

Delft University of Technology

Curvature-Aware Model Predictive Contouring Control

Lyons, L.; Ferranti, L.

DOI
10.1109/ICRA48891.2023.10161177
Publication date
2023
Document Version
Final published version
Published in
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2023)

Citation (APA)
Lyons, L., & Ferranti, L. (2023). Curvature-Aware Model Predictive Contouring Control. In Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA 2023) (pp. 3204-3210). IEEE.
https://doi.org/10.1109/ICRA48891.2023.10161177

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ICRA48891.2023.10161177
https://doi.org/10.1109/ICRA48891.2023.10161177

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Curvature-Aware Model Predictive Contouring Control∗

Lorenzo Lyons1 and Laura Ferranti1

Abstract— We present a novel Curvature-Aware Model Pre-
dictive Contouring Control (CA-MPCC) formulation for mobile
robotics motion planning. Our method aims at generalizing
the traditional contouring control formulation derived from
machining to autonomous driving applications. The proposed
controller is able of handling sharp curvatures in the reference
path while subject to non-linear constraints, such as lane
boundaries and dynamic obstacle collision avoidance. Com-
pared to a standard MPCC formulation, our method improves
the reliability of the path-following algorithm and simplifies the
tuning, while preserving real-time capabilities. We validate our
findings in both simulations and experiments on a scaled-down
car-like robot.

I. INTRODUCTION

Automated vehicles, such as self-driving cars, have the
potential to revolutionize our urban mobility. They can help
us regulate traffic in big cities, reduce fatalities caused by
human errors, and make transportation more accessible to
elderly population or people with disabilities [1]. While we
can gain a lot out of these technologies, the majority of
commercial automated vehicles are still far from reaching
the highest level of automation (i.e., SAE level 5) [2].
Safety is still a major concern for further developing these
vehicles, especially in complex urban environments or in
rural areas. While on the highway the vehicle is rarely re-
quired to perform harsh turns and avoid obstacles on narrow
lanes, these situations often occur in our cities or in back-
country roads. To navigate an autonomous vehicle in these
challenging environments, the local motion planner plays a
fundamental role since it acts as a bridge between how the
vehicle perceives the environment and how it reacts to it.
The motion planner has the task to keep the vehicle on the
road, providing the right references to the actuators to stay
within the lane boundaries, while avoiding collisions with
obstacles. Precisely accounting for the road curvature is one
of the challenges that the motion planner must face to keep
the vehicle on track. This paper proposes a curvature-aware
local motion planner based on nonlinear model predictive
control (NMPC) to address these challenges.

Traditional approaches to path following include feedback
controllers [3] or iterative linear quadratic regulator (iLQR)
[4]. These approaches, however, consider decoupling lateral
and longitudinal dynamics and/or do not account for state
and actuator constraints. MPC is a valid alternative to these
methods. MPC is an optimization-based control technique

*This research is supported by the NWO-TTW Veni project HARMONIA
(no. 18165).

1The authors are with the Reliable Robot Control Lab, Department of
Cognitive Robotics, Delft University of Technology, 2628 CD Delft, The
Netherlands {l.lyons,l.ferranti}@tudelft.nl

that allows one to formulate desired control objectives and
optimize the behavior of the vehicle over a predefined time
window (refer to [5] for an overview). A useful comparison
among PID, iLQR and MPC can be found in [6].

In this paper, we build on a NMPC formulation suitable
for path planning, known as model predictive contouring
control (MPCC). Compared to reference-tracking MPC [7],
MPCC includes an analytical description of the reference
path, which is not parameterized with respect to time but with
respect to a tailored path parameter. MPCC was originally
applied in machining [8]–[10]. In this field path following
had been addressed prior to these works, yet the focus was on
providing geometrical convergence to the path by means of
feedback controllers’ (e.g., [11]). Understanding the origin of
MPCC is relevant to the present work, since the formulation
developed by [8] for machining has been transferred almost
unaltered to the field of autonomous vehicles, for example in
[12]–[14]. These approaches showed the potential of MPCC
for robot navigation in dynamic environments. Classical
MPCC, however, relies on the assumption of small lateral
deviations of the vehicle from the reference path. This is
surely the case in a high-precision application where the
quality specifications often require lateral errors in the order
of microns. In autonomous driving (and mobile robotics in
general) this assumption may not hold since the presence of
obstacles or actuator saturation may force the vehicle to de-
viate significantly from the reference path. Efforts to handle
this issue can be found in the field of autonomous racing,
where race tracks usually feature sharp turns. In [15] an
effective strategy to account for high curvatures is presented,
yet it is used offline to define an optimal path. The results
are validated in simulation and path tracking is enforced by a
low-level controller integrated in the simulation software. In
[16] and [17] a similar approach is taken and the findings are
validated on a full scale autonomous racing car. Exploiting
the prior knowledge of the full track is a successful strategy
in a racing context, yet this detailed knowledge is generally
not available in an urban driving scenario. Handling tight
curves relying only on local curvature information is the
challenge addressed in the present work.

