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Abstract
Neural-network classifiers achieve high accuracy when predicting the class of an input that they were trained to identify.
Maintaining this accuracy in dynamic environments, where inputs frequently fall outside the fixed set of initially known
classes, remains a challenge. We consider the problem of monitoring the classification decisions of neural networks in the
presence of novel classes. For this purpose, we generalize our recently proposed abstraction-based monitor from binary output
to real-valued quantitative output. This quantitative output enables new applications, two of which we investigate in the paper.
As our first application, we introduce an algorithmic framework for active monitoring of a neural network, which allows
us to learn new classes dynamically and yet maintain high monitoring performance. As our second application, we present
an offline procedure to retrain the neural network to improve the monitor’s detection performance without deteriorating
the network’s classification accuracy. Our experimental evaluation demonstrates both the benefits of our active monitoring
framework in dynamic scenarios and the effectiveness of the retraining procedure.

Keywords Monitoring · Neural networks · Novelty detection

1 Introduction

Automated classification is an essential part of numerous
modern technologies and one of the most popular applica-
tions of deep neural networks [25]. Neural-network image
classifiers have fast-forwarded technological development in
many research areas, e.g., automated object localization as a
stepping stone to successful real-world robotic applications
[46]. Such applications require a high level of reliability.

However, when deployed in the real world, neural net-
works face a common problem of novel input classes appear-

ing at prediction time, leading to inherent misclassifications,
which can stay undetected, accumulate over time, eventually
reduce the overall accuracy, and possibly lead to system fail-
ures. The likelihood of severe system damage increases with
the frequency and diversity of novel input classes. Typically,
this risk is addressed by detecting novel inputs, augmenting
the training dataset, and retraining the classifier from scratch
[34]. This procedure is not only inefficient, but also leaves
the system vulnerable until such a dataset has been collected.
Techniques to incrementally adapt classifiers at prediction
time are beneficial for improving accuracy in real-world ap-
plications [37, 39]. They, however, do not provide desired
interpretability for humans.

Therefore approaches to run-time monitoring of neural
networks were introduced [36]. In particular, approaches
based on abstractions [5, 6, 19, 48] proved to be effective
at detecting novel input classes and provide transparency
of neural-network monitoring. Crucially, these monitors are
constructed offline and remain static at prediction time. Func-
tionalities they are still lacking are distinguishing between
“known” and “unknown” novelties and selectively adapting
at prediction time.

In this work, we propose a new monitor designed for the
adaptive setting. In contrast to traditional qualitative mon-
itoring, which judges whether or not an observed input–
output pair of the network is reliable, our new quantita-
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Fig. 1 High-level overview of
the framework

tive monitor computes a numerical “reliability metric” for
each observed input–output pair. For this purpose, we extend
the abstraction-based monitor from our previous work [19],
which was only able to give qualitative output. Very briefly,
the idea was to detect unusual patterns in the feature space
(i.e., the hidden layers) of the neural network. The metric
of our new quantitative monitor is a distance in this feature
space.

Based on the quantitative feedback of the monitor, we
present an active monitoring framework for neural networks
that detects novel input classes, obtains the correct labels
from a human authority, and adapts the neural network and
the monitor to the novel classes, all at prediction time. The
framework contains a mechanism for automatic switching
between monitoring and adaptation based on run-time statis-
tics.

Figure 1 visualizes the chronology of the different steps.
The neural network receives an input at run-time. This input
is classified while the monitor watches the classification pro-
cess. In this work, we abstract from what should happen if
the monitor reports a misclassification; in the figure, this is
reported to an authority, but we do not assume this authority
to be continuously available. The authority’s sole task is to
assess the reported input and assign the correct label to it.
When enough samples have been labeled by the authority in
such a way, the adaptation is triggered.

Each reported input falls into one of three possible cases:
it can be either a novelty, a misclassification of a known class,
or a correct classification. From the monitor’s perspective,
the first two cases are true positives, whereas the latter is
a false positive. Correspondingly, adaptation consists of ei-
ther retraining the neural network to learning new classes
(case 1), retraining the neural network to improve its accu-
racy (case 2), or adapting the monitor to improve its accuracy
(case 3) whenever enough data of the corresponding case has

been collected. Retraining is applied to the network and the
monitor independently.

The quantitative metric allows for easy adaptation to newly
introduced labels at prediction time and maintains overall
classification accuracy on inputs of known and previously
novel classes combined. As such, our framework is an inter-
active and interpretable tool for informed decision making
in neural-network based applications.

This paper is an extended version of Lukina et al. [28]. In
addition, we present a new procedure to improve the quanti-
tative monitor’s detection performance. The goal is to detect
more novelties while not raising more false warnings. The
challenge for this task is the nature of novelties: We cannot
anticipate what a novel class will look like and therefore can-
not optimize for a particular novel class. Instead, we retrain
the neural network on the proxy task of reducing the quanti-
tative metric of the monitor on the known classes. Recall that
the metric describes a distance in the feature space. The in-
tuition is that, by reducing this distance, the network learns
to pack specific features closer together, which allows the
monitor to better detect novel features. To achieve this effect
via retraining, we formulate a new training objective that
incorporates both the original network’s task and the task
of reducing the quantitative metric. By carefully weighing
these two tasks during retraining we avoid a decline of the
network performance on its original objective.

We summarize the contributions of this paper:

1. We propose a quantitative monitor to measure the confi-
dence of the novelty detection (Sect. 4).

2. We propose an automatic framework with two modes,
monitoring and adaptation, that operates in parallel with
the original neural network and adapts the monitor to
novel input classes at prediction time (Sect. 5).

3. We propose a procedure based on the quantitative feed-
back of the monitor to retrain the neural network for im-
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Active monitoring of neural networks

proving the monitor’s performance and avoiding decline
in the network’s accuracy (Sect. 6).

4. We provide an experimental evaluation (Sect. 7) on a di-
verse set of image-classification benchmarks. The evalu-
ation demonstrates the effectiveness of the framework for
achieving high monitor performance over time. Given a
fixed budget of times the monitor can query the authority
for a label, our monitoring approach adapts to the avail-
able classes and consumes the budget more effectively.
Our evaluation also shows that the retraining approach
yields neural networks with equal classification perfor-
mance but significantly improved monitor performance.

2 Related work

Novelty detection Gupta and Carlone [16] consider neu-
ral networks that estimate human poses, for which they pro-
pose a domain-specific monitoring algorithm trained on per-
turbed inputs. Our framework is not limited to any specific
domain of images. Common novelty-detection approaches
[35] examine the input-sample distribution [22], which is
computationally heavier at run-time than our monitor. Sev-
eral approaches monitor the neuron valuations and compare
to a “normal” representation of those valuations per class,
obtained for a training dataset: the patterns of neuron indices
with highest values [41] or positive/nonpositive values [6],
and a box abstraction [19, 20, 48]. These monitors are purely
qualitative and hence not adaptive, in contrast to our metric-
based monitor. Recent work takes a statistical approach to
latent-space approximation [17], where the intervals, calcu-
lated based on fitted Gaussians, serve as an alternative to the
box abstraction.

Anomaly detection There are other directions for detect-
ing more general anomalous behavior, not necessarily only
novel classes. In selective classification, an input is rejected
based on a (quantitative) confidence score, already at train-
ing time [12]. The probably best-known approach classifies
based on the softmax score [15, 18], which is shown to be lim-
ited in effect [11]. A recent approach looks at the neurons’
relative activation and deactivation patterns to detect out-
of-distribution inputs [53]. Similarly to ours, this approach
builds an abstraction of the hidden layers. Approaches to fail-
ure prediction identify misclassifications of known classes
[51]. Domain adaptation techniques detect when the under-
lying data distribution changes, which is needed for reli-
able statistical methods [38]. Notably, Royer and Lampert
[39] show that correlations in the data distribution can be
exploited to increase a classifier’s accuracy; although that
approach applies to arbitrary classifiers in an unsupervised
setting, it cannot deal with unknown classes. Sun and Lam-
pert [44] study the detection of out-of-spec situations where

classes do not occur with the expected frequency. An impor-
tant aspect of domain adaptation, transfer learning [33, 45],
is challenging online [54].

Continuous/incremental learning A central obstacle in
incremental learning is catastrophic forgetting: the classi-
fier’s accuracy for known classes decreases over time [31].
We mitigate that obstacle by maintaining a sample of the
training data and tuning the model on demand. Mensink
et al. [32] find that a simple nearest-class-mean (NCM) clas-
sifier (mapping an input to feature space and choosing the
closest centroid of all known classes) is effective; they also
consider multiple centroids per class, as we do, but they use
the Mahalanobis distance in contrast to our more lightweight
distance. Guerriero et al. [14] extend that idea to nonlin-
ear deep models, where the focus is on efficiency to avoid
constant retraining; we also delay retraining (network and
monitor) until accuracy deteriorates. Rebuffi et al. [37] ex-
tend the NCM classifier for class-incremental learning with
fixed memory requirements. That learning approach, work-
ing in a completely supervised scenario, retrains the neural
network using sample selection/herding and rehearsal. These
ideas could also be integrated in our framework, but a repre-
sentative sampling for our monitor is harder to obtain. Sim-
ilar to the NCM approach is the proposal by Mandelbaum
and Weinshall [30] to obtain a confidence score using a k-
nearest-neighbor distance based on the Euclidean distance
with respect to the training dataset, for which they require
to modify the training procedure; we do not need access to
the training procedure, and we experimentally found that the
Euclidean distance is not suitable for networks with different
scales at different neurons.

Active learning Our approach for active monitoring is in-
spired by active learning. Active learning aims to maximize
prediction accuracy even on unseen data by detecting the
most representative novel inputs to label and incrementally
retraining the neural network on a selected sample of labeled
novelties [42]. In contrast, the performance of our frame-
work is measured primarily by the run-time detection of the
monitor. We therefore use the incrementally retrained neural
network solely for the monitor adaptation in parallel with the
original model. Our quantitative monitor also reasons about
the feature space of the neural network (and not the input
space).

An essential idea behind active learning is that when se-
lecting the training data systematically, fewer training sam-
ples are needed; this selection is usually taken at run-time by
posing labeling queries to an authority [42]. Our approach
follows the spirit of selective sampling, where data comes
from a stream, from the region of uncertainty [8]. Das et al.
[9] use a statistical outlier detection adapting to the reactions
of the authority.
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In an open world setting, novel classes have to be detected
on the fly, and the classifier needs to be adapted accordingly.
This setting is first approached by Bendale and Boult [1]
using an NCM classifier and by Bendale and Boult [2] with
a softmax score. More recently, Mancini et al. [29] propose
a deep architecture for learning new classes dynamically.
Wagstaff and Lu [47] argue that two main obstacles in this
setting are the cold starts and the cost of having the classifier
in the loop.

Combining losses Our proposed procedure for incorpo-
rating monitoring feedback into the neural network training
is inspired by the recent work on provable robustness for neu-
ral networks [10]. Although this work is orthogonal to ours,
we employ a similar approach to balancing two losses: the
monitor distance loss and the classification loss, weighted
accordingly with adaptive coefficients.

3 Background and assumptions

In this paper, we deal with neural networks, which we denote
by N . For simplicity, we present the concepts assuming a
single feature layer � of the network, but they generalize to
multiple feature layers in a straightforward way. It is widely
believed that the essential feature information is available in
layers close to the final network output [50]. Note, however,
that a single feature layer is typically the best choice [19].

For our purposes, a monitor is a function taking both an
input and a classifier prediction, and then assesses whether
that prediction is correct. The monitor raises a warning if it
suspects that the prediction is incorrect. The assessment can
be qualitative (“yes” or “no”) or quantitative (expressing the
confidence of the monitor). We write �x for an unlabeled data
point, X for a (possibly labeled) dataset, y ∈ Y for a class in
a set of classes, and (�x, y) for a labeled data point.

Observing feature layers We are given a trained neural
networkN and a labeled dataset X (which is not necessarily
the dataset thatN was trained on) with classes Y. When we
observe a feature layer � for some input �x, we obtain the
corresponding neuron valuations at layer �, which we view
as a vector. We can thus compute the set of neuron valuations
Vy for each labeled data point (�x, y) ∈ X of class y ∈ Y.

Performance metrics As conventionally used for assess-
ing the performance of classifiers and monitors, we compute
different scores. Observe that a monitor is also a binary
classifier, so classifier scores apply to monitors as well. The
accuracy is the ratio of correct classifications over all classifi-
cations. The precision is the ratio of true positives TP over the
total number of positive predictions (including false positives

FP): TP/(TP + FP). For example, for the monitor this is the ra-
tio of correct warnings over the total number of warnings. At
run-time we can only compute the precision based on sam-
ples that we know the ground truth for, i.e., samples reported
by the monitor and subsequently labeled by an authority.
Other metrics are the true positive rate TPR = TP/(TP + FN)
and the false positive rate FPR = FP/(FP + TN).

Assumptions In this work, we make a number of assump-
tions. First, we assume the availability of an authority that
assigns the correct label for any requested input. Although a
human can play this role in many cases, in certain applica-
tions, like medical image processing, such an authority does
not necessarily exist. Second, in our experimental setup, we
assume that the authority is available in real time. We also
occasionally adapt the monitor or retrain the neural network.
While faster than building from scratch, this takes a non-
negligible amount of time. In time-critical applications, we
would need to delay these interactions and adaptations ac-
cordingly. In practice the authority can also be queried in
batches, which only results in a delay of the adaptation pro-
cess. Third, neural networks require a large amount of data
points to learn new classes. In our evaluation, there is suf-
ficient data available. Still, there are approaches that work
with only few samples [3, 27].

4 A quantitative monitor in feature space

In this section, we propose a quantitative monitor for neural
networks. At run-time, given an input �x and a correspond-
ing prediction y of the neural network, the monitor observes
the feature layer � and compares its valuation to a model of
“typical” behavior for the class y. This comparison is based
on a distance, and if this distance exceeds a given threshold,
then the input is flagged as a warning. Next, we describe the
steps to initialize this monitor, i.e., to construct said behav-
ioral model; these steps are also illustrated in Fig. 2. Given
a labeled training dataset, we observe the neuron valuations
for each class y ∈ Y (Fig. 2 (a)). Instead of working on
the neuron valuations directly, we obtain Vy by applying a
transformation matrix learned by principal component anal-
ysis (PCA) [21] to them. This reduces the dimensions and
increases the relevance of each dimension (principal compo-
nent, PC). We then apply a clustering algorithm to the sets
Vy (Fig. 2 (b)). In our implementation, we use k-means [26]
and find k dynamically. Clustering is motivated because in-
puts corresponding to the same class are typically mapped
to one of several disjoint neighborhoods in feature space, as
observed by Henzinger et al. [19].

So far the initialization is shared with the qualitative mon-
itor by Henzinger et al. [19], which would next compute the
box abstraction for each cluster, i.e., the smallest box that
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Fig. 2 Illustration of the steps
for initializing the quantitative
monitor on a fixed class in a
two-dimensional projection on
the first two principal
components PC 1 and PC 2 of
the feature layer �. (a) Sampling
of data points. (b) Result of
clustering (here two clusters
and ) where and ,
respectively, mark the cluster
centers. (c) Quantitative metric
for each cluster, visualized as
dashed lines. (d) Projection of a
quantitative monitor and its
detection results for a network
trained on the first two classes of
the MNIST dataset

contains all points in the cluster. A qualitative abstraction-
based monitor can only determine whether a point lies inside
the abstraction (here a box) or not. Since we are interested in
a quantitative monitor, we instead define a distance function
below.

Distance function We set reference points for computing
the distance function at the cluster centers. This way the
majority of points have low distance. Below we describe the
particular distance function, which we found effective in our
evaluation, also depicted in Fig. 2 (c) and (d).

Let us fix a class y ∈ Y and a corresponding clus-
ter By with center �c = (c1, . . . ,cn)T of dimension n. Let
�r = (r1, . . . ,rn)T be the radius of the bounding box around the
cluster. We define the distance of a point �p = (p1, . . . ,pn)T to
By as the maximum absolute difference to �c in any projected
dimension i, normalized by the radius ri :

d+( �p,By
) = max

i
|ci − pi | · r−1

i .

The distance generalizes to a set By of clusters for the
same class y by taking the minimum distance in the set:

d+( �p, y) = min
By ∈By

d+( �p,By
).

Computing the distance is linear in the dimension (i.e.,
the number of neurons in the feature layer). We note that we

can in principle also generalize the distance to a set of classes
Y to obtain a new classifier. In this paper, for the purpose of
monitoring, we just compare the distance for a fixed class to
some class-specific threshold. By default this threshold is 1,
but we can also adapt it during active monitoring, which we
explain in the next section.

5 Active monitoring algorithm

We design our monitoring framework to achieve high preci-
sion in detecting novel classes without depressing the learned
model’s run-time performance. To address this trade-off, our
framework operates in stages, switching between monitoring
and adaptation. This procedure is based on parallel compo-
sition of two components: a dynamically adapted copy of the
original neural network and a monitor that originally knows
the same classes as the network. During monitoring, inputs
to the network that are flagged by the monitor are passed to
an authority for assigning the correct label. From that, per-
formance scores for both the monitor and the neural network
are assessed for whether adaptation is required. During adap-
tation, depending on the assessment, the neural network or
the monitor is incrementally adjusted, or they are retrained
to learn an unknown class.
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Hyperparameters Before we explain the algorithm, we
introduce several parameters for the neural network, the mon-
itor, and the online procedure. We assume that the user sets
the upper bound on the loss of the prediction accuracy dur-
ing deployment. We define the model performance threshold
s∗network as 95% of the accuracy score of the original neural-
network model N on a test dataset (with classes known to
N ), which we use for making decisions about model adap-
tation. The parameter s∗samples is the number of collected and
labeled data samples of a novel class sufficient for incre-
mental adaptation of the model to this class, which we set
to s∗samples = 0.05|X|/|Y| for an initially given dataset. Nat-
urally, the higher s∗network is, the more data would need to
be collected and labeled to perform online adaptation. We
therefore expect that initially more than 5% of the average
size of training data per class is required to adapt to a novel
class of inputs. The parameter s∗monitor is the desired preci-
sion threshold of the monitor at run-time, which we set to
0.9. This value can be established based on the initial average
performance of the monitor constructed for a particular neu-
ral network and training dataset. The distance parameters d∗y
(for each class y ∈ Y) are thresholds for refining the inputs
detected by the monitor, initialized to 1.

We now explain our active monitoring algorithm, sum-
marized in Algorithm 1 and also illustrated in Fig. 1.

Initialization We start with a trained neural network N
with a feature layer � and a dataset X with a number of
classes (the “known” classes) as inputs. The first step in line 2
is to initialize a monitorM for this network, for example, as
described in Sect. 4 for our quantitative monitor. Recall that
instead of working on the feature layer’s neurons directly, we
learn a transformation matrix by applying principal compo-
nent analysis (PCA) [21] or Kernel PCA [40] to the neuron
valuations Vy . This transformation is not a requirement of
our framework, and hence we omit it in the pseudocode; as
we noticed experimentally, this step tends to further separate
the valuationsVy andVy′ for different classes y′ � y, which
improves the overall monitor precision.

Monitoring stage (lines 5–12) At run-time, we apply our
framework to a stream of inputs. For each input �x, we per-
form the following steps. We first apply the neural network
to obtain both the class prediction y and the (principal com-
ponents of the) neuron valuations �p at the feature layer �.
We then query the monitor M about the prediction. In the
case of the quantitative monitor, M computes the distance
d+( �p, y) with respect to the predicted class y. ThenM com-
pares this distance to a class-specific threshold d∗y ; initially,
this threshold is set to 1, but we increase this value during
the course of the algorithm later.

In the simple case that d+( �p, y) ≤ d∗y , the monitor does not
raise a warning, and the framework just returns the predicted

Algorithm 1 Active monitoring
Input N : trained model;X: training data;Xrun: online input

stream
1: while True do
2: M,Y← buildMonitor(N , X, �) // build monitorM

and extract known classes Y from X
3: while True do
4: // monitoring mode
5: �x← get(Xrun) // get next input �x
6: y← classify(N , �x) // predict class of �x
7: �p← observe(N , �x, �) // observe output at layer �
8: warning, �s← monitor( �p, y, M) // monitor and

compute statistics �s
9: if warning then

10: y�← askAuthority(�x, y,d+( �p, y))
11: X← collect(�x, y�,X) // add labeled pair (�x, y�)

to X
12: adapt_model← evaluate(�s, X, Y)
13: // adaptation mode
14: if adapt_model then
15: N ,M, X ← adaptModel(N,X) B
16: break
17: end if
18: M ← adaptMonitor(�s,M,N ,X) A
19: end if
20: end while
21: end while

class y for input �x (not shown in the pseudocode). Otherwise,
the monitor rejects the network prediction as unknown. In
this case, we query the authority to provide the ground truth
y∗ for input �x and add the pair (�x, y∗) to our training datasetX.
Our quantitative monitor additionally provides the authority
with the distance d+( �p, y) as a confidence measure, whereas
for qualitative monitors, this argument is missing. The proce-
dure evaluate(�s,X,Y), where �s = {snetwork, ssamples, smonitor},
decides between the following two scenarios, which we de-
scribe later.

A The ground truth matches the prediction (y∗ = y). In this
case, it was not correct to raise a warning, and we continue
with the monitor adaptation.

B The ground truth does not match the prediction (y∗ � y),
possibly because y∗ is unknown to N . In this case, it was
correct to raise a warning, and we continue with the model
adaptation.

Monitor adaptation (line 18) Procedure adaptMonitor(�s,
M,N ,X) for monitor adaptation in A is triggered if a wrong
warning was raised and only applies to our quantitative mon-
itor. Recall that the reason for raising a warning is that the
distance of �p exceeds the threshold for class y. We do not
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immediately adapt the monitor every time it raises a wrong
warning. Instead, we keep track of the monitor’s performance
over time in terms of a score smonitor . We only adapt the mon-
itor if smonitor drops below a user-defined threshold s∗monitor .
The adaptation performs two simple steps. First, we adapt
the cluster centers to the new collected data in X. Second,
we adapt the distance threshold d∗y as follows. Let ssamples
be the number of samples of class y that we have already
collected in X, and let s∗samples be a learning threshold as
defined before. We define the new threshold d∗y as

d∗y + (d+( �p, y) − d∗y) ·
s∗samples

ssamples
.

The first term is the old threshold, which ensures that the
threshold increases. The second term consists of a difference
(the amount by which we would have to increase the distance
to accept the given sample) and a discount factor relative to
the number of samples of class y (to reduce the influence of
outliers).

Model adaptation (lines 14–16) In contrast to monitor
adaptation, model adaptation in B involves retraining the
neural-network model to learn novel classes of inputs. Pro-
cedure adaptModel(N, X) performs this adaptation only if
one of the following conditions is satisfied:

B.1 The number of collected samples labeled by the au-
thority reaches a predefined threshold s∗samples.

B.2 The accuracy score of the current model snetwork falls
below the desired value s∗network .

In B.1 , using the dataset X replenished with the data
points reported by the monitor and labeled by the author-
ity, we identify which class (or multiple classes) should be
learned, based on the collected statistics �s. We then employ
transfer learning [33] to train a new model that recognizes
this class (classes) in addition to the ones already known.
Specifically, we remove the output layer and all trailing lay-
ers until the last fully connected one and then add a new
output layer corresponding to the desired number of classes
present in X. From the newly compiled model we also aug-
ment the monitor. In the case of our quantitative monitor, we
apply the steps from Sect. 4 for the new class(es) and set the
corresponding distance threshold(s) to 1.

In B.2 , we rely on regular run-time measurements of the
accuracy score for the current model. Algorithmically, this
is achieved by keeping a separate (not used for retraining)
test dataset after each successful transfer learning. We collect
only the inputs reported by our monitor and subsequently la-
beled by the authority. This is in line with our main objective
for the human in the loop to remain the ultimate trustee for
the framework.

Remark 1
The model obtained from transfer learning on the accumu-
lated labeled samples is not meant as a replacement for the
original model provided at the initialization stage but rather
as an assistant to ongoing active monitoring.

This concludes all possible cases for one iteration of the
algorithm. This process is repeated for each input in the
stream.

6 Making a neural network monitor-friendly

We are now coming back to the quantitative monitor pro-
posed in Sect. 4. For the sake of discussion, we quickly
recapitulate some relevant aspects. We are given a trained
neural network and a training dataset, from which we con-
struct an individual monitor. The construction finds a set of
boxes for each known class that covers the values the net-
work assumes at the feature layer � on the training data (resp.,
after applying a transformation matrix). At run-time, when
the network classifies an unknown input, the monitor com-
putes the distance for the proposed class and, based on that
distance, determines whether to consider the input a novelty.
The assumption underlying the monitor is that the network
maps inputs of the same class to clusters in feature space.

However, in practice the clusters are not necessarily
packed together but may rather be spread out. In that case,
it is more likely that the monitor assigns a low distance to
a novel input and thus misses it (low true-negative rate).
Missing such novelties can be easily avoided by decreasing
the distance threshold for rejection, but this generally also
increases the number of warnings for the outliers of known
classes (high false-positive rate).

In this section, we try to break this vicious circle by re-
training the neural network. The idea is to teach the network
to shrink the spread within the clusters of the known classes
(i.e., reduce the distance of outliers), as illustrated in Fig. 3.
This allows us to decrease the distance threshold without
increasing the number of false positives.

6.1 Distance loss

The standard way to train a neural network is to define a loss
function to be minimized. Here we encode the distance as
a new distance-loss function Ld and use a standard train-
ing procedure to minimize this loss. First, we construct the
monitor (i.e., the cluster centers and distance parameters)
as described in Sect. 4. Now for each labeled training input
(�x, y), we compute the values �p at layer � as usual (including
the application of the transformation matrix) and then obtain
the distance loss

Ld(�x, y) = d+( �p, y) = min
B∈By

d+( �p,B)
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Fig. 3 Illustration of the effect
of retraining to improve the
monitor precision. (a) Copy of
Fig. 2 (b). (b) Retraining of the
neural network packs the data
points. (c) Quantitative metric
for each cluster after retraining,
visualized as dashed lines.
(d) The retrained network rejects
the novelties in black

= min
B∈By

max
i

|cBi − pi |

rBi
,

where cB and rB are the center and radius associated with
cluster B, respectively.

6.2 Combining two objectives in one loss

Optimizing solely for the distance loss would render the
neural network unusable, since the training procedure would
forget the original classification task and instead only fo-
cus on packing all points in the feature space together. We
therefore consider joint optimization of 1) the classification
loss function LN used during the original training of the
neural network, which quantifies classification performance,
and 2) the distance loss Ld(�x, y), responsible for shrinking
latent clusters. Following common practice in multiobjective
neural-network training, we optimize a weighted sum of the
two losses:

L(�x, y) = αβLd(�x, y) + (1 − α)LN(�x, y).

This function has two parameters α and β, which are recom-
puted before each learning iteration (epoch) and explained
below.

Since we retrain an already accurate neural network, the
distance loss Ld tends to assume values that overshadow the

original loss LN . The parameter β normalizes the distance
loss to even out the importance of the two objectives:

β =

∑
( �x,y)∈X LN(�x, y)

∑
( �x,y)∈X Ld(�x, y)

.

The parameter α adapts to the current accuracy snetwork
of the neural network to carefully balance the two objectives
during training. The value is determined based on a desired
lower bound s∗lba ∈ (0,1) (user defined) on the network accu-
racy (e.g., s∗lba = 0.9 means that we do not want the accuracy
to fall below 90%) in exponential fashion:

α = 1 − 10−γ, γ =
max(snetwork, s∗lba) − s∗lba

1 − s∗lba
.

6.3 Discussion

We end this section with some discussion and details on our
implementation of the above retraining algorithm.

In a standard training scenario such as for a classification
task, the objective is constant, and we can easily run training
in consecutive epochs. In our case, the objective shifts all
the time: Since the monitor is computed for a given neural
network, it needs to be recomputed after retraining the net-
work parameters. Furthermore, the data is processed twice:
first to compute a monitor and then for the actual retraining;
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Table 1 Dataset and model description. The columns show the number of samples for training and testing, the number of classes in total and
initially known to the network, the ID of the network architecture, and the number of neurons in the monitored layer �

Dataset Dataset size train/test Classes all/init Net ID Number of neurons in �

MNIST 60,000/10,000 10/5 1 40
FMNIST 60,000/10,000 10/5 1 40
CIFAR10 50,000/10,000 10/5 3 256
GTSRB 39,209/12,630 43/22 2 84
EMNIST 112,800/18,800 47/24 1 40

this can only be done sequentially. These two reasons make
the retraining procedure computationally heavy.

Training datasets are usually split into smaller batches,
and the network parameters change after each batch. Techni-
cally, we could recompute the monitor after each batch, but
to save time, we only do that after each epoch (i.e., when all
batches have been processed).

In our implementation, we assume that the number of
retraining epochs is fixed in advance. We only retrain the
monitor during the first half of the training epochs and then
freeze it. This has two effects. First, training is faster after that
point, and second, the objective does not change anymore,
which in our experience helps the network parameters to
converge.

As a technical note, the standard training algorithm for
neural networks is stochastic gradient descent [4], which re-
quires to compute the gradients of the network parameters.
The gradients are computed using automatic differentiation
[13], which requires to implement the involved operations in
a compatible way. In our implementation, we had to reim-
plement the distance computation to enable the retraining
procedure.

7 Experiments

In this section, we evaluate the approaches proposed in
this paper. In Sect. 7.1, we shortly introduce five image-
classification datasets that we use in the evaluation. In
Sect. 7.2, we show experimental results on active monitor-
ing from Sect. 5. We compare our quantitative monitor to
three other (static) monitoring strategies: a box-abstraction
monitor [19], a monitor based on the softmax score [18],
and a monitor that warns with uniform random rate. We
also investigate the influence of different parameters on our
quantitative monitor specifically. In Sect. 7.3, we show the
performance of the retraining procedure proposed in Sect. 6.

We implemented our framework in Python 3.6 with Ten-
sorflow 2.2 and scikit-learn. We ran all experiments on an

i7-8550U@1.80 GHz CPU with 32 GB RAM. The source
code and scripts that we used are available online.1

7.1 Benchmark datasets

We consider the following publicly available datasets, sum-
marized in Table 1: MNIST [24], Fashion MNIST (FM-
NIST) [49], and Extended MNIST (EMNIST) [7] consist of
28 × 28 grayscale images; CIFAR10 [23] and the German
Traffic Sign Recognition Benchmark (GTSRB) [43] consist
of 32 × 32 color images. As network architectures, we use
VGG16 [52] pretrained on ImageNet for CIFAR10, and the
architectures from Cheng et al. [6] for MNIST (which we
also use for FMNIST and EMNIST) and GTSRB.

7.2 Active monitoring

Experimental setup For each of the benchmarks (com-
binations of a network and a dataset) we trained two neural-
network models: one model trained on all classes, which we
refer to as the “static full” model, and one model trained
on half of the classes, which we refer to as the “static half”
model. We let the framework process inputs in batches of
size 128. For each dataset, we ran our active monitoring
framework on reshuffled data five times. We evaluate our
active monitoring framework with four different monitoring
strategies, each of which uses the same overall processing
within the framework, e.g., the same sequence of samples in
the input stream and the same policy for model adaptation.
The strategy based on the softmax score rejects inputs when
the score falls below 0.9. The random strategy rejects inputs
with probability p = 5% (resp., p = 10% in the EMNIST ex-
periment). To make the comparison fair, we limit the number
of available authority queries for each strategy to a budget
of p (the random rejection probability) percent of the full
dataset. For most benchmarks, we use PCA and s∗samples as
explained in Sect. 3. For CIFAR10, we use Kernel PCA and
s∗samples = 0.01|X|/|Y|.

1 https://github.com/VeriXAI/Into-the-Unknown-extended.

Springer

https://github.com/VeriXAI/Into-the-Unknown-extended


K. Kueffner et al.

Table 2 Monitor comparison. We compare four different monitoring
strategies: quantitative (this paper), box abstraction, softmax score, and
random warning. For each benchmark, we report the interaction limit

with the authority, the highest number of learned classes, and the aver-
age monitoring precision of five runs. The best results per benchmark
are marked in bold

Dataset Interaction limit Quantitative classes/prec Abstraction classes/prec Softmax classes/prec Random classes/prec

MNIST 3,000 10 10 10 6
0.81 ± 0.01 0.6 ± 0.02 0.71 ± 0.01 0.48 ± 0.01

FMNIST 3,000 9 9 10 8
0.74 ± 0.02 0.54 ± 0.02 0.7 ± 0.01 0.5 ± 0.01

CIFAR10 2,500 10 10 10 10
0.75 ± 0.02 0.61 ± 0.02 0.53 ± 0.01 0.41 ± 0.01

GTSRB 1,960 37 38 34 25
0.67 ± 0.02 0.7 ± 0.01 0.75 ± 0.03 0.29 ± 0.01

EMNIST 11,280 42 47 47 47
0.81 ± 0.01 0.71 ± 0.02 0.69 ± 0.01 0.39 ± 0.01

Table 3 Model adaptation. We compare the accuracy of the neural
networks (training and test accuracy) between the static model trained
on 50% of the classes, the static model trained on all classes, and the
model obtained from our framework (using the quantitative monitor),
averaged over five runs. In the static cases the test accuracy is measured

on the filtered test set (not including novelties for the 50% model),
and hence the accuracy is generally higher for the 50% model. The
second column shows the epochs used for the initial training resp. the
retraining/transfer learning at run-time

Dataset Epochs init/run Static half train/test Static full train/test Adaptive test

MNIST 10/10 0.99/0.99 0.99/0.99 0.97 ± 0.01
FMNIST 10/10 0.99/0.92 0.97/0.91 0.79 ± 0.05
CIFAR10 50/30 0.99/0.83 0.99/0.79 0.54 ± 0.02
GTSRB 30/30 0.99/0.95 0.99/0.88 0.87 ± 0.01
EMNIST 30/30 0.97/0.92 0.92/0.86 0.71 ± 0.04

General performance The performance of the different
monitoring strategies in terms of monitoring precision is
averaged over five runs and summarized in Table 2. For
all but one benchmark, our monitor achieves the highest
precision, and for GTSRB, the precision is comparable with
other monitors. GTSRB consists of traffic signs, which are
easier for the neural network to learn, owing to overlapping
features, but can be difficult for an abstraction-based monitor
to distinguish. Our distance quantification does not improve
the monitor precision for GTSRB since the distance from
novel images to the known ones can be quite small after the
monitor has learned the majority of classes of traffic signs.
This is also reflected in the online performance of the monitor
discussed next, where most of the classes are learned early.
Figure 4 shows the evolution of the monitor precision over
time as more classes are learned. Recall that the network
is dynamically retrained (using transfer learning) for new
classes. Clearly, the number of new samples for this training
procedure is lower than in a normal, full-fledged training.
Consequently, the adapted network is less accurate for these
new classes (cf. Table 3) than a network trained on the full

training dataset. Hence it is expected that the general trend
in the monitoring precision is decreasing for all strategies.

We report the test accuracy of the neural networks in
Table 3, averaged over five runs per benchmark. The accuracy
is generally lower than what could be achieved by training the
network with a full and balanced dataset from scratch (the
“static full” model), but for some benchmarks, we achieve
almost the same accuracy. This shows the framework’s ability
to adapt to new situations.

Cost analysis In Fig. 5, we show the frequency of au-
thority queries. Recall that there is a budget of queries (cf.
Table 2). Our quantitative monitor queries the authority more
frequently at the beginning, but as it adapts to more novel
classes, the rate of requests is steadily decreasing. Hence
the monitor has the fewest queries in four of the five bench-
marks (except for GTSRB). The other monitors do not have
an adaptation mechanism and therefore are prone to query-
ing the authority more often. For some monitors, we even
observe an increase in warnings over time, in particular, the
monitor that uses the softmax score. As we argued above, we
suspect that the network tends to be less confident for newly
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Fig. 4 Comparison of the monitor precision between four monitoring strategies, averaged over five runs and including 95%-confidence bands.
The markers correspond to points in time when a model adaptation takes place

learned classes, which results in lower softmax scores. Also,
the strategies often learn new classes at roughly the same
point in time. This is because the novelties appear with uni-

form distribution in the input stream, so the points in time
when a fixed number per class has been seen are close to
each other.
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Fig. 5 Comparison of the rate of authority queries between four monitoring strategies, averaged over five runs and including 95%-confidence
bands. The markers correspond to points in time when a model adaptation takes place

Overall, the plots do not reveal a clear trend which monitor
is fastest at learning new classes. There is generally a trade-
off between the rate at which a warning is raised and the rate

at which new classes are learned. In our scenario, raising a
warning is initially correct in 50% of the cases (note that
none of the monitors is in that range); taken to the extreme, a
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Table 4 Average run times in seconds. For each active-monitoring
benchmark, we average (five runs) the time for retraining the neural
network (after collecting enough samples), for retraining the monitor

(after retraining the network), and for adapting the monitor (when the
precision drops too much)

Dataset Retrain network Retrain monitor Adapt monitor

MNIST 26 ± 1 59 ± 3 39 ± 5
FMNIST 19 ± 6 45 ± 10 59 ± 5
CIFAR10 257 ± 57 2,477 ± 282 40 ± 3
GTSRB 228 ± 12 194 ± 24 19 ± 1
EMNIST 360 ± 191 347 ± 71 82 ± 16

Fig. 6 Influence of the dynamic distance threshold d∗y for each class
y on the quantitative-monitoring precision for the MNIST benchmark.
The markers correspond to points in time when a model adaptation
takes place. (a) Comparison between a static value and a dynamically

changing value (as proposed in this paper); we also show a comparison
with a run where we omit the preprocessing with PCA. (b) Influence of
the initial value of the threshold

monitor that always raises a warning would be the fastest in
learning new classes. On the other hand, a monitor that gen-
erally raises fewer warnings to the authority may also miss
novelties and thus learn slower. However, in our experience,
it is more preferred to provide a low false-positive rate, i.e.,
warnings raised by the monitor should be genuine. In this
sense the quantitative monitor works best.

Ablation and sensitivity study All components of our
framework contribute to its performance. In Fig. 4, we il-
lustrate how incremental retraining of the model improves
the monitor precision for all monitoring strategies. In princi-
ple, other active-learning strategies can be plugged into our
framework to further increase this effect. In addition, Fig. 4
demonstrates that the monitor-adaptation stage (where the
monitor is incrementally adjusted without model adaptation),
which only applies to our quantitative monitor, helps main-
taining a better precision than the other monitoring strategies.

Figure 6 (a) shows that dynamically changing the distance
threshold d∗y (for each class y) contributes to the precision
of our monitor, as does the use of PCA for dimensionality
reduction. Figure 6 (b) shows that the starting value of the
(dynamic) threshold also influences the monitor precision.

Timing analysis Table 4 shows a timing comparison for
the individual adaptation stages of the framework, taken from
the runs for the quantitative monitor strategy. (Comparing
different strategies is generally difficult because they interact
with the authority and adapt the model and/or the monitor
in different orders and frequencies.) The time grows with
the size of the dataset but on average is on the order of
milliseconds per input; hence the framework can be run in
real time. For CIFAR10, the time is dominated by the use of
Kernel PCA.
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Table 5 Retraining with distance loss. We study the effect of retraining
the network with the distance loss. For that, we compare the monitoring
precision to the results from Table 2. As before, for each benchmark,

we report the highest number of learned classes, and the average mon-
itoring precision of 7 runs. The best results per benchmark are marked
in bold

Dataset Distance loss classes/prec Quantitative classes/prec Abstraction classes/prec Softmax classes/prec Random classes/prec

MNIST 10 10 10 10 6
0.82 ± 0.0 0.81 ± 0.01 0.6 ± 0.02 0.71 ± 0.01 0.48 ± 0.01

FMNIST 9 9 9 10 8
0.75 ± 0.0 0.74 ± 0.02 0.54 ± 0.02 0.7 ± 0.01 0.5 ± 0.01

GTSRB 42 37 38 34 25
0.67 ± 0.0 0.67 ± 0.02 0.7 ± 0.01 0.75 ± 0.03 0.29 ± 0.01

Fig. 7 Relative change in accuracy of the monitor and the network (color figure online)

7.3 Network retraining to improve monitor
performance

To evaluate the effectiveness of the procedure proposed in
Sect. 6, we run two experiments on several datasets (MNIST,
FMNIST, GTSRB). In the first experiment, we assess the on-
line learning with a monitor that uses the network retraining
based on the distance loss. Table 5 puts the monitoring pre-
cision into perspective compared to the results reported in
Table 2. As we can see, the monitoring precision is at least as
good as for the quantitative monitor without the distance-loss
retraining, and usually slightly better. Although the improve-
ment does not seem significant, we see a strong improvement
in detecting novelties in the GTSRB dataset, where 42 classes
are learned; this is five classes more than the second-best ap-
proach.

In the second experiment, we consider the offline setting
and investigate the accuracy, the TPR, and the FPR of the
monitor, as well as the accuracy of the network, and compare
those metrics to the appropriate base cases. That is, for each
experiment, we train two networks for an equivalent number
of epochs. The first network is trained using only the standard
loss LN for all epochs and serves as the base line for our
comparisons. The second network is trained as follows: For
the first �20%	 of the total epochs, we use only the standard

loss LN , then we use the custom loss L on the resulting
pretrained network, and we freeze the monitor after �50%	
of the remaining epochs. We start with the standard loss
LN for the network to stabilize first. Initially, the network
parameters are chosen randomly, and we cannot expect the
monitor to yield any reasonable clusters and distances. Thus
we want to first let the network learn how to classify correctly
before we incorporate the other goal of monitor performance.
We freeze the monitor half-way to help the network converge.
Otherwise, the optimum is a moving target because the loss
depends on the monitor. We trained each network for a total
of 16 epochs using a network accuracy threshold of 90%, i.e.,
s∗lba = 0.9. Specifically, we consider six different settings for
each dataset. Namely, the network is trained on two classes
(1), on 50% of the classes (2), or on all but one class (3)
and, in addition to the known classes, encounters a single
unknown class (a), 50% of all classes (b), or all classes
(c). These settings control how often an unknown class is
encountered at run-time. Some of the combinations coincide
(2b and 2c, 3a and 3c) or are not possible (3b).

Across almost all experiments, we observe an improve-
ment of the monitor accuracy, whereas the network accuracy
remains comparable to the base case. The monitor accu-
racy improves mainly when there are multiple novel classes
(1b, 1c, 2c), i.e., a single novel class can typically also be
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Fig. 8 Relative change in the TPR and FPR of the monitor (color figure online)

Fig. 9 Projection of the quantitative monitor and its detection results for a network trained on the first two classes of the MNIST dataset (see also
Fig. 11)

Fig. 10 Adjustment of the weight-balancing parameter α during re-
training on the GTSRB dataset with two known and one unknown
classes

handled equally well without additional monitor training. In
some cases, e.g., GTSRB, the network accuracy even im-
proves compared to only using the custom loss (see Fig. 7).
Moreover, we observe that the improvements in the monitor’s
accuracy are mostly attributed to an increase in the TPR. For
MNIST in particular, the procedure also reduces the FPR,
leading to an exceptional improvement in performance (see
Fig. 8). For the other datasets, the FPR sometimes increases,
which is generally expected. The new loss encourages tighter
box distances per cluster, which may generally lead to more
issued warnings. Still, with the exception of FMNIST in set-
ting 3c, the FPR increase is below the TPR increase.

We are able to retain a high network accuracy by automat-
ically scalingLd to the same magnitude ofLN and carefully
controlling the impact of Ld on L . This is accomplished by
adjusting the parameter α to compensate for drops in the
network accuracy. Figure 10 demonstrates how the param-
eter α responds to fluctuations in the accuracy. As can be
seen, the accuracy drops from nearly 100% to 95%, which
triggers a reduction of α and thus a shift toward LN in L .
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Fig. 11 Illustration of the monitor development (depicted with boxes) during training on MNIST with two known and one unknown classes, on a
projection on the first two principal components PC 1 and PC 2 of the feature layer �

After three epochs, the network accuracy recovers, and α is
increased again. Afterward, the network accuracy remains
close to 100%, and correspondingly α keeps a high value of
around 90%.

The purpose of retraining with our custom loss was to
teach the network to shrink the spread within the clusters of
the known classes in the feature space. In our experiments,
we observe that the networks trained with our custom loss not
only cluster inputs of the same class closer together, but also
position those clusters further apart. An example is shown in
Fig. 9.

Moreover, in Fig. 11, we illustrate that even after the mon-
itor is frozen, the network keeps pushing inputs of the same
class closer together in the feature space, resulting in sev-
eral empty boxes (former data clusters). In the last plot, we
show the monitor constructed for the final neural network,
for which new clusters are computed.

8 Conclusion and future work

In this work, we introduced a new quantitative monitor that
expresses its own confidence about the reported warnings
based on a distance to the predicted class in feature space.
We showed the benefits of the monitor in two different set-
tings. In the first setting, we presented an active monitor-
ing framework for accompanying a neural-network classifier
during deployment. The framework adapts to unknown input
classes via interaction with a human authority. Experiments
on a diverse set of image-classification benchmarks showed
that active monitoring is effective in improving accuracy over
time in the setting when inputs of novel classes are frequently
encountered. In comparison to alternative monitoring strate-
gies, our monitor demonstrated superior performance in de-
tection and adaptation at run-time. In the second setting, we
used the quantitative feedback to retrain the neural network

Springer



Active monitoring of neural networks

for reducing the distance on the training dataset. We showed
experimentally that this significantly improves the monitor’s
performance in novelty detection.

Our approach is independent of the choice of the dataset
and the neural-network architecture. The only requirement
for applicability is access to the output of the feature layer(s).
We plan to extend our procedure toward real-world appli-
cations with particular need of active monitoring, e.g., in
robotics for the trained controller to gradually adapt to the
behavior of the authority. Other interesting directions are
time-critical applications where the adaptation of the mon-
itor or the neural network need to be delayed to uncritical
phases, and scenarios where novel inputs occur rarely. In
addition, the underlying method of our framework can serve
as a suitable tool for explainability of a neural network’s
predictions.
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