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A learning algorithm for the calibration of internal model uncertainties
in advanced wind turbine controllers:

A wind speed measurement-free approach

S.P. Mulders1, L. Brandetti1, F. Spagnolo2, Y. Liu1, P.B. Christensen2 and J.W. van Wingerden1

Abstract— Wind turbine partial-load controllers have evolved
from simple static nonlinear function implementations to more
advanced dynamic controller structures. Such dynamic con-
trol schemes have the potential to improve power production
performance in realistic environmental conditions and allow
for a more granular trade-off between loads and energy
capture. The control structure generally consists of a wind
speed estimator (WSE) combined with a controller aiming to
track the commanded tip-speed ratio (TSR) reference. The
performance and resulting closed-loop system stability are
however highly dependent on the accuracy of the internal
model in the WSE-TSR tracking scheme. Therefore, developing
learning algorithms to calibrate the internal model is of partic-
ular interest. Previous works have proposed such algorithms;
however, they all rely on the availability of (rotor-effective) wind
speed measurements. For the first time, this paper proposes
an excitation-based learning algorithm that exploits the closed-
loop dynamic structure of the WSE-TSR tracking scheme. This
algorithm calibrates the internal model without the need for
wind speed measurements. Analysis and simulations show that
the proposed algorithm corrects for model uncertainties in the
form of magnitude scaling errors under ideal constant and
realistic turbulent wind conditions.

I. INTRODUCTION

In the past years, the global installed capacity of wind
turbines has increased exponentially and is expected to
increase further by 116 GW between 2022 – 2026 [1]. In
July 2021, the European Commission presented a new 2030
climate target to increase the share of renewable energy
sources to at least 40%. To attain this goal, an average power
capacity of 32 GW needs to be installed on a yearly basis.
The most economically viable and efficient fashion of doing
so for wind energy, is by deploying turbines with as high
as possible power capacities [2]. For this reason, there is
an ever-growing urge to further increase the turbine-rated
power outputs, which consequentially demands even larger
turbine sizes. Advanced and highly optimized wind turbine
controllers can facilitate this development [3].

Nowadays, state-of-the-art control schemes combine a
wind speed estimator and tip-speed ratio (WSE-TSR) track-
ing controller for partial-load region control. In contrast to
the conventional standard Kω2 torque control strategy [4],
the more advanced WSE-TSR tracking controller has the
potential to improve power extraction performance, and
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provides a more granular trade-off between loads and energy
capture [5][6]. In the WSE-TSR tracking scheme, the rotor-
effective wind speed (REWS) estimate [7] is leveraged to
calculate a rotor speed reference. The REWS is the wind
speed corresponding to the kinetic energy flux through the
total swept area of a wind turbine [8]. Then, to close the
loop, the difference between the reference and the measured
rotor speed is utilized as error feedback by the TSR tracking
controller.

In [9], it is found that the WSE-TSR tracking scheme
is inherently ill-conditioned by analysis using a control-
oriented linear analysis framework. In the presence of model
uncertainty, the problem of ill-conditioning inevitably leads
to a biased effective wind speed estimate. As a consequence,
the ill-conditioning causes the real-world wind turbine to de-
viate from the commanded operating point, possibly resulting
in sub-optimal performance and/or stability issues.

A precise REWS estimate is thus highly dependent on the
accuracy of the internal model parameters representing the
actual aerodynamic properties of the wind turbine. However,
these modeled parameters often initially already deviate
significantly from the actual aerodynamic characteristics and
tend to vary further over time due to, e.g., blade erosion and
ice, residue, and bug build-up [10][11]. Therefore, to sustain
control performance, calibration increasing the accuracy of
the internal model is of special interest.