The main contribution of the present work is to develop
a MPCC formulation for mobile robot navigation capable of
accounting for sharp turns in, or deviating from, the refer-
ence path without any off-line computations. Thanks to our
curvature-aware reformulation we show how the proposed
MPCC method is more reliable (e.g., to keep the vehicle
within road boundaries and avoid obstacles) and easier to
tune than the traditional MPCC derived from machining. We
support these claims both in simulation and with experiments

2023 IEEE International Conference on Robotics and Automation (ICRA 2023)
May 29 - June 2, 2023. London, UK

979-8-3503-2365-8/23/$31.00 ©2023 IEEE 3204

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 R

ob
ot

ic
s a

nd
 A

ut
om

at
io

n
(IC

RA
) |

 9
79

-8
-3

50
3-

23
65

-8
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

RA
48

89
1.

20
23

.1
01

61
17

7

Authorized licensed use limited to: TU Delft Library. Downloaded on August 03,2023 at 10:53:19 UTC from IEEE Xplore. Restrictions apply.

on a real robotic platform.
The paper is structured as follows. Section II presents

the problem formulation and details the limitations of tra-
ditional MPCC. Section III presents our method. Section IV
compared the MPCC baseline with our method, both in
simulation and in experiments. Finally, Section V concludes
the paper.

II. PROBLEM FORMULATION
We consider a robot described by the following discretized

dynamic equations:

x(t+ 1) = f(x(t),u(t)), (1)

where x ∈ Rn, u ∈ Rm are the state and control input
of the vehicle, respectively. The state and the control input
are subjected to limitations, that is, x ∈ X ⊆ Rn (e.g.,
lane boundaries) and u ∈ U ⊆ Rm (e.g., steering and ac-
celeration limits). The vehicle moves in a complex dynamic
environment. In this respect, we consider dynamic obstacles
moving with a constant velocity1. We represent the obstacles
as circles with radius robst and with state xo. The set of
neighboring obstacles is O.

Our goal is to design a local motion planner for the ego
vehicle to safely navigate in a tight dynamic environment
efficiently, penalizing large deviations from the reference
path xref provided by a high-level motion planner. This can
be formalized as follows:

min
xk,uk

N∑
k=0

Jk(xk,uk,x
ref) (2a)

s.t.: Eq. (1), (2b)
x ∈ X , u ∈ U , (2c)

||cik − xo
k||2 ≥ r + robst, i = 1, ..., ndisc, o ∈ O, (2d)

x0 = xinit, (2e)

where J indicates the planner objectives we aim to define
and Constraint (2d) ensures collision avoidance between the
neighboring obstacles and the center of each disc ci of radius
r used to represent the vehicle (following a similar strategy
to [12]). Finally, xinit indicates the measurements the planner
receives from the sensors at every sampling instant.

The problem above can be solved with MPCC, which
is a well-established technique for motion planning. The
remainder of the section provides a summary of the tradi-
tional MPCC formulation (Section II-A) and discusses its
limitations (Section II-B).

A. Overview of MPCC

MPCC recursively solves Problem (2) with the cost J
defined as follows:

Jk = q1(vk − vt)
2 + q2(ε

c
k)

2 + q3(ε
lag
k)2 + uT

kQuuk (3)

The cost is given by the sum of (i) three errors, that are, the
deviation of v (i.e., the euclidean norm of the velocity of the

1Our method can be interfaced with any perception algorithm able to
provide predictions of the behavior of the obstacles. Predicting obstacles’
behavior is outside the scope of this work.

mobile robot) w.r.t. the desired velocity vt, the contour error
εc and lag error εlag (defined below); and (ii) a quadratic
penalty on the control action u. The scalars q1, q2 and q3,
and the matrix Qu are tuning parameters of the controller.
The use of the lag and contour errors in the cost of the
controller is what differentiates the MPCC controller from
a standard NMPC for trajectory tracking. These errors are
defined as follows:

εc = (p− ϕ(s)) · n̂(s), εlag = (p− ϕ(s)) · t̂(s),

where p is the position of the robot (i.e., p = [x y]T), ϕ(s)
is the reference path parameterized on the arc length s, t̂(s)
and n̂(s) are respectively the tangent and normal unit vectors
to the path at a given value of s, that is, they constitute the
Frenet frame of reference [18]. We can thus interpret εc and
εlag as attractive terms that pull p towards ϕ(s).

The value of s is defined as s = argmins ||p − ϕ(s)||2.
However, solving this minimization problem as a sub-
problem of (2) results in a non-differentiable cost function.
For this reason it is necessary to provide an expression of
the dynamics of s, which are traditionally approximated as
ṡ ≈ v and added to the dynamic Constraints (1).

B. Limitations of MPCC

As stated in the introduction, the standard MPCC for-
mulation was developed in the field of machining, where
acceptable lateral deviation from the path are small, thus the
traditional approximation ṡ ≈ v is reasonable. However, in
the context of mobile robot navigation this approximation
is not as easily verified, