
 
 

Delft University of Technology

Robust gain-scheduled autopilot design with anti-windup compensation for a guided
projectile

Thai, Sovanna; Theodoulis, Spilios; Roos, Clément; Biannic, Jean Marc

DOI
10.1007/s13272-023-00668-9
Publication date
2023
Document Version
Final published version
Published in
CEAS Aeronautical Journal

Citation (APA)
Thai, S., Theodoulis, S., Roos, C., & Biannic, J. M. (2023). Robust gain-scheduled autopilot design with
anti-windup compensation for a guided projectile. CEAS Aeronautical Journal, 14(3), 765-786.
https://doi.org/10.1007/s13272-023-00668-9

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s13272-023-00668-9
https://doi.org/10.1007/s13272-023-00668-9


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Vol.:(0123456789)1 3

CEAS Aeronautical Journal 
https://doi.org/10.1007/s13272-023-00668-9

ORIGINAL PAPER

Robust gain‑scheduled autopilot design with anti‑windup 
compensation for a guided projectile

Sovanna Thai1,3  · Spilios Theodoulis1,4 · Clément Roos2 · Jean‑Marc Biannic2

Received: 9 November 2022 / Revised: 16 May 2023 / Accepted: 22 May 2023 
© Deutsches Zentrum für Luft- und Raumfahrt e.V. 2023

Abstract
This article deals with the control design of a dual-spin projectile concept, characterized by highly nonlinear parameter-
dependent and coupled dynamics, and subject to uncertainties and actuator saturations. An open-loop nonlinear model 
stemming from flight mechanics is first developed. It is subsequently linearized and decomposed into a linear parameter-
varying system for the roll channel, and a quasi-linear parameter-varying system for the pitch/yaw channels. The obtained 
models are then used to design gain-scheduled H

∞
 baseline autopilots, which do not take the saturations into account. As a 

major contribution of this paper, the saturation nonlinearities are addressed in a second step through anti-windup augmen-
tation. Three anti-windup schemes are proposed, which are evaluated and compared through time-domain simulations and 
integral quadratic constraints analysis. Finally, complete guided flight scenarios involving a wind disturbance, perturbed 
launch conditions, or aerodynamic uncertainties, are analyzed by means of nonlinear Monte Carlo simulations to evaluate 
the improvements brought by the proposed anti-windup compensators.

Keywords Guided projectiles · Anti-windup · Gain scheduling · Robustness analysis

1 Introduction

Standard ballistic projectiles suffer from a lack of accuracy, 
due to various factors such as incorrect launch conditions or 
wind perturbations. As a consequence, multiple rounds must 
typically be fired to intercept a single target. This leads to 
significant risks of collateral damage, high deployment and 

operational costs, and logistical concerns. Guided projectiles 
aim to overcome these limitations. Among the numerous 
guided projectile concepts, that of a course correction fuse 
(CCF) decoupled from the body and equipped with canards 
has numerous advantages over other steering mechanisms 
proposed in the literature on guided projectiles. Unlike 
impulse jet thrusters [1–3] or inertial loads [4–6], aero-
dynamic surfaces provide a correction which can be mod-
eled in continuous time as aerodynamic effects. Additional 
benefits of the dual-spin configuration, as opposed to fin-
stabilized projectiles, are the capability to retrofit existing 
unguided shells, thus greatly reducing development costs, 
and a greater range due to the lack of stabilizing surfaces [7]. 
This solution leads to a guided projectile with seven degrees 
of freedom (7-DoF), whose precision and performance are 
then highly dependent on the embedded hardware and flight 
control algorithms. In turn, the development of flight control 
algorithms relies on a mathematical model of the system to 
control. This model must be a sufficiently accurate descrip-
tion of the behavior of the system, while also being compat-
ible with control design methods.

Literature on control theory applied to guided projec-
tiles remains scarce relative to other aerospace systems, 
such as aircraft, space launchers, and UAVs. Several ad hoc 
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open-loop algorithms based on trajectory tracking or impact 
point prediction [8] have been investigated for a wealth of 
steering mechanisms, but these approaches fail to handle 
aerodynamic uncertainties in a satisfying manner. Regard-
ing the dual-spin configuration, the first full nonlinear model 
was published in [9] for an unguided projectile, while early 
results on the control of such systems based on trajectory 
tracking can be found in [10, 11]. Recent studies [12–14] 
developed linearization algorithms specific to dual-spin 
projectiles, as well as efficient autopilots based on gain-
scheduling techniques [15, 16] and on local H

∞
 syntheses 

[17, chap. 9] for canards acting in pairs, demonstrating that 
the control of such nonlinear systems can be addressed using 
the more familiar methods from linear control theory. In 
line with these developments, this paper, resulting from a 
PhD work [18], extends the proposed linear framework by 
addressing canard saturations using techniques from modern 
anti-windup design theory [19], as well as integral quadratic 
constraints (IQC) analysis [20] to evaluate the local robust-
ness properties of the augmented closed-loop systems.

This paper is organized as follows. Section 2 sets up the 
model of the projectile airframe that will be used to tackle 
the control problems: compared to [14], the present study 
uses a slightly different steering mechanism where all three 
axes of the projectile are aerodynamically controlled using 
the canards, removing the need for a coaxial motor within 
the fuse. The obtained models are then used in Sect. 3 to 
design a baseline autopilot, which does not take saturations 
into account. The saturation nonlinearities are addressed in 
Sect. 4 through anti-windup design. In Sect. 5, complete 
guided flight scenarios involving a wind disturbance, per-
turbed launch conditions or aerodynamic uncertainties are 
simulated to evaluate the various anti-windup schemes.

2  Open‑loop modeling

2.1  Presentation of the guided projectile concept

The guided projectile concept studied in this paper is a dual-
spin projectile consisting of a standard 155 mm ammunition 
retrofitted with a roll-decoupled fuse. The body, or aft part, 
contains the explosive payload. The fuse, or forward part, is 
equipped with four canards, as shown in Fig. 1, which are 
independently actuated. The CCF concept considered here 
differs from [14], where a coaxial motor dedicated to roll 
control is included. Instead, all three axes are aerodynami-
cally controlled using the canards.

The flight scenario of the studied projectile can be broken 
into several phases, depicted in Fig. 2. At the start of the 
ballistic phase ( 0 ≤ t < tstart = 20 s ), electronic components 
are switched on. This is done a few seconds after launch 

to avoid possible hardware degradations due to the harsh 
initial conditions. At t = tstart , the fuse roll rate pf  , which 
at this point is high due to the mechanical bearing between 
the body and the fuse, is decreased by maintaining constant 
deflection angles until the moment tswitch when the roll rate 
reaches pf = 1800 deg/s = 10� rad/s . The roll autopilot is 
then activated to stabilize the fuse at a fixed roll angle �f  . 
Finally, the projectile enters its guided phase at tguid = 30 s , 
during which additional efforts on the pitch and yaw axes are 
generated by the canards to alter its trajectory.