Various learning schemes have been proposed in the
past. The work of [12] suggests reconstructing a calibrated
power coefficient mapping with Gaussian process regression
based on standard real-time turbine measurements. Another
study describes an online method to estimate the power
coefficient by measuring the wind speed, generator voltage,
and current [13]. While the works provide solutions for
the calibration of model information, they all assume and
rely on the availability of (accurate) hub height or rotor-
effective wind speed measurements. Because the wind is
generally measured downwind by a point-wise hub-height
anemometer, the assumption of sufficient accuracy of such
a measurement is rather unrealistic considering the spatial
variability of the wind over rotor swept area for large-scale
turbines [7]. Moreover, there is an additional challenge in
accurately computing power coefficient information from
such measurements [14].

The current work proposes a novel learning algorithm that
allows for calibrating the turbine model parameters without
the need for a wind speed measurement. The algorithm
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Fig. 1. Block diagram of the partial-load wind turbine controller. The red box contains the wind turbine system (model), with generator power set point
Pg as control input, rotor speed ωr as output, and subject to an REWS U disturbance. The wind speed estimator is indicated in blue and relies on the
system in- and output, and a nonlinear internal model of the wind turbine to compute a rotor-effective wind speed estimate Û . This estimate is subsequently
used to compute the rotor speed set point rω . This set point is used to calculate error eω by subtracting the actual rotor speed ωr, which is provided as
an input to the PI controller indicated in green. The controller provides the generator power set point Pg.

exploits the inherent dynamic structure of the WSE-TSR
tracking controller by excitation of the closed-loop system
and real-time calibration of the internal model information.
This paper presents the following contributions:

1) Demonstrating that the magnitude response of a spe-
cific input-output (I/O) pair of the closed-loop system
possesses convex properties with diminishing uncer-
tainty of the internal model.

2) Providing a frequency-domain analysis framework for
the interpretation and analysis of the convex properties.

3) Proposing an excitation-based learning algorithm for
calibrating the internal control model.

The paper is organized as follows. Section II presents the
WSE-TSR tracking scheme considered in this paper. By
deriving a linear frequency-domain analysis framework, the
scheme is shown to possess remarkable properties for a
specific I/O pair in its transfer. Next, Section III presents the
convex properties when the scheme is subject to model un-
certainty. Section IV outlines the proposed learning algorithm
that takes advantage of these convex properties. Section V
showcases simulation results on the learning process. Finally,
conclusions are drawn in Section VI.

PREREQUISITES

Functions of values indicating the modeled and/or intended
optimal parameters are presented with (·)⋄, whereas esti-
mated quantities and uncertain modeled information in the
estimator and/or controller are indicated by (̂·). Demodulated
signals at a specific frequency ω are presented with (̆·).

Furthermore, this work relies on a collection of assump-
tions, which are summarized in this section. It is possible to
alleviate some of the assumptions, however, the focus of this
paper is to expose the key working principles of the learning
algorithm in a clear and concise fashion.

Assumption 1. The turbine is assumed to only operate in
the partial-load region subject to generator power control, at

a constant (fine) pitch angle. Therefore, the power coefficient
information is only taken as a function of the tip-speed ratio.

Assumption 2. Among all the modeled parameters in the
WSE-TSR tracking scheme, only the power-coefficient infor-
mation is assumed to be uncertain.

Assumption 3. An element-wise function multiplication in-
duces power coefficient uncertainty for the entire domain of
the power-coefficient array.

Assumption 4. The rotor speed acceleration, which is in
practical scenarios often estimated or computed numerically,
is assumed to be an available and exact signal to the wind
speed estimator.

II. THEORY AND DERIVATIONS

This section presents the WSE-TSR tracking scheme that is
considered throughout this paper. Furthermore, the system is
linearized for the frequency-domain analysis of a particular
input-output combination of interest. The considered transfer
turns out to possess enabling properties for the development
of the learning algorithm.

A. Time-domain representation

This section provides a derivation of the advanced wind
turbine control scheme, consisting of a combined rotor-
effective wind speed estimator and a controller tracking a
constant tip-speed ratio. Fig. 1 presents a block diagram of
the WSE-TSR tracking controller. Only the main results of
the distinct elements in the scheme are given in this work;
the reader will be referred to other works for more extensive
derivations.

