum gas fraction is reached earlier

for smaller bubble diameters due to the associated lower

bubble dispersion coefficient. We summarize these results in

Table 2 for z ¼ 0.9 m. We see again a good agreement of

analytical results with the numerical results obtained using

COMSOL.
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Table 2e Comparison of analytical resultswith numerical results obtained using COMSOL forUg¼ 0.2mm/s at z¼ 900mm
for a bubble diameter of 50 mm and properties used in Table 1.

Numerical Analytical Difference

30 W (m/s) dg (mm) w0 (1/s) W (mm) dg (mm) w0 (1/s) W dg w0

0.3 1.88 1.11 1693.8 1.73 1.3 1324.5 �8% 17% �22%

0.4 1.61 0.92 1744.9 1.48 1.06 1393.6 �8% 15% �20%

0.5 1.39 0.82 1696.1 1.29 0.93 1389.9 �8% 13% �18%
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Conclusions

In this paper, we provide analytical relations for the velocity

and gas fraction profile near a gas-evolving electrode. We

derived analytical expressions for quantities like flow rate and

wall shear rate for natural convection conditions. These re-

lations are derived using the integral method, assuming first

an exponentially shaped gas fraction profile and then a step-

function gas fraction profile with constant electrode surface

gas fraction and gas flux.

As we did not use any horizontal gas transport equation in

our derivation, our analytical expressions for the step-

function gas fraction profile are generally valid, for any type

of horizontal transport mechanism.

We found that the characteristic liquid velocity W and the

gas plume thickness dg increase as a function of height z for

both exponential (dg f z1/5, Wfz3=5) and step-function�
dgfz1=3 � z0:43, Wfz2=3 � z0:79

	
gas fraction profiles. The

exact power depends on the value of q¼ df/dg, which in case of

a step-function gas fraction profile depends on the gas flux

andmaximumgas fraction through Eq. (26). The characteristic

liquid velocity also increases with an increase in gas flux Ug.

However, with an increase in gas flux, the gas plume thickness

decreases for an exponential gas fraction profile as U�1=5
g ,

while it increases for a step-function gas fraction profile as

U1=3
g � U0:73

g according to Eq. (28). We also observed that at a

given height, the velocity profiles all cross at the same point

for different high current densities. This is because while the

plume thickness increases, q decreases, so df is almost a

constant. Finally, we derived an analytical expression for the

average superficial liquid velocity due to natural convection,

Eq. (35), and validated it numerically for large current

densities.

Both the exponential and step-function gas fraction pro-

files are relevant for water electrolyzers. Small bubbles at at-

mospheric pressure reach their maximum gas fraction

quickly and develop a step-function gas fraction profile, while

at high pressures, small heights, and/or relatively large bub-

bles, the gas fraction profile will be approximately exponential

in shape.
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Appendix A. Exponential gas fraction profile

In section 3.1, we provided analytical relations for an

exponential-shaped gas fraction profile of Eq. (7). Here we

provide the derivation of the provided analytical expressions.

At x ¼ 0, the no-slip condition gives u ¼ w ¼ 0. In our deriva-

tion, wewill neglect 3≪ 1 in comparison to unity, so nm¼ n and
uHd

1� 3= 3max
zuHd. Using this, we can integrate Eq. (4) from x ¼ 0 to l

with an exponential plume for dg ≪ l to give

W ¼ 30gd
2
gq

nðqþ 2Þ: (A.1)

The conservation of gas volume in Eq. (1) can be rewritten

as

Ugz ¼ HðqÞdg 30W: (A.2)

Eq. (6) gives us z uSt þ uHd, so ujx¼0zuHdzDb=dg. For 30 ≪ 1,

we can rewrite Eq. (3) as

Db 30

dg
¼ Ug: (A.3)

Substituting Eq. (7), Eq. (8) and Eq. (A.1) in Eq. (4) and inte-

grating between x ¼ 0 and x ¼ l for dg ≪ l gives

2nW
dgq

¼ dðFðqÞdgW2Þ
dz

; (A.4)

where FðqÞ≡432e�q�27e�2qþ36q3�162q2þ378q�405
108q2 . Eqs. (A.1)-(A.4) allow

solutions in terms of powers of z. Eliminating 30 from Eqs. (A.1)

and (A.2) using (A.3) gives

W ¼ Uggd
3
gq

nDbðqþ 2Þ and Dbz ¼ HðqÞd2gW: (A.5)

Eliminating W from Eq. (A.5), dg can be calculated by Eq.

(10). Using (10) in Eq. (A.5) and (A.3), we can findW and 30 using

Eqs. (11) and (12), respectively.