2.2  Nonlinear modeling using flight mechanics

The 7-DoF airframe model is described by its translational 
and attitude dynamic equations, given, respectively, by New-
ton’s and Euler’s laws of motions. These are expressed in a 
non-rolling frame as:

(1)
⎡⎢⎢⎣
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1
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−q − r tan 𝜃 0
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Fig. 1  155 mm projectile with a course correction fuse equipped with 
canards
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where [u v w]T are the linear velocities, and [pf pa q r]T are 
the angular rates (the subscripts f and a denote the forward 
and aft parts, respectively). The constants appearing in these 
equations are the mass m of the projectile, the longitudinal 
moments of inertia of the front and aft part Ixf  , Ixa , and the 
transversal moment of inertia It . Complementing these equa-
tions are the translational and attitude kinematic equations, 
which describe the linear and angular positions 

[
xe ye ze

]T 
and 

[
�f �a � �

]T with respect to the inertial Earth frame 
[21, chap. 3]:

The most important efforts applied on the projectile are 
aerodynamic in nature. For this reason, aerodynamic vari-
ables are more useful than the linear velocities, both as state 
variables and to describe the forces and moments. Hence, 
assuming no wind, we define the airspeed V, angle of attack 
(AoA) � , and angle of sideslip (AoS) � as:

Differentiation of the above variables allow to rewrite Eq. (1) 
in a form that is more suitable for control design purposes:

(3)
⎡⎢⎢⎣

ẋe
ẏe
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�
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⎤
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⎡
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The modeling of the forces [X Y Z]T and moments 
[Lf La M N]T is based on aeroballistics theory as presented 
in [22, chap. 2]. The external forces include body, Magnus 
(originating from the spinning motion), control (generated 
by the canards), and gravitational terms:

The external moments consist of body pitching, Magnus, 
damping, control, and friction terms:

The expressions of the forces and moments involve aerody-
namic coefficients that depend in a nonlinear manner on the 
Mach number M = V∕a(h) , with a the altitude-dependent 
speed of sound, and for some also on the angle of incidence 
(AoI) �′:

Due to limitations on wind-tunnel measurements, these aero-
dynamic coefficients take uncertain values around their nom-
inal values. The considered uncertainty levels are reported 
in Table 1.
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Fig. 2  Standard flight scenario 
of a canard-guided dual-spin 
projectile
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Other parameters and constants appearing in the expres-
sions of the forces and moments are the dynamic pressure 
q =

1

2
�(h)V2 , with �(h) the air density, the gravitational accel-

eration g, the reference area S, and the caliber d. The control 
variables [�p �q �r]T are virtual control signals depending on 
the roll angle of the fuse �f  and the real canard deflection 
angles [�1 �2 �3 �4]T through the relation [23, chap. 3]:

Finally, the friction moment Lf−a between the forward and 
aft part is given by:

with Ks and Kv static and viscous friction coefficients with 
an uncertainty level of 40%.

2.3  Linearized models for the roll and pitch/yaw 
channels

The nonlinear model of the airframe can be decomposed into 
the roll channel on one hand, and the pitch/yaw channels on 
the other hand. This decomposition corresponds to the two 
separate control problems broached in Sect. 2.1.

2.3.1  LPV model of the roll channel

The states of interest for the control of the roll channel are the 
roll angle �f  of the fuse and its angular rate pf  . Their dynam-
ics can be extracted from Eqs. (1) and (3) and rewritten in the 
following LPV form:

(10)

⎡⎢⎢⎣
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⎤⎥⎥⎦
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4
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1

2
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(11)
Lf−a = qSCA(M, �, �) sign

(
pa − pf

)(
Ks + Kv|pa − pf |

)

where:

and �R =

[
�� V h

]T is a parameter vector. The time-varying 
disturbance terms d� and dp are given by:

Ballistic simulations show that in practical flight condi-
tions, ��

∈ [0 deg, 15 deg] , and the value of the drag coef-
ficient CA(M, ��

) is predominantly governed by the value 
of the Mach number, i.e., by the parameters V and h. This 
observation leads to considering a reduced parameter vector 
�R = [V h]T of scheduling variables.

2.3.2  Linearized model for the pitch/yaw channels

The relevant nonlinear dynamics for the pitch/yaw channels 
can be rewritten in the generic parameter-dependent form:

with states x =

[
� q � r

]T , inputs u =

[
�q �r

]T , outputs 
y =

[
nz ny q r

]T , and parameters �PY =

[
V h pa �

]T . The 
outputs nz and ny are the normal and lateral load factors, 
respectively, defined as the contribution of the external 
forces excluding gravity, divided by the projectile weight 
mg, and expressed in g.

In view of designing a gain-scheduled controller, a Jaco-
bian linearization around trim points is performed on the 
nonlinear model [15, 16]. The procedure starts with the com-
putation of trim points for fixed values �PY = [V h pa �]

T of 
the parameter vector. That is, we seek the solutions (x, u) of 
the equation:

However, the above system is underdetermined, since 
it consists of four equations with six unknown variables. 
To overcome this issue, we define an extended trimming 
vector � = [V h pa � � �]T by also imposing the values of 

(12)
[
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qSd

Ixf

)

CA

(
M, ��

)
[ sign
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(15)

{
ẋ = f

(
x, u,�PY

)
y = g

(
x, u,�PY

)

(16)f
(
x, u,�PY

)
= 0

Table 1  Aerodynamic coefficient uncertainties

Force coefficient Uncertainty (%) Moment coefficient Uncer-
tainty 
(%)

CA 3 – –
CN� 6 Cm� 3
CYp� 33 Cnp� 25
– – Clp 15
– – Cmq 15
CN� 15 Cl� 15
– – Cm� 15
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the AoA and AoS. The solutions (x, u) can then be analyti-
cally computed, and are also exploited to compute the cor-
responding equilibrium outputs y (see [24] for details on 
the resolution). Defining the deviation variables x� = x − x , 
u� = u − u , and y� = y − y , the nonlinear dynamics can then 
be approximated by a first-order Taylor expansion and writ-
ten in state-space form:

Since the trimming vector used to compute equilibrium 
points contains state variables, and using a common 
abuse of language, the bank of LTI models described by 
Eq. (17) and parametrized by � is referred to as a quasi-
LPV model. To reduce the computational burden of the 
controller synthesis step, only the most influential param-
eters are kept as scheduling variables. Exploiting the 
simulation-based sensitivity analysis done in [14], the 
reduced trim vector �PY = [V h pa]

T is considered. The 
three-dimensional flight envelope is described by the 
intervals V ∈ [140 m/s, 380 m/s] , h ∈ [0 m, 15000 m] , and 
pa ∈ [750 rad/s, 1650 rad/s] , with the remaining parameters 
fixed to: � = −17.5 deg , � = 0 deg , and � = 0 deg.

2.4  Definition of the actuator and sensor models

The four servomotors actuating the canards are modeled 
as identical second-order systems with natural frequency 
�act = 2� × 20 rad/s and damping ratio �act = 0.781 . In addi-
tion, a position saturation �sat = ±10 deg is introduced at the 
input of each actuator. This saturation level does not come 
from mechanical limitations, but rather from considerations 
regarding the validity of the aerodynamic model, and spe-
cifically the expressions of the canard forces and moments 

(17)

{
ẋ𝜀 = A

(
�
)
x𝜀 + B

(
�
)
u𝜀

y𝜀 = C
(
�
)
x̃𝜀 + D

(
�
)
u𝜀

which rely on a small angle assumption. The actuator output 
signals are converted into the virtual control signals using 
Eq. (10).

Since the roll and pitch/yaw control problems are treated 
separately, it is natural to consider the roll autopilot output 
as a commanded value �p,c on the virtual signal �p , and the 
pitch/yaw autopilot outputs as commanded values (�q,c, �r,c) 
on (�q, �r) . The commanded virtual signals must then be allo-
cated to the four actuators. A natural choice for the alloca-
tion matrix is to use the pseudo-inverse TVR(�f )

†.
The fuse is equipped with accelerometers providing load 

factor measurements (nz,m, ny,m) , and with gyroscopes pro-
viding measurements (pf ,m, qm, rm) of the angular rates. In 
addition, sensors from the servomotors give measurements 
(�1,m, �2,m, �3,m, �4,m) of the canard deflection angles. Equa-
tion (10) can then be used again to obtain measurements 
(�p,m, �q,m, �r,m) of the virtual control signals. For simplic-
ity, all sensors are given the same dynamics, described by a 
first-order model of natural frequency �s = 2� × 133 rad/s.

Remark 1 The impact of the position of the sensors is not 
taken into account in this study. The signals (nz,m, ny,m) 
then correspond to the measured load factors at the pro-
jectile center of mass. A more representative model could 
be obtained by applying the Grubin transformation [21], as 
done in [13].

3  Baseline autopilot design

In this section, control design is tackled without taking satu-
rations into account, leading to a so-called baseline autopi-
lot. Importantly, we do not seek to fine-tune the controller 
for robust performance. Rather, the aim is limited to design-
ing a baseline autopilot with high enough performance to 

Fig. 3  Variation of the state-
space coefficients over the flight 
envelope and chosen design 
point �R0
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contemplate anti-windup augmentation, which is addressed 
in Sect. 4.

3.1  Roll autopilot design

3.1.1  Control objectives and strategy

To tackle the roll autopilot design problem, the LPV system 
of Eq. (12) describing the roll dynamics is simplified by 
considering the reduced parameter vector �R = [V h]T 
instead of �R , and by neglecting the disturbances [d� dpf ]

T . 
This system has one pole at 0 and another pole given by 
a22(�R) . The variations of a22(�R) and b2(�R) are shown in 
Fig. 3. Noticeably, the variations of the second pole are 
restricted to a small interval in the left-half plane. It is, there-
fore, reasonable to approximate this coefficient with a con-
stant a22 . The transfer function from �p to 

[
�f pf

]T then takes 
the form:

(18)GR

�
s,�R

�
= b2

�
�R

� ⎡⎢⎢⎢⎣

1

s
�
s − a22

�
1

s − a22

⎤⎥⎥⎥⎦
= b2

�
�R

�
ĜR(s)

Thus, the chosen control strategy consists of designing a 
controller K̂R(s) associated to the LTI system ĜR(s) . Then a 
gain-scheduled controller for GR(s,�R) is directly obtained 
as:

Since only one design point is needed, this strategy drasti-
cally simplifies the design step, and the relevance of the 
approximations can be validated with a posteriori analyses 
a n d  s i m u l a t i o n s .  T h e  d e s i g n  p o i n t 
�R0 = [V = 380 m/s, h = 5000 m]

T is chosen from a 15 × 16 
grid of the reduced flight envelope so as to minimize the 
d i s t a n c e  o f  a22(�R0)  t o  t h e  m i d p o i n t 
1

2

(
max
�R

a22(�R) −min
�R

a22(�R)

)
.

3.1.2  Autopilot structure and tuning

The proposed fixed-structure controller is shown in Fig. 4. It 
consists of a PI-P controller (gains Kp,e , Ki,e , and Kp,pf

 ) with 
an additional feedforward gain Kff  to help with reference 
tracking. Recall that the subscripts g and m refer to guidance 

(19)KR

(
s,�R

)
=

1

b2
(
�R

) K̂R(s)

Fig. 4  Roll autopilot structure

Fig. 5  Structured H
∞

 synthesis 
problem for the roll autopilot
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signals and sensor measurements, respectively. The controller 
gains are computed by solving a structured H

∞
 synthesis 

problem [17, 25], illustrated by the block-diagram of Fig. 5. 
The closed-loop roll channel is augmented with weighting 
functions WS(s) , WKS(s) , and WM(s) , corresponding, respec-
tively, to low frequency disturbance rejection, high frequency 
control signal attenuation, and model matching in the low to 
intermediate frequencies. The reference model Tref,R(s) used 
for the model matching requirement of the transfer from the 
guidance signal �f ,g to the roll angle �f  is given by a second-
order system of frequency �ref,R = 14.3 rad/s and damping 
ratio �ref,R = 0.781 . Since an accurate model matching is not 
perceived as an imperative for the roll autopilot design, the 
related requirement is given as a soft constraint. Thus, the 
optimization problem to solve is:

where �R =

[
Ki,e Kp,e Kp,pf

Kff

]T
 . The weighting functions 

are selected as follows:

The optimization problem is solved using the systune 
routine of the Matlab Control System Toolbox, which 
yields a performance index (value of the soft constraint) 
of � = 0.62 . The resulting shaped transfer functions and 
closed-loop step response are shown in Fig. 6, illustrating 

(20)

minimise
�R

‖WM(s)T𝜙f ,g→eref
(s)‖

∞

subject to ‖WS(s)Tdo→𝜙f
(s)‖

∞
< 1

‖WKS(s)Tdo→𝛿p
(s)‖

∞
< 1

(21)

WM(s) =
s + 30

0.15s + 30 × 10−4

WS(s) =
s + 10

1.6s + 10 × 10−4

WKS(s) =
s + 40

10−4s + 40 × 0.5

the fulfillment of the specifications and very good model 
matching.

3.1.3  Robustness analysis and closed‑loop time‑domain 
simulations

Robustness with respect to uncertainties is assessed using �
-analysis [26], whose principles are briefly summarized 
here. As a preliminary step, the uncertain LTI system to 
analyze must be put in the form of a (M(s),Δ) interconnec-
tion as shown in Fig. 7, called a Linear Fractional Represen-

tation (LFR). The LTI system M(s) =

[
M11(s) M12(s)

M21(s) M22(s)

]
 rep-

resents the nominal closed-loop system, and the operator Δ 
gathers all the uncertainties into a block-diagonal operator 
of the form:

(22)Δ = diag (Δ1,… ,ΔN)

Fig. 6  Closed-loop transfer 
functions for disturbance 
rejection (upper left), control 
attenuation (upper right), model 
matching (lower left), and unit 
step response (lower right)

Fig. 7  LFR of a system with parametric uncertainties
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where each Δi is a time-invariant diagonal matrix Δi = �iIni , 
with �i a real parametric uncertainty. The set of matrices with 
the block-diagonal structure described above is denoted � , 
and corresponds to the set of physically meaningful uncer-
tainties. If all uncertainties are bounded, the LFR can be 
normalized so that physically meaningful uncertainties are 
restricted to B

�
= {Δ ∈ � ∶ ∀i, �i ∈ [−1, 1]} . In that case, 

the (M(s),Δ) interconnection is stable for all uncertainties 
Δ ∈ B

�
 if and only if:

where �
�
(M11(j�)) is the structured singular value (SSV), 

introduced in [26]. Computation of the SSV is in general 
NP-hard, so that in practice, upper and lower bounds are 
computed instead.

The GSS library of the SMAC toolbox [27] is used to 
obtain an LFR of the closed-loop roll channel at the design 
point �R0 . The resulting interconnection consists of a nomi-
nal system MR(s,�R0) with 13 states and an uncertainty 
block ΔR belonging to the set:

A �-upper bound of 0.19 < 1 is obtained with the SMART 
library of the SMAC toolbox [28], thus validating robust 
stability at the design point. The same analysis conducted at 
other flight points indicate that virtually identical robustness 
properties are guaranteed across the whole flight envelope.

Complementing the above analysis, Fig. 8 shows the 
responses for 300 random samples of the uncertain system 
at the design point, drawn uniformly from B

�R , and for a 
scenario involving a step input of 45 deg at 0 s , and a step 
disturbance do = 20 deg applied at 1.5 s on �f  . The responses 
are nearly identical, illustrating that the uncertainties on 

(23)sup
�∈ℝ

+

�
�

(
M11(j�)

) ≤ 1

(24)B
�R =

{
diag

(
�CA

, �Cl�
, �Kv

)
∶ �

∙
∈ [−1, 1]

}

the roll channel have minimal impact. The disturbance is 
successfully rejected in all cases, and the control signal 
remains small in amplitude, and far from the saturation level 
of ±10 deg . Similar simulations can be conducted on other 
points of the flight envelope, leading to dismissing the risk 
of saturations for the roll channel despite the variations of 
the coefficient b2(�R).

3.2  Pitch/yaw autopilot design

3.2.1  Control objectives and strategy

Autopilot design for the pitch/yaw channels is based on 
the bank of LTI models generated from the reduced flight 
envelope �PY = [V h pa]

T (see Eq. (17)). The closed-loop 
settling time must be sufficiently large compared to the 
settling time of the roll channel ( 0.43 s ), since the pitch/
yaw autopilot is designed with the assumption that the roll 
angle is already settled, but small enough to ensure good 

Fig. 8  Simulation at the design 
point with model uncertainties: 
roll angle (left), virtual roll 
control signal (right)

Fig. 9  Pitch/yaw autopilot structure
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tracking of the guidance signal and, ultimately, good accu-
racy upon impact. Due to the strong coupling between the 
pitch and yaw axes, a multivariable control problem must 
be tackled. A low-order structured controller composed of 
few gains is preferred, so that linear interpolation can be 
used for gain-scheduling.

Remark 2 To lighten notations, the subscript � representing 
deviation from equilibrium values is omitted in this section.

3.2.2  Autopilot structure and tuning

The proposed fixed-structure controller is presented in 
Fig. 9. Symmetries of the airframe model are exploited by 
imposing corresponding symmetries on the gain matrices 
of the controller, further reducing the interpolation and 
implementation effort:

The eight controller gains are computed by solving a mixed 
H2∕H∞

 controller synthesis problem using systune. As 
with roll autopilot synthesis, weighting functions WS(s) and 
WKS(s) are defined to capture, respectively, disturbance rejec-
tion and control attenuation requirements, and a second-
order system is used as a reference model for the system 
response, with frequency �ref ,PY = 5 rad/s and damping 

(25)

Ki,e =

[
K

(11)

i,e
K

(12)

i,e

K
(12)

i,e
− K

(11)

i,e

]
Kp,n =

[
K(11)
p,n

K(12)
p,n

K(12)
p,n

− K(11)
p,n

]

Kp,� =

[
K(11)
p,�

K(12)
p,�

−K(12)
p,�

K(11)
p,�

]
Kp,� =

[
K

(11)

p,�
K

(12)

p,�

K
(12)

p,�
− K

(11)

p,�

]

ratio �ref ,PY = 0.781 . The associated soft goal is specified as 
a time-domain step tracking goal in systune1. With respect to 

the signals defined in Fig. 10, the quantity to minimize relates to the energy of the step 

response of the transfer function:

The H2 norm, which corresponds to the energy of the 
impulse response of a system,2 is used to express the objective func-

tion. More precisely, systune minimizes the following quantity:

where �PY are the free variables of the problem, i.e., the 
eight controller gains in this case, and � is a user-defined 
positive scalar value representing the desired maximum rela-
tive matching error (higher values of � decrease the perfor-
mance index, loosening the requirement), and taken as 0.05 
here. Thus, the synthesis problem for a design point �PY of 
the reduced flight envelope takes the form:

(26)Tnzy,g→ezy,ref
(s) = Tref ,PY (s) − Tnzy,g→nzy

(s)

(27)f (�PY ) =

‖‖‖‖
1

s
Tnzy,g→ezy,ref

(s)
‖‖‖‖2

�
‖‖‖‖
1

s
[Tref ,PY (s) − I]

‖‖‖‖2

Fig. 10  Structured H2∕H∞
 

synthesis problem for the pitch/
yaw autopilot

1 Using a more standard H
∞

 soft goal of the form 
‖WM(s)Tnzy,g→ezy,ref

(s)‖
∞

 , as with the roll channel, led to less robust 
margins, as well as less smooth gain surfaces when performing the 
synthesis over the flight envelope.
2 Thus, the H2 norm of G(s)/s corresponds to the energy of the step 
response of G(s).

Fig. 11  Step response from nz,g 
to nz (left) and from ny,g to nz 
(right)
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(28)

minimise
�PY

f (�PY )

subject to ‖WS(s)Tdz→nz
(s)‖

∞
< 1

‖WS(s)Tdy→ny
(s)‖

∞
< 1

‖WKS(s,�PY )Tdzy→�qr
(s)‖

∞
< 1

The variations of the control authority across the flight 
envelope is taken into account through an appropriate para-
metrization of WKS(s,�PY ) . This is done by introducing a 
scaling factor k(�PY ) , taken as the DC gain from the input �q 
to the output nz . The weighting function WKS(s,�PY ) is then 
parametrized as:

Fig. 12  Closed-loop transfer 
functions for disturbance rejec-
tion (left) and control attenua-
tion (right)

Fig. 13  Gain surfaces at pa = 750 rad/s
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with ŴKS(s) to be tuned.
A design point �PY0 corresponding to high velocity 

V = 340 m/s , low altitude h = 0 m , and intermediate spin 
rate pa = 1200 rad/s is then selected to perform a first syn-
thesis. This point corresponds to the end of a trajectory, 
where performance is critical to guarantee good terminal 
accuracy. The weighting functions are tuned as follows:

The resulting closed-loop step response is shown in Fig. 11 
for the normal axis, and corresponds to a soft goal value of 
2.52. The signal nz is satisfyingly close to the reference 

(29)WKS(s,�PY ) = k(�PY ) ⋅ ŴKS(s)

(30)

WS(s) =
s + 5

2s + 5 × 10−4
ŴKS(s) =

s + 110

10−2s + 110 × 3

model response both in terms of guidance tracking (left plot) 
and cross-axis decoupling (right plot). Identical perfor-
mances are achieved on the lateral axis (transfers from nzy,g 
to ny ). Figure 12 shows the shaped transfer functions and 
illustrates the satisfaction of the hard constraints defined by 
the weighting functions. The same synthesis problem is 
solved on a 7 × 6 × 5 grid of the reduced flight envelope (210 
points). The hard constraints are satisfied for all design 
points, while the worst-case value of the soft goal reaches 
4.86 at point (V , h, pa) = (380 m/s, 9000 m, 750 rad/s) . None-
theless, the corresponding step response, also shown in 
Fig. 11, remains satisfactory. Figure 13 and 14 show the 
values of the controller gains, displayed as surfaces in (V, h) 
for the extremal values of pa . The surfaces remain relatively 
smooth, with the notable exception of the gains K(11)

p,�
 and 

Fig. 14  Gain surfaces at pa = 1650 rad/s
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K
(12)

p,�
 . However, this issue is mitigated by the fact that varia-

tions of these two gains are in fact restricted to a small 
interval.

3.2.3  Robustness analysis and time‑domain simulations

Similar to the roll channel, a �-analysis is used to verify 
local robust stability for all design points. The LFR mod-
els for the closed-loop pitch/yaw channels are parametrized 
by �PY =

[
V h pa

]T , and consist of a nominal system 
MPY (s,�PY ) with 16 states, and a 16 × 16 uncertainty block 
ΔPY with associated unit ball:

Only one design point fails to validate robust stability, with 
a SSV located in the interval [1.009, 1.02] , for parameter 
values V = 300 m/s , h = 3000 m , and pa = 750 rad/s . Inter-
estingly, the value of the airspeed at this point is a bit below 
Mach 1, which corresponds to either extrema or strong vari-
ations of several aerodynamic coefficients. This is combined 
with a low value of pa , for which gyroscopic stability is 
weaker, thus giving a physical interpretation of why robust 
stability is not achieved at this point. However, this analysis 
is conservative, since it does not take into account the prob-
ability distribution of the uncertainties. Using the branch-
and-bound probabilistic �-analysis developed in [29] shows 
that the probability of instability at this point is in fact very 
low, with an upper bound at 0.013% assuming a uniform 
distribution of the uncertainties. This probability lowers to 
approximately 9 ⋅ 10−7% when considering truncated nor-
mal distributions where, for each uncertainty, the standard 

(31)
B
�PY =

{
diag (�CN�

I2, �CN�
I2, �CA

I2, �CYp�
I2,

�Cm�
I2, �Cmq

I2, �Cm�
I2, �Cnp�

I2) ∶ �
∙
∈ [−1, 1]

}

deviation � is chosen so that 3� corresponds to the maximum 
uncertainty level as reported in Table 1.

The impact of the uncertainties is visualized in the time-
domain simulations of Fig. 15, which shows the responses 
of the nominal system and uncertain samples at the design 
point �PY0 . Tracking and decoupling are moderately 
degraded, and more importantly, larger control signals are 
required by the autopilot. This hints at potential saturations 
with the proposed controller, justifying the need to develop 
an anti-windup compensator for the pitch/yaw axes.

Fig. 15  Simulation with model 
uncertainties at the design point

Fig. 16  Principle of anti-windup compensation
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4  Anti‑windup design

4.1  Anti‑windup problem setup and synthesis 
method selection

The principle of anti-windup compensation in a time-
invariant framework is illustrated by Fig.  16. The anti-
windup compensator AW(s) is driven by the difference 
Dz (yc) = yc − Sat (yc) between the desired controller output 
yc and the achieved command u = Sat (yc) , and generates a 
signal v = [v1 v2]

T that modifies the control dynamics.
In the studied application, the output signals of the base-

line autopilot �qr,c = [�q,c �r,c]
T correspond to commanded 

virtual deflection angles, and are not adapted to design 
the anti-windup compensator, since the saturation level 
l = 10 deg affects the commanded real deflection angles 
�R,c = [�1,c �2,c �3,c �4,c]

T instead. To fit into the anti-windup 
framework, the allocation is explicitly taken into account, with 
the assumption that the roll angle �f  of the fuse is fixed at the 
desired position and that the contribution of the virtual control 
signal of the roll channel �p on the real deflection angles is 
negligible. The allocation is then given by:

Eq. (32) implies �1,c = −�3,c and �2,c = −�4,c . For the pur-
pose of anti-windup synthesis, this makes the signals �1,c and 
�3,c redundant, as well as the signals �2,c and �4,c . Thus, with 
reference to the standard anti-windup architecture of Fig. 16, 
we define the input yc of the normalized saturation as:

which is illustrated in Fig. 17 (note that M−1
(�f ) = M(�f ) ), 

where PPY (s,�PY ) gathers the airframe (4 states), two vir-
tual actuators ( 2 × 2 = 4 states), and first-order sensors 
(two accelerometers, two gyroscopes, two servo-sensors: 6 
states), leading to a plant of order 14.

Remark 3 The real actuator and servo-sensor models could 
be used in the plant model PPY (s,�PY ) , increasing the plant 
order to 20. However, this does not modify the signals seen 
by the anti-windup compensator, and thus has no impact on 
the synthesis.

It is clear from Eq. (33) and the relation u = Sat (yc) that 
the fuse roll angle �f  contributes to determining whether 
saturations occur or not. In fact, for a fixed value of �f  , the 
set of virtual signals (�q, �r) that will not lead to satura-
tions can be represented as a square in the (�q, �r)-plane, 
whose orientation depends on �f  . Figure 18 shows this set 
for the two standard fuse orientations, which are the ’ + ’ 
( �f = 0 deg ) and ’ × ’ ( �f = 45 deg ) configurations. It can be 
observed that the ’ × ’ configuration allows to reach higher 
values of the virtual control signals. In terms of the overall 
projectile trajectory, and focusing on �r , this corresponds 
as a first approximation to a higher control authority on the 

(32)�R,c =

⎡
⎢⎢⎢⎣

− sin�f cos�f

cos�f sin�f

sin�f − cos�f

− cos�f − sin�f

⎤
⎥⎥⎥⎦
�qr,c

(33)

yc =
1

l

[
�1,c
�2,c

]
=

1

l

[
− sin�f cos�f

cos�f sin�f

]
�qr,c =

1

l
M(�f )�qr,c

Fig. 17  Closed-loop system with anti-windup compensation

Fig. 18  Set of virtual control signals leading to no saturation

Fig. 19  MRAW architecture
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downrange error compared to the ’ + ’ configuration. This 
happens because, for �f = 45 deg , all four canards contrib-
ute to generate the virtual signal �r , as opposed to only two 
canards in the case where �f = 0 deg . The same interpreta-
tion also holds for �q and crossrange error. The drawback 
is a loss of versatility compared to the ’ + ’ configuration, 
in the sense that commanding �r ≠ 0 decreases the interval 
of compatible values of �q . Nevertheless, from nonlinear 
simulations of realistic launch scenarios without saturations 
(see Sect. 5), the ’ × ’ configuration seems preferable to limit 
the occurrence of saturations. Thus, the value �f = 45 deg is 
used to synthesize the pitch/yaw anti-windup compensator.

A large panel of methods are available to compute anti-
windup compensators in a time-invariant framework. Mod-
ern anti-windup theory, as described for instance in [19], 
identifies two families of methods: Direct Linear Anti-Win-
dup (DLAW), and Model Recovery Anti-Windup (MRAW). 
The DLAW approach relies on Lyapunov stability theory 
and the modified sector condition from [30] to express the 
anti-windup design problem as a Linear Matrix Inequality 
(LMI) problem. The MRAW approach embeds a model P̂(s) 
of the plant in the anti-windup compensator, as illustrated 
by Fig. 19. This architecture allows to track the mismatch 
with respect to the unconstrained model through the state 
xaw of the anti-windup compensator. The anti-windup signal 
ṽ2 then aims to minimize this mismatch. A notable feature 
of MRAW compensators is that they do not depend on the 
controller dynamics (i.e., on the baseline autopilot for the 
studied application). A drawback of this approach is that 
they are, by construction, of the order of the plant, which can 
be high, and therefore leads to a more complicated on-board 
implementation.

The DLAW and MRAW approaches are formulated in 
a time-invariant framework, and the theoretical guaran-
tees regarding stability domains and performance levels 
are not preserved when varying parameters are involved. 

Nonetheless, they remain appealing to compute local com-
pensators, to be subsequently interpolated using a gain-
scheduling technique. In this context, it makes sense to favor 
methods requiring little or no tuning, as they are easier to 
implement over the whole flight envelope. Based on these 
considerations, three anti-windup methods are considered 
for local syntheses, which are done over the same 7 × 6 × 5 
grid of the reduced flight envelope (210 points) used for 
pitch/yaw autopilot synthesis.

The first method is a static DLAW synthesis method, with 
furthermore v2 = 0 to avoid algebraic loops. The local syn-
theses are performed using the SAW library of the SMAC 
toolbox (https:// w3. onera. fr/ smac/ saw) so as to maximize 
the amplitude of step input reference signals nzy,g for which 
stability can be guaranteed [31]. The global compensator is 
then obtained by linearly interpolating the coefficients of the 
matrix Daw,1 ∈ ℝ

2×2 . This design was first proposed in [32].
The second anti-windup compensator uses the LQ-based 

MRAW method applicable to unstable plants [19]. Thus, 
with respect to the block-diagram of Fig. 19, the anti-windup 
signal ṽ2 is computed as ṽ2 = Klqrxaw so as to minimize the 
LQ performance index:

The cost function is kept the same for all the design 
points, enforcing a stronger penalty on the four states cor-
responding to the (mismatch on the) actuator states with 
Q = diag (I10, 50 ⋅ I4) and R = I2 . The relatively high order 
naw = 14 of the local compensators does not lend itself to 
the interpolation of state-space coefficients. Instead, the 
interpolation method chosen to obtain the global compen-
sator is based on output blending [33]. This design was first 
proposed in [34].

To address the drawback of having plant-order MRAW 
compensators, a third anti-windup design is explored. 

(34)J = ∫
∞

0

(
xT
aw
Qxaw + ṽT

2
Rṽ2

)
dt

Fig. 20  Step responses for dif-
ferent anti-windup schemes

https://w3.onera.fr/smac/saw
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It consists of an LQ-based MRAW based on a reduced 
plant model, where the actuator and sensor dynamics are 
neglected and only the airframe dynamics remain. Thus, the 
resulting reduced MRAW compensator has order naw = 4 . 
The computation is done using Q = I4 and R = I2 , and output 
blending is used as the interpolation method.

It is worth noting that computation of the local LQ-based 
MRAW compensators is very fast, with the synthesis over 
all points of the flight envelope grid taking a bit over 6 s, 
both for the full and reduced cases. By contrast, synthesis of 
the 210 static DLAW compensators takes about 180 s. The 
relative length of the latter computation can be attributed to 
the required LMI resolution, although it should be pointed 
out that the SAW library uses LMI Lab as an LMI solver, 
and that CPU time reduction may be achieved using faster 
solvers such as SeDuMi [35] or MOSEK [36].

Figure 20 shows the closed-loop responses for differ-
ent compensation schemes at the design point �PY0 . The 
step amplitude of the reference signal ny,g is chosen as 
ny,g = 1.05 ⋅ ny,sat , where ny,sat is the lowest value leading 
to real deflection angles above 10 deg within 10 s. The load 
factors shown in the figures are normalized as n̂z = nz∕ny,sat 
and n̂y = ny∕ny,sat . Without anti-windup compensation, the 
deflection angles eventually all saturate, resulting in large 
errors on the load factors as well as badly damped oscil-
lations. The anti-windup schemes all greatly improve the 
response, with the MRAW compensators featuring some 
additional small oscillations compared to the DLAW 
response. Remarkably, both the MRAW and reduced 
MRAW responses are identical, despite the significant order 
difference.

4.2  IQC analysis

4.2.1  Brief reminders on the IQC framework

The robustness of the closed-loop for fixed values of the 
scheduling variables is investigated using IQC analysis. This 
framework relies on an LFR representation of the system to 
analyze, and was introduced in [20], where the following 
main stability theorem is stated:

Theorem 1 With respect to the interconnection of Fig. 7, let 
M11(s) be a stable LTI system and Δ ∈ � a bounded causal 
operator. Let Π ∶ jℝ → ℂ

(ny
Δ

+nu
Δ

)×(ny
Δ

+nu
Δ

) a measurable 
Hermitian-valued function. Assume that:

• well-posedness is guaranteed for every � ∈ [0, 1] , i.e. 
I − �M11(s)Δ has a causal inverse;

• for every � ∈ [0, 1] , �Δ satisfies the IQC defined by the 
multiplier Π , i.e.: 

with u
Δ
= �Δ(y

Δ
) , and where L2 is the space of signals 

with finite energy, and for f ∈ L2 , f̂  denotes the Fourier 
transform of f;

• there exists 𝜀 > 0 such that: 

Then the interconnection (M11(s),Δ) is stable.
The strength of the IQC framework lies in the capacity 

to address simultaneous uncertainties of different nature, 
for instance parametric uncertainties and deadzone nonlin-
earities. Indeed, consider an operator Δ = diag (Δ1,… ,ΔN) , 
where each individual block Δi satisfies the IQC defined 
by a multiplier Πi . Then Δ satisfies the IQC defined by the 
composite multiplier Π given as:

where each Πi is partitioned as Πi =

[
Πi,11 Πi,12

Π
∗

i,12
Πi,22

]
 according 

to the dimension of the corresponding Δi.
The numerous works on IQC theory provide multipli-

ers for a wide variety of uncertainties and nonlinearities. 
As emphasized in [37], it is particularly convenient to 
work with multipliers parametrized as Π = Ψ

∗PΨ with 
some fixed Ψ ∈ RH

n
Ψ
×(ny+nu)

∞
 and P = PT

∈ P ⊂ ℝ
n
Ψ
×n

Ψ , 
where P is described by LMI constraints capturing fea-
tures of the uncertainty block. Indeed, application of the 
Kalman–Yakubovich–Popov (KYP) lemma then allows to 
replace the frequency-domain inequalities (36) by the equiv-
alent condition:

(35)

∀y
Δ
∈ L2 �

+∞

−∞

[
ŷ
Δ
(j𝜔)

û
Δ
(j𝜔)

]
∗

Π(j𝜔)

[
ŷ
Δ
(j𝜔)

û
Δ
(j𝜔)

]
d𝜔 ≥ 0

(36)∀� ∈ ℝ

[
M11(j�)

I

]
∗

Π(j�)

[
M11(j�)

I

]
≤ −�I

(37)

Π =

[
diag

(
Π1,11,… ,ΠN,11

)
diag

(
Π1,12,… ,ΠN,12

)
diag

(
Π

∗

1,12
,… ,Π∗

N,12

)
diag

(
Π1,22,… ,ΠN,22

)
]

Fig. 21  IQC performance analysis
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• there exists X = XT of suitable dimension and P ∈ P such 
that:

where (A, B, C, D) is a minimal realization of the system 

Ψ(s)

[
M11(s)

I

]
.

Thus, verifying stability of the interconnection boils down 
to solving an LMI problem.

The IQC framework extends seamlessly to performance 
analysis, by taking into account the performance channel 
from w to z. In particular, when evaluating performance 
through the L2 gain, the LMI (38) is adapted into:

where P = diag (P, Inz ,−�
2Inw) , and (A,B, C,D) is a minimal 

realization of the system in Fig. 21, from input [u w]T to 
output [z

Ψ
z w]T . We then seek matrices X = XT and P that 

minimize � under the LMI constraints (39) and P ∈ P . This 
guarantees that the interconnection is robustly stable and 
provides an upper bound on the worst-case L2 gain from 
w to z.

Finally, from an implementation point of view, the IQC-
analysis procedure based on the KYP lemma can be sum-
marized as follows: 

(38)
⎡⎢⎢⎣

I 0

A B

C D

⎤⎥⎥⎦

T ⎡⎢⎢⎣

0 X 0

X 0 0

0 0 P

⎤⎥⎥⎦

⎡⎢⎢⎣

I 0

A B

C D

⎤⎥⎥⎦
< 0

(39)
⎡⎢⎢⎣

I 0

A B

C D

⎤⎥⎥⎦

T ⎡⎢⎢⎣

0 X 0

X 0 0

0 0 P

⎤⎥⎥⎦

⎡⎢⎢⎣

I 0

A B

C D

⎤⎥⎥⎦
< 0

1. Build the interconnection (M(s),Δ) , with M(s) a stable 
LTI system, and where Δ = diag (Δ1,… ,ΔN) may con-
tain different types of uncertainties and nonlinearities,

2. Select a valid class of multipliers Πi = Ψ
∗

i
PiΨi for each 

uncertainty Δi , where the Ψi are fixed (several choices 
are possible for a same class of multiplier), and each Pi 
belongs to a set Pi described by LMI constraints,

3. Build the composite multiplier Ψ∗PΨ based on Eq. (37),
4. Compute a minimal realization of the system of Fig. 21,
5. Minimize � under the LMI constraints (39) and P ∈ P.