The wind turbine system is modeled as a first-order system

Jω̇r(t)ωr(t) = Pr(t)− Pg(t), (1)

in which J ∈ R is the effective rotor inertia converted to the
low-speed shaft (LSS), ωr ∈ R is the rotor speed, and Pr ∈
R and Pg ∈ R are the respective aerodynamic power and
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generator power set point, the latter of which is assumed to
be directly related to the generator power. The time indication
t is from this point omitted, unless its inclusion improves in
clarity. The aerodynamic power is given by

Pr =
1

2
ρAU3CP(λ), (2)

where ρ ∈ R is the fluid (air) density, A ∈ R the rotor swept
area, U ∈ R the rotor effective wind speed, and CP : R −→ R
the rotor power coefficient mapping as a function of the
dimensionless tip-speed ratio

λ = ωrR/U, (3)

with R being the rotor radius (Assumption 1).
The employed wind speed estimator is a dynamic vari-

ant of the commonly applied power (or torque) balance
equation [5], and has a high degree of similarity with the
immersion and invariance (I&I) estimator [15][16], and is
given by

˙̂
U = KUeP = KU

(
Pg − P̂r + Jω̇rωr

)
, (4)

where KU is the estimator gain, and the estimated aerody-
namic rotor power is defined as

P̂r =
1

2
ρAÛ3ĈP(λ̂), (5)

with λ̂ = ωrR/Û . The tip-speed ratio tracking controller is
a proportional-integral (PI) controller

Ṗg = Kpėω +Kieω, (6)

in which the error eω = rω − ωr is the respective difference
between the rotor speed and the time-varying rotor speed set
point rω(t), which is obtained based on (3) with the desired
tip-speed ratio λ∗ and the estimated wind speed Û .

B. Frequency-domain representation
With the time-domain representations of all the elements at
hand, this section provides various open- and closed-loop
frequency domain transfer functions that will appear to be
useful in the remainder of this paper.

First the open-loop wind turbine with wind speed esti-
mator in series is derived. To this end, the state is defined

as x =
[
ωr, Û

]T
, the input u = [Pg,e, Pg,c]

T consists out
of a respective excitation and controller power contribu-
tion, and the output is defined as y = g(x,u) = [eω, eP]

T.
Thereby, taking into account Assumption 4, the following
nonlinear state-space state equation is proposed

ẋ = f(x,u) =

[
1/ (Jωr) (Pr − Pg)

KU

(
Pg − P̂r + Jω̇rωr

)]
. (7)

Linearizing the above-given equations by taking the Jacobian
with respect to the state, input, and output vectors results in

A =

[(
T + P̄g/ω̄

2
r

)
/J 0

KU

(
Q− Q̂

)
−KUV

]
, B =

−1

Jω̄r

[
1 1
0 0

]
, (8)

C =

[
1 −λ∗/R(

Q− Q̂
)

−V

]
, D = 0, (9)

where Q = ∂Pr/∂ωr, Q̂ = ∂P̂r/∂ωr, T = ∂τr/∂ωr, and
V = ∂P̂r/∂Û . A unique transfer function representation
of the state-space system in (8) – (9) is obtained using
C(sI−A)−1B+D, resulting in

G(s) =

[
G1,1(s) G1,2(s)
G2,1(s) G2,2(s)

]
=

[
G1(s) G1(s)
G2(s) G2(s)

]
, (10)

where s is the Laplace operator, and

G1(s) =
−1

Jω̄r

 s+KU

(
V − λ∗/R

(
Q− Q̂

))
(
s−

(
T + P̄g/ω̄2

r

)
/J
)
(s+KUV )

 ,

G2(s) =
−1

Jω̄r


(
Q− Q̂

)
s(

s−
(
T + P̄g/ω̄2

r

)
/J
)
(s+KUV )

 .