The exponential gas fraction profile will be relevant when

the inlet gas flux Ug is small. The transition to step-function

profile occurs when 30 ~ 3max. We can calculate the approxi-

mate condition for the transition in terms of gas flux using Eq.

(12) as

Ugz

�
D3

b 35maxgqHðqÞ
nzðqþ 2Þ

�1=4

; (A.6)

which givesUgz 0.08mm/s for the properties listed in Table 1.

We see in Fig. 7 that the transition to block plume indeed

starts around this value.
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We can estimate the superficial liquid velocity or the liquid

flow rate per unit flow area, CWD ¼ 1
l

R l
0 wð1 � 3Þdx, using Eqs. (7)

and (8) to be

CWD ¼ Wdgð1� qþ 0:5q2 � e�qÞ
ql

: (A.7)

This expression should be evaluated at an effective height

z ¼ zeff for which the average liquid flow rate beyond x ¼ df is

zero, which is further analyzed in Appendix D.

In thermal and solutal natural convection, Eq. (8) is often

replaced by [30,81]:

w ¼ We
� x
df

�
1� e�x=dg 	; (A.8)

which gives

dg ¼
�
nD2

bz
gUg

ðqþ 1Þðqþ 2Þð2qþ 1Þ
q3

�1=5

;

30 ¼
 
nU4

gz

gD3
b

ðqþ 1Þðqþ 2Þð2qþ 1Þ
q3

!1=5

;

W ¼
 
Dbg2U2

gz
3

n2
ðqþ 1Þ2ð2qþ 1Þ2

q4

!1=5

;

(A.9)

These expressions have the same powers of z and Ug as

Eqs. 10e12, but depend differently on q. q, in this case, is given

by

qz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
40Pr b

7

r
1þ ffiffiffiffiffiffiffiffiffi

Pr b

p

1þ 2
ffiffiffiffiffiffiffiffiffi
Pr b

p : (A.10)

Bubble Prandtl Number

The analytical relations derived for the exponential-shaped

gas fraction profile require an estimate for q. Assuming that

functions of q can be expressed as some power of q and

comparing powers, we find from Eq. (A.1)-(A.4) that q f z0. Eq.

(A.4) can be written as

FðqÞdðdgW
2Þ

dz
¼ 2nW

qdg
: (A.11)

Differentiating Eq. (A.2) with respect to z and using the

expression in Eq. (1) gives

HðqÞdðdg 30WÞ
dz

¼ Ug: (A.12)

Dividing Eq. (A.11) by Eq. (A.12) using Eq. (A.3), we get

FðqÞ
HðqÞ

d
dz ðdgW2Þ
d
dz ðdg 30WÞ ¼

2nW
qDb 30

: (A.13)

Using the scalingsWfz3=5, df z1/5 and 30 f z1/5 in Eq. (A.13)

gives
Prb ¼ n

Db
¼ 7

10
qFðqÞ
HðqÞ : (A.14)

Equation (A.14) can be solved for q for a given bubble

Prandtl number. An excellent approximation for all values of q

with a relative error <5% is given by Eq. (14).
Appendix B. Verification of boundary conditions

Figure B.9 e Comparison of numerical results for (left) the

simplified channel geometry used in the main text and

(right) the full recirculating channel geometry. The results

are shown for the properties listed in Table 1 at a

superficial gas flux of Ug ¼ 0.5 mm/s. We see that both (top)

the gas fraction and (bottom) the vertical velocity are

similar in both cases. This shows that the boundary

conditions of Fig. 1 are appropriate to model the natural

recirculation due to the gas produced at the vertical

electrode. We have resized the recirculating geometry and

the boxed region is zoomed to show the comparison with

the simplified channel geometry.

https://doi.org/10.1016/j.ijhydene.2023.03.154
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Figure C.10 e Semi-log plot showing the variation of

powers a1, a2, and a3 with q. We observe that a1 and a2
change monotonously with q, while a3 has a maxima near

q ~ 5.
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In this section, we verify the boundary conditions dis-

cussed in the main text and shown in the left part of Fig. 1

using a simulation of a full recirculation geometry including

the downcomer section shown on the right of Fig. 1. For the

full recirculation geometry, we use the same inlet boundary

condition for the electrode, such that the gas flux is equal to

Ug. At the top, we use a dispersed phase outlet boundary

condition, so the gas escapes from the top boundary. For the

electrolyte, a slip boundary condition is used at the top

boundary. At other walls, a no-slip boundary condition is

imposed. From Fig. B.9, we see that the results for the channel

geometry used in the main text are similar to the full recir-

culating channel results, both for the gas fraction and the

velocity profile with very minute differences near the top and

the bottom of the channel, due to the boundary conditions.