4.2.2  Application to the guided projectile

To apply IQC analysis to the guided projectile, LFR mod-
els of the closed-loop pitch/yaw channels are first computed 
for the different anti-windup configurations using the GSS 
library. The resulting Δ block gathers both the 16 × 16 aero-
dynamic uncertainty block ΔPY ∈ B

�PY as defined in Sect. 3, 
and a two-dimensional deadzone nonlinearity, leading to the 
augmented structure:

The performance channel considered is taken as the trans-
fer from the guidance signals nzy,g to the error signals ezy,ref  
with respect to the second-order reference model Tref ,PY (s) 
(see Fig. 10).

(40)

B̂
�PY =

{
diag

(
𝛿CN𝛼

I2, 𝛿CN𝛿
I2, 𝛿CA

I2, 𝛿CYp𝛼
I2,

𝛿Cm𝛼
I2, 𝛿Cmq

I2, 𝛿Cm𝛿
I2, 𝛿Cnp𝛼

I2, Dz (⋅)
)
∶ 𝛿

∙
∈ [−1, 1]

}

Table 2  Computational burden 
of IQC analysis with deadzone 
nonlinearities and aerodynamic 
uncertainties

Configuration No AW Static DLAW MRAW Reduced MRAW 

Order of the augmented system 
(minimal realization)

60 60 70 69

Number of decision variables 2012 2012 2667 2597
Average computation time (s) 11.7 9.9 17.2 17.1

Fig. 22  Bounds on the L2-gain in the presence of aerodynamic uncertainties |�
∙
| ≤ a and nonlinearity Φ ∈ sec[0, b]2 ∩ slope[0, b]2 ; from left to 

right: no anti-windup, static DLAW, MRAW, reduced MRAW 
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A robustness analysis can then be done, including both 
the deadzone nonlinearities and aerodynamic uncertainties. 
The former are locally described as a sector bounded and 
slope-restricted nonlinearity Φ ∈ sec[0, b]2 ∩ slope[0, b]2 . 
Accordingly, we use a combination of full-block circle cri-
terion (see e.g. Class 13 in [37]) and full-block Zames–Falb 
multipliers [38]. The parametrization of the Zames–Falb 
multipliers requires the selection of real poles and their mul-
tiplicity to specify basis functions. Based on a few trials, two 
poles are chosen, −10 and −100 , both with multiplicity 1. 
The latter are described using dynamic DG-scaling multi-
plier, with a pole −10 of multiplicity 1 for each uncertainty 
(see Class 5 in [37]). The normalized aerodynamic uncer-
tainties are then allowed to vary between [−a, a] , with a ≤ 1 . 
This allows to compute upper bounds �  on the L2-gain of the 
uncertain system for given values of b ∈ [0, 1] and a ∈ [0, 1] . 
Taking a = 0 corresponds to the IQC test with no aerody-
namic uncertainties. Meanwhile, taking b = 0 corresponds to 
computing upper bounds on the worst-case H

∞
 performance 

which can also be obtained using skew-� analysis. Table 2 
displays the LMI problem data corresponding to the IQC test 
and the average resolution time for given values of a and b.

Figure 22 depicts the surfaces obtained for the different 
anti-windup schemes. For the configurations without anti-
windup and with static DLAW, it can be observed that the 
value of b for which stability is guaranteed reduces signifi-
cantly as a grows. Both MRAW configurations are com-
paratively more robust, as for fixed b, an increase in a still 
leads to finite L2 gains in most (but not all) cases, although 
the bounds on the L2 performance are noticeably degraded. 
It is also worth noting that the surfaces obtained for both the 
MRAW and reduced MRAW are virtually equal for small to 

intermediate values of b, indicating that for the correspond-
ing set of sector nonlinearities, the MRAW and reduced 
MRAW have similar robust performance properties.

5  Nonlinear flight simulations

In this section, complete guided flight scenarios are simu-
lated by combining the open-loop nonlinear 7-DoF model 
of the projectile with the roll and pitch/yaw autopilots and 
the anti-windup compensators. In this study, perfect naviga-
tion is assumed, providing values of the scheduling variables 
VNav , hNav , pa,Nav . In addition, the measured fuse roll angle 
�f ,m is used to specify the transformation M(�f ,m) rather than 
the expected value of 45 deg (cf. Figure 17), ensuring that 
activation of the anti-windup compensator is based on the 
current fuse roll angle, and avoiding potential chattering 
effects in case it oscillates around 45 deg.

5.1  Description and simulation of a nominal flight 
scenario

A flight scenario representative of a standard long-range 
mission is considered, characterized by the following launch 
conditions:

The mission target is set as the ballistic impact point of the 
projectile, located approximately 25 km downrange and 
700 m crossrange from the launch point. The position of 
the target is taken into account in the closed-loop through a 
guidance module implementing the zero-effort-miss (ZEM) 

(41)V0 = 939 m/s, �0 = 42 deg, �0 = 0 deg

Fig. 23  Nominal scenario with 
baseline autopilot (no anti-
windup)



 S. Thai et al.

1 3

guidance law developed in [39]. Briefly, ZEM guidance 
relies on an impact point prediction method to compute the 
lateral and longitudinal position errors between the target 
position and an estimated ballistic (zero-effort) impact point. 
These errors are regularly updated based on the current state 
of the projectile on a simplified model of the airframe, and 
serve as the basis to compute the guidance load factors nzy,g.

Simulation results with the baseline autopilot are shown 
in Fig. 23, where data from the ballistic trajectory are also 
provided for reference. Regarding the ballistic phase, it can 
be observed that the fuse configuration ( pf  reduction and 
�f  control) is very short, lasting about 0.5 s . Regarding the 
guided phase, the ZEM guidance law produces reference 
load factors nz,g and ny,g that are close to the ballistic ones 

Fig. 24  Horizontal wind profile

Fig. 25  Scenario with wind 
disturbance and resulting satura-
tions

Fig. 26  Scenario with wind 
disturbance and scheduled static 
DLAW
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nz,bal and ny,bal . These guidance signals are tracked accu-
rately by the pitch/yaw autopilot, leading to a miss distance 
at impact below one meter. Although the maximum tolerated 
miss distance may vary with the operational context, this 
order of magnitude corresponds unambiguously to a suc-
cessful mission. Since the deflection angles remain below 
the saturation level l = 10 deg , identical trajectories are 
obtained regardless of the actuator model (linear or satu-
rated) or anti-windup compensation used.

Remark 4 The 3D trajectories plotted in this section do not 
use equally scaled axes, since these are ill-suited to highlight 
the evolution along the y-axis (crossrange).

5.2  Simulations of degraded scenarios

The same mission with a horizontal wind disturbance is con-
sidered next. The coordinates of the wind velocity vector 
with respect to the Earth in the local-level frame are shown 
in Fig. 24. Since the cannon is oriented in the North direc-
tion ( �0 = 0 deg ), the significant eastward component vW,L of 
the wind contributes to increase the deviation of the ballistic 
projectile to the right, leading to a miss distance of 427.1 m 
in the ballistic configuration. As seen on Fig. 25, deflection 
angles greater than 10 deg are required by the baseline auto-
pilot. This leads to saturations, and ultimately mission fail-
ure in the absence of anti-windup compensation, with a miss 
distance of 67 m . Figures 26 and 27 then show results for the 

Fig. 27  Scenario with wind dis-
turbance and scheduled reduced 
MRAW 

Fig. 28  Simulation results for 
the 24 launch uncertainty sam-
ples leading to deflection angles 
greater than l = 10 deg

Table 3  Global failure rate 
for maximum tolerated miss 
distance of 1, 10, and 20 m 
with uncertainties on launch 
conditions

Objective No AW With AW

< 1 m 2% 0.3%
< 10 m 1.7% 0.3%
< 20 m 1.7% 0%
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same scenario, obtained with the scheduled static DLAW 
and reduced MRAW (the latter are nearly identical to those 
obtained with full MRAW). The guided projectile is able to 
recover a very satisfactory closed-loop behavior, with impact 
points located a mere 5 mm away from the mission target.

Remark 5 In practice, the wind vector is taken into account 
to define the initial yaw angle �0 to bring the ballistic impact 

point closer to the target. This correction would contribute 
to reduce the deflection angles required by the autopilot, 
possibly to the point where anti-windup is not necessary. 
Nonetheless, the presented scenario with no adaptation of �0 
remains relevant to illustrate the increased maneuverability 
provided by anti-windup compensation.

Next, degraded scenarios involving uncertainties are 
considered. A first batch of 600 Monte Carlo trajectories 
with uncertainties on the initial launch conditions is gener-
ated. The samples are drawn following normal distributions, 
with mean values given by Eq. (41) and standard deviations 
3 m/s , 0.09 deg , and 0.12 deg , respectively, for V0 , �0 , and �0 . 
With no saturations, the miss distance at impact is less than 
a meter for all tested trajectories. However, 24 (4%) samples 
involve deflection angles exceeding l = 10 deg and reaching 
up to 14 deg . The left plot of Fig. 28 depicts the trajectory 
of the virtual control signals in the (�q, �r)-plane for these 
24 samples. The interior of the red square represents the set 
of virtual control signals that do not lead to canard deflec-
tion angles greater than l = 10 deg in amplitude, assuming 
�f ,m = 45 deg and neglecting the contribution of �p in the 
allocation. This plot illustrates that the ’ × ’ configuration is 
better suited than the ’ + ’ configuration in limiting the excess 
of control from the pitch/yaw autopilot.

The right plot of Fig. 28 shows the miss distance corre-
sponding to the 24 identified samples leading to saturations, 
for different projectile configurations: ballistic, with the 
baseline autopilot only (i.e., with no anti-windup), and with 
the 3 scheduled anti-windup compensators (static DLAW, 
MRAW, and reduced MRAW). The samples are sorted by 
increasing order of the miss distance for the baseline con-
figuration. Some values are reported in Table 3, where no 
distinction between the different anti-windup compensators 
is made, since their performance is very similar.

The robustness of the nonlinear closed-loop to aero-
dynamic uncertainties is studied next. To this end, 300 

Fig. 29  Simulation results for 
the 47 aerodynamic uncertainty 
samples leading to deflection 
angles greater than l = 10 deg

Table 4  Global failure rate for maximum tolerated miss distances set 
to 1, 10, 20, and 50 m with aerodynamic uncertainties

Objective No AW DLAW Full and 
reduced 
MRAW 

< 1 m 13.7% 8% 7.7%
< 10 m 12.7% 6.7% 6.7%
< 20 m 12% 5.7% 5.3%
< 50 m 10.7% 3% 2.7%

Fig. 30  Miss distance difference between DLAW and MRAW 
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Monte Carlo simulations are performed. The sampling 
of the aerodynamic coefficients is done assuming a nor-
mal distribution, where the standard deviation � is such 
that 3� corresponds to maximum uncertainty as reported 
in Table 1. Note that the aerodynamic uncertainties also 
impact the ZEM guidance, since it relies on nominal val-
ues of the aerodynamic coefficients. Nonetheless, the ter-
minal accuracy of the guided projectile without satura-
tions remains below one meter for all 300 simulations. 
However, 47 (15.7%) trajectories feature deflection angles 
exceeding l = 10 deg , with 24 deg as a worst-case value. 
The trajectories of the virtual control signals for these 
samples are shown in the left plot of Fig. 29, where it 
is clear that aerodynamic uncertainties have more impact 
on the commanded deflection angles compared to launch 
uncertainties.

The miss distances for the 47 identified samples are 
shown in the right plot of Fig. 29 for the different projectile 
configurations. Table 4 shows the global failure rate with 
respect to a few values for the maximum accepted miss dis-
tance. Performance degradations with aerodynamic uncer-
tainties on the baseline design are noticeably more severe 
compared to those stemming from launch uncertainties, 
with a noticeable loss of accuracy for almost all scenarios. 
The anti-windup compensators are able to mitigate this 
loss, although high miss distances are still reached in some 
cases. In addition, Fig. 30 shows the miss distance differ-
ence between DLAW and reduced MRAW compensation for 
the 47 samples. Samples associated to positive values then 
correspond to cases where MRAW compensation leads to 
a lower miss distance compared to DLAW compensation. 
Thus, the MRAW compensators seem to be slightly better 
in general at reducing the impact point dispersion, although 
this does not hold for every sample. Notably, Sample #47, 
associated to the greatest miss distance, performs worse with 
MRAW than with DLAW.

6  Conclusion

The objective of this paper is to design an autopilot for a 
novel guided dual-spin projectile concept steered by four 
independently actuated canards, subject to model uncertain-
ties and actuator saturations. In a first step, gain-scheduled 
baseline autopilots, which do not take into account satura-
tions, are developed for both the roll and the pitch/yaw chan-
nels using robust H

∞
 control theory. The resulting closed-

loop systems display very good local robustness properties, 
as evaluated with �-analysis. Saturations are addressed in 
a second step through the addition of an anti-windup com-
pensator to the closed-loop. Simple methods requiring 
little or no tuning are preferred for the synthesis of local 
compensators, to make computation over the whole flight 

envelope easier. Three such methods are selected, which are 
a static stability-based direct linear anti-windup (DLAW), 
an LQ-based model-recovery anti-windup (MRAW), and a 
reduced LQ-based MRAW. Local robustness analysis using 
integral quadratic constraints (IQC), taking into account 
both deadzone nonlinearities and aerodynamic uncertain-
ties, confirms the improved robust stability properties of 
the augmented closed-loop systems. Coverage of the flight 
envelope is then ensured through linear interpolation of the 
gains for the static DLAW, and through output blending 
for the two MRAW schemes. Finally, the various closed-
loop configurations are evaluated through operational flight 
scenarios involving a wind disturbance, perturbed launch 
conditions, or aerodynamic uncertainties. Simulation results 
demonstrate that the studied application can be successfully 
addressed using a combination of linear techniques and 
anti-windup compensation, with the proposed compensa-
tors improving the maneuverability of the system over the 
baseline autopilot.

Future work could investigate whether more sophisticated 
anti-windup techniques can further improve the current per-
formance and robustness properties of the system. To this 
end, it could be interesting to decrease the conservatism of 
the IQC analysis by considering more representative profiles 
for the exogenous input signals. Another follow-up would be 
to integrate in the study a realistic navigation system, as well 
as sensor noise and computational delays. The increased 
complexity of the resulting system may demand further 
design iterations, and possibly some fine-tuning.
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