By defining the transfer function for the PI controller as

C(s) =
Pg,c(s)

Eω(s)
=
Kps+Ki

s
, (11)

and in series with G1(s), one obtains the loop transfer

L1(s) = G1(s)C(s)

=
−1

Jω̄r

(Kps+Ki)
(
s+KU

(
V − λ∗/R

(
Q− Q̂

)))
s
(
s−

(
T + P̄g/ω̄2

r

)
/J
)
(s+KUV )

,

(12)

and by closing the loop around the loop transfer in- and
output eω , the following single-input single-output (SISO)
transfer function is obtained

H(s) =
EP(s)

Pg,e(s)
=

G2(s)

1− L1(s)
=

−
(
Q− Q̂

)
s2

J (Ξ1 + Ξ2)
, (13)

in which Ξ1 = ω̄rs
(
s−

(
T + P̄g/ω̄

2
r

)
/J
)
(s+KUV ) and

Ξ2 = (1/J) (Kps+Ki)
(
s+KU

(
V − λ∗/R

(
Q− Q̂

)))
are used to make the expression more compact.

The key transfer for the development of an active learning
strategy is the closed-loop transfer function H(s) between
the input Pg,e(s) and output EP(s), as its overall gain
diminishes under increasing model certainty. This property
is a key-enabling factor for the development of the learning
algorithm proposed in this work.

III. MODEL UNCERTAINTY

This section describes how model uncertainty is included
in the proposed framework, and illustrates the effect on the
frequency response of H(s). Furthermore, an analysis and
illustrative example is given on the convex properties in its
magnitude response.

A. Definition of model uncertainty

Under Assumption 2 and 3, this paper considers model
uncertainty as a multiplicative degradation function acting
on the ideal (modeled) aerodynamic rotor properties, and is
defined as

CP(λ) ≜ Γ(λ)C⋄
P(λ). (14)
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Note that the degradation function Γ(λ) is a function of
λ and is unknown in real-world scenarios. Similarly, the
ideal power coefficient data included in and used for the
overall control system is obtained by multiplication of the
estimated degradation function with the ideal aerodynamic
rotor properties:

ĈP(λ̂) ≜ Γ̂(α, λ̂)C⋄
P(λ̂), (15)

and the estimated degradation function is defined as

Γ̂(α, λ̂) ≜ αγ(λ̂), (16)

where γ(λ̂) : R → R is the degradation profile with α ∈
R+ being its magnitude scaling. This paper provides a proof
of concept for the proposed novel learning algorithm. As
will become apparent later, due to the ill-conditioning of
the control scheme [9] currently only degradation functions
parameterized by a single variable can be compensated for.

Furthermore, by equating the steady-state result of aerody-
namic rotor power and its estimate, i.e. Pr = P̂r, respectively
defined by (2) and (5), and substituting the uncertainty
expressions (14) and (15) one obtains

Û3 = U3CP(λ)

ĈP(λ̂)
= U3 Γ(λ)

Γ̂(α, λ̂)

C⋄
P(λ)

C⋄
P(λ̂)

. (17)

As shown, an accurate estimate of the actual REWS can
only be made when CP(λ) = ĈP(λ̂). In the proposed
uncertainty definition framework, this consequently means
that a consistent estimate of Γ by Γ̂ is required, and the
actual aerodynamic characteristics are successfully modeled
when Γ(λ)/Γ̂(α, λ̂) = 1 ∀

(
λ = λ̂

)
.

B. Convex properties of the proposed transfer function

The closed-loop transfer function H(s) defined in (13)
possesses a DC gain term as the difference between the
actual and estimated partial derivative of the rotor power
with respect to the rotor speed (respectively indicated by
Q and Q̂). The difference between those terms and, in turn,
the magnitude of the frequency response of H(s) nullify
whenever the turbine model information matches with the
actual aerodynamic properties. This remarkable (convex)
property of the transfer function’s magnitude response is
further analyzed in this section.