Owing to the better convergence and reduced simulation time,

we used the channel geometry with the boundary conditions

highlighted in Fig. 1.
Appendix C. Expressions in the limit q/1

In this section, we derive Eqs. (31), (33) and (34). For the limit q

/ 1, the last approximation of Eq. (27) is given as

q ¼
 
g 30n

2
mzc

zU4
g

!ð1� 30Þ4=7

(C.1)

where the power 0.12 correspond to 30 ¼ 0.4 and may vary

slightly between 0.11 and 0.14 for a different 30.

To derive the scaling in the limit q/ 1 for dg, Ug andw0, we

first need to locally write qþ2
qhðqÞ ,

q

ðqþ2ÞhðqÞ2 and q2

ðqþ2Þ2hðqÞ appearing

in Eqs. (28), (29) and (32) as powers of q as

�
qþ 2
qhðqÞ

�1=3

¼ 2:83qa1 ;

 
q

ðqþ 2ÞhðqÞ2
!1=3

¼ 2:67qa2

 
q2

ðqþ 2Þ2hðqÞ

!1=3

¼ 0:94qa3

(C.2)

where a1 ¼
ln

�
qþ2

2:833qhðqÞ

�
3lnðqÞ , a2 ¼

ln

�
q

2:673 ðqþ2ÞhðqÞ2

�
3lnðqÞ and a3 ¼

ln

�
q2

0:943 ðqþ2Þ2hðqÞ

�
3lnðqÞ .

In Fig. C.10, we plot the powers a1, a2 and a3 as a function of

q. We observe that a1 and a2 show a monotonous behavior

with a finite negative value at q ¼ 1 decreasing to nearly 0 at

large q. In this case, both dg and W increase as z increases.

Interestingly, a3 increases from �0.1 to 0.13 for q ¼ 1 � 5 and

then decreases to 0 as q approaches infinity. In this case, we

would have a local minimum in the power of Ug and z in the

expression of w0. This minimum occurs when q ~ 5.

We can, using a1 ¼ �0.8, a2 ¼ �0.95 and a3 ¼ �0.15 and Eq.

(C.1) and (C.2), write for the limit q / 1:
dg ¼ 2:83

 
zU4

g

g 350n
2
mzc

!0:114ð1� 30Þ1=4�
nmUgz

g 320

�1=3

;

W ¼ 2:67

 
zU4

g

g 350n
2
mzc

!0:136ð1� 30Þ1=4 gU2
gz

2

nm 30

!1=3

; and

w0 ¼ 0:94

 
zU4

g

g 350n
2
mzc

!0:021ð1� 30Þ1=4�
g2Ugz 30

n2m

�1=3

: (C.3)

which on simplification gives Eqs. (31) and (33). Similarily, the

local minima in the powers of Ug and z in the expression of w0

is obtained by using a3¼ 0.13 near q/ 5 in Eq. (C.1) and (C.2) to

give

w0 ¼ 0:94

 
g 30n

2
mzc

zU4
g

!0:019ð1� 30Þ1=4�
g2Ugz 30

n2m

�1=3

: (C.4)

resulting in Eq. (34) upon simplification and using 30 ¼ 0.4.

Appendix D. The effective height z_eff

In themain text, we used an effective height zeff for which the

average velocity between df < x < l is negligible in simulations.

In this section, wewill try to quantify this height with the help

of our simulations. To do this, we performed various simula-

tions varying the current density, electrode height, channel

width, and bubble diameter. In Fig. D.11, we show the results

of various simulations varying different parameters and find

that the zeff becomes approximately independent of the

channel width for wide channels of a few cm in case of a step-

function plume and a bit more in case of an exponential

plume. There is some variation with bubble size, height in

case of an exponential plume, and maximum gas fraction in

case of a step-function plume. Except for thin channels, as a
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rough approximation one may take zeff ~ h/3 for a step-

function plume and h/2 for an exponential plume.

Figure D.11 e Plot showing zeff/h as a function of gap width

for different electrolyzer heights, maximum gas fraction,

and bubble diameter. Here zeff is the height for which the

average superficial velocities for the analytical and

numerical results are the same. Unless otherwise

mentioned, the properties listed in Table 1 are used. These

results for a step-function gas fraction profile (Ug ¼ 1mm/s)

show that zeff/h becomes independent of gap width l, but

depends somewhat on db and 3max. The results for the

exponential gas fraction profile (Ug ¼ 0.01 mm/s) seem to

indicate that a large variation in zeff/h becomes

independent of l for a bit larger values. For the exponential

case, the red and gray lines overlap as the gas fraction

remains small, and the maximum gas fraction has no

effect on the hydrodynamics.
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