The partial derivative represented by Q is defined as

∂Pr

∂ωr
=

1

2
ρARU2 ∂CP

∂λ
, (18)

and a similar expression is obtained for its estimate Q̂ based
on (5). Upon closer inspection of the difference term and
under Assumption 2, one obtains the following relation:

∂Pr

∂ωr
− ∂P̂r

∂ωr
=

1

2
ρAR

(
U2 ∂CP

∂λ
− Û2 ∂ĈP

∂λ̂

)
, (19)

and the above-given expression nullifies whenever

U2 ∂CP

∂λ
= Û2 ∂ĈP

∂λ̂
. (20)

The proposed learning scheme is based on the idea to equate
these two terms, minimizing the transfer H(s). Using (17),
a convex minimization problem is formalized as

argmin
ĈP,

∂ĈP
∂λ̂

∣∣∣∣∣ 1

C
(2/3)
P (λ)

∂CP

∂λ
(λ)− 1

Ĉ
(2/3)
P (λ̂)

∂ĈP

∂λ̂
(λ̂)

∣∣∣∣∣ . (21)

It is recognized that in (21), the first term consists out of
real-world characteristic turbine properties as a function of
the turbine operational state and environmental conditions,
whereas the second term contains their modeled and esti-
mated representations.

One can already recognize that the individual terms mak-
ing up the product of the real-world turbine properties cannot
be uniquely estimated; only their product is known. Earlier
work [9] describes a similar type of ill-conditioning and
reveals that inaccurate CP-information in the wind speed
estimator is counteracted by a biased wind speed estimate
Û , as also concluded from (17).

For solving the minimization problem in (21), one can ei-
ther calibrate the modeled power coefficient information, its
gradient, or a combination of both. Therefore, in its current
form, the minimization is underdetermined, and one should
take into account the following additional observations in
solving the minimization problem of (21):

1) The problem can be minimized by taking the power
coefficient gradient as a decision variable, which does
not have an effect on the correctness of the estimated
REWS.

2) Setting the tip-speed ratio reference to track the max-
imum power coefficient results in an estimated power
coefficient gradient being equal to 0. This situation
adds another layer of complexity of the underdeter-
mined minimization problem, as an infinite number
of solutions exist. This point is further outlined in
Section III-C.

Because of the above-mentioned reasons and observations,
and according to the current stage of this research, for now,
assumptions have to be made on types of uncertainty that
the proposed scheme can correct for. This is the reason
for defining the estimated degradation function in (16) as a
multiplication between an a priori known degradation profile
γ(λ̂) and its unknown scaling factor α.

C. Learning limitations at the maximum power-coefficient

This section describes the remarkable property of the algo-
rithm being unable to learn the actual aerodynamic char-
acteristics when operating the turbine at the tip-speed ratio
λ∗ = argmaxλ̂ ĈP(λ̂), maximizing steady-state power cap-
ture.

The above described is seen by substituting the deriva-
tives of (14) and (15) with respect to their tip-speed ratio

1489

Authorized licensed use limited to: TU Delft Library. Downloaded on August 03,2023 at 08:32:20 UTC from IEEE Xplore.  Restrictions apply. 



arguments in (20), resulting in

U2

(
∂Γ

∂λ
(λ)C⋄

P(λ) + Γ(λ)
∂C⋄

P

∂λ
(λ)

)
=

Û2

(
∂Γ̂

∂λ
(α, λ̂)C⋄

P(λ) + Γ̂(α, λ̂)
∂C⋄

P

∂λ
(λ̂)

)
. (22)

Now by assuming that the actual degradation function is a
constant (Γ = C), one can disregard the first terms at the
left- and right-hand side of the equation, and by recognizing
that ∂ĈP/∂λ̂ (λ

∗) = 0, then (22) reduces to

U2

(
Γ(λ)

∂C⋄
P

∂λ
(λ)

)
= 0, (23)

which eliminates the algorithm’s ability to learn Γ̂(α, λ̂).
To solve this problem, the turbine tip-speed ratio set point

should be relocated – during the learning phase – from the
power-coefficient maximizing location λ∗ to a temporary
set point location λ̃∗ where the gradient is nonzero, such
that ∂C⋄

P/∂λ (λ̃
∗) ̸= 0. Then, for the considered case, the

following equality holds

U2Γ(λ)
∂C⋄

P

∂λ
(λ) = Û2Γ̂(α, λ̃∗)

∂C⋄
P

∂λ
(λ̃∗). (24)

D. Analyzing the convex transfer properties

In this section, the effect of model uncertainty on H(s)
is analyzed. For evaluation and illustration of the trans-
fer function, the NREL 5-MW reference wind turbine is
considered [4]. For purposes of the learning algorithm,
the turbine operates at a nonoptimal TSR set point of
λ̄∗ = 9.5, whereas the controller and estimator gains are
constant for all operating conditions at Kp = 4.57 · 105,
Ki = 4.57 · 104, and KU = 1.67 · 10−7. The degradation
function – acting on the actual aerodynamic turbine prop-
erties – are analyzed for the set of constant multiplicative
factors Γ = {0.85, 0.95, 0.99, 1.2}. Note that the actual tip-
speed ratio operating point λ̄ deviates from the requested set
point with increasing uncertainty, as a result of the inherent
ill-conditioning of the considered controller scheme [9]. The
resulting steady-state operating points are obtained for each
uncertainty level and are used for evaluation of H(s).

Fig. 2 shows the set of frequency responses H(jω),
evaluated at the above-given uncertainty levels. Furthermore,
for interpretation of this figure, the characteristic equation
D(s) in H(s) = N(s)/D(s) for a nondegraded wind turbine
is derived (i.e., Q̂ = Q):

D(s)|Q̂=Q =

ω̄r

(
s2+

1

Jω̄r

(
Kp−

P̄g

ω̄r
−T ω̄r

)
s+

Ki

Jω̄r

)
(s+KUV ).

(25)

The reason for the notation of the above is that the numerator
N(s) = 0 for the considered case. While the characteristic
equation in (25) does not exactly resemble the presented
frequency response trajectories in the Fig. 2, the equation
is still useful to recognize of some remarkable properties of
the transfer H(s):

Fig. 2. Bode plot of H(s) for the set of multiplicative (constant factor)
uncertainties Γ = {0.85, 0.95, 0.99, 1.2}, and Γ̂ = 1 for all cases.
The maximum magnitude response frequency depends on specific operating
conditions, rotor structural properties, and controller gains. It is shown that
the magnitude response diminishes for Γ̂ → Γ. The case for Γ = 1.0 is
not displayed as its transfer is nonexistent.

• The transfer has a zero DC gain as a result of the double
pure zero in H(s).

• The overall magnitude diminishes as Γ̂ → Γ.
• Whenever the degradation is under- or overestimated,

the sign of the transfer flips (phase plot omitted).
• The magnitude response shows a maximum gain in a

very specific frequency interval, induced by the second-
order term in D(s). The following can be said on its
natural frequency and damping:

– The location of the natural frequency is induced
by the TSR tracking controller integral gain Ki,
the operating point and other turbine properties.

– The damping is determined by the controller pro-
portional gain Kp, the operating point and other
turbine properties.

The next section elaborates on the development of a continu-
ous learning algorithm benefiting from the convex properties.

IV. THE ACTIVE LEARNING ALGORITHM

Unlike most other learning algorithms, the proposed ap-
proach in this section exploits the convex dynamic properties
of the turbine control scheme, without the need for a wind
speed measurement. The goal of the algorithm is to correct
the wind speed estimator internal model in terms of the
power coefficient information. This section first presents a
concise overview of the learning approach, after which the
algorithm is further detailed.

A. Overview of the learning algorithm

As the learning strategy aims at minimizing the periodic
excitation signal present in the output eP, various learning
approaches can be derived accomplishing this goal. The
approach proposed in the paper is an excitation-demodulation
based learning approach, of which a schematic block diagram
is presented in Fig. 3. The scheme shows that by periodically
exciting Pg,e with a single sinusoid at frequency ωL, the
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Fig. 3. The closed-loop system H(s) is subject to a single frequency
dynamic excitation signal at Pg,e. Because the system is assumed to show
linear characteristics around an operating point, the output signal eP pos-
sesses a magnitude-scaled and phase-shifted version of the excitation signal.
To single out that frequency content, the inverted notch N1 is employed,
of which its resulting signal is subject to a demodulation operation. This
operation moves the dynamic frequency content to a combined DC and
a higher-harmonic contribution, of which the latter is attenuated by notch
filter N2. The resulting signal consists of a dominant DC component, that
represents the system magnitude transfer, and is minimized in realtime by
finding the correct scaling factor α.

output signal eP is subsequently filtered, demodulated and
numerically integrated. The result after integration is α to
scale the a priori known degradation profile γ(λ̂) as in (16).
Whenever an α is found such that Γ(λ) = Γ̂(λ̂), the gain of
H(s) nullifies.

B. Derivation of the learning algorithm

The closed-loop system H(s) is excited with the single-
frequency periodic signal

Pg,e(t) = AP sin (ωLt), (26)

where AP and ωL are the excitation amplitude and frequency,
respectively. From the linear system theory, it follows that
the output is a magnitude-scaled and phase-shifted version
of the excitation signal, such that

eP(t) = Ae sin (ωLt+ ψH), (27)

where Ae = AP |H(jωL)| being the output amplitude of the
resulting excitation signal, with a phase shift ψH = ∠H(jωL)
representing the phase loss in the system at the excitation fre-
quency. Next, the system response at the excitation frequency
is isolated by the use of the following (inverted) notch filter
with +1/−1 slopes to the left and right side of its natural
frequency:

N1(s, ωL) =
EP(s)

EN1

P (s)
= K

s

s2 + 2ζωLs+ ω2
L

, (28)

in which ζ is the damping ratio, and the gain K = 2ζωL for
a unity gain at the fundamental frequency of the filter. The
resulting time-domain output signal is

eN1

P (t) = Ae sin (ωLt+ ψHN), (29)

and is subsequently subject to a signal demodulation oper-
ation, to transfer the frequency response content at ωL to

a static DC contribution. In the time-domain, demodulation
comes down to the following operation

ĕP(t) = eN1

P (t)
(
sin (ωLt+ ψD) + cos (ωLt+ ψD)

)
,

=
Ae

2
+
Ae

2

(
sin
(
2(ωLt+ ψD)

)
− cos

(
2(ωLt+ ψD)

))
,

(30)

and the above-given derivation only holds when ψD = ψHN,
where ψD is a phase-offset tuning variable to compensate for
the phase loss ψHN caused by dynamic operations and system
delays. The correct tuning of ψD increases the convergence
performance of the considered learning scheme [17]. As
shown in (30), the resulting signal ĕP now consists of a linear
combination of a steady-state offset Ae/2 with a periodic
contribution at 2ωL. This signal, subject to a notch filter at
2ωL, is given by

N2(s, 2ωL) =
Ȧ(s)

Ĕp(s)
=
s2 + 2ζ1(2ωL)s+ (2ωL)

2

s2 + 2ζ2(2ωL)s+ (2ωL)2
, (31)

where A(s) is the Laplace representation of the time-
domain signal α, and ζ1, ζ2 are the respective numerator
and denominator damping coefficients. Lastly, the magnitude
scaling of the degradation profile is numerically integrated
with learning gain KL. The scaling factor α is a direct
calibration parameter into the nonlinear closed-loop system
to the estimated degradation function in (16). Because of the
convex and sign altering properties of the considered transfer,
the above-described learning scheme converges.

V. RESULTS
This section showcases the working principles and per-
formance of the proposed learning algorithm by multiple
simulation case studies. The simulation environment entails
a nonlinear first-order wind turbine model representing the
NREL 5-MW reference turbine, subject to the WSE-TSR
tracking control scheme according to Fig. 1. Only the partial-
load region is considered (Assumption 1), by subjecting the
turbine to constant and turbulent (TI = 3%) wind profiles
with a mean wind speed of Ū = 7 m/s.

The chosen turbulence intensity results in satisfactory
convergence of the algorithm; further research needs to be
performed to provide robust learning performance for lower
signal-to-noise (SNR) ratios. The parameters for the learning
algorithm are the learning gain KL = −0.5 · 10−9 m s-1 W-1,
demodulation phase offset ψD = 130 deg, power excitation
amplitude and frequency AP = 500 kW and ωL = 0.02 Hz,
and the tip-speed ratio set point for learning λ∗ = 9.5.

A constant-factor degradation function Γ = 0.85 is taken,
degrading the rotor power coefficient characteristics with
respect to that of the actual turbine. This degradation case
is considered for all simulation cases and is aimed for
correction by Γ̂(α, γ = 1) = α, with α0 = 1.0 as an initial
value. The baseline case Γ = 1.0, shown in the same figure,
indicates there is no degradation on the power coefficient,
i.e., Cp = C⋄

p .
Fig. 4 shows the results for several runs of the learning

progress for the considered wind profiles. For the constant

1491

Authorized licensed use limited to: TU Delft Library. Downloaded on August 03,2023 at 08:32:20 UTC from IEEE Xplore.  Restrictions apply. 



0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Time [h]

0.7

0.8

0.9

1

1.1
M
a
g
n
it
u
d
e
sc
a
li
n
e
,
[-
]

Learning progress !̂

Reference
Constant
Turbulent #1
Turbulent #2
Turbulent #3

Fig. 4. The learning progress is illustrated for an actual aerodynamic performance constant-factor degradation scenario represented by Γ = 0.85. The two
learning scenarios considered are subject to a constant wind profile and three distinct realizations of realistic turbulent wind fields (TI = 3%). The figure
shows a reference for the estimated degradation function Γ̂ = α = 0.85 that is to be discovered by the scheme by the red dashed line. For the constant
wind speed, the scheme is seen to converge to the exact degradation magnitude correction factor. For the turbulent cases, the algorithm is also shown to
converge to the correct value, however the trajectories show an increased variance around the optimum. Although the simulations are run for an extended
period of time to indicate convergence, the algorithms is seen to converge on a time scale of hours.

wind profile, the algorithm accurately finds the actual degra-
dation factor. For the different turbulent realizations, the
degradation magnitude is found correctly, however, variance
is observed around the optimal value. Convergence is con-
cluded empirically based on comparison with the reference
degradation factor α. Furthermore, the three distinct realiza-
tions of the turbulent case remain close to the actual optimum
value for extended time periods. It is also recognized that the
speed of the algorithm is on the time scale of hours, which
makes the learning scheme most suitable for learning long-
term degradation scenarios such as leading-edge erosion.

VI. CONCLUSIONS

This paper presents a novel learning algorithm for calibrating
the internal model employed in modern and advanced wind
turbine controllers. An excitation-based learning algorithm
is proposed for the first time without the need for wind
speed measurements. Considering a specific input/output pair
of the wind turbine control scheme in a linear analysis
framework demonstrates a convex property, which is a key-
enabling factor for the development of a learning algorithm.
The algorithm thereby exploits the structure and dynamics
of the combined tip-speed ratio tracking and wind speed
estimation control scheme. Preliminary studies show its
ability to discover and correct for a constant-factor power
coefficient degradation case under ideal constant and more
realistic turbulent wind conditions.

Future work will focus on the further development of the
learning algorithm to alleviate constraints on the degradation
profiles that can be compensated for, thereby increasing the
practical applicability. Furthermore, analysis and improve-
ment of the signal-to-noise ratio between the excitation signal
and the wind disturbance input will be considered for faster
convergence, reduced excitation magnitudes, and the ability
to learn in even more realistic environmental conditions.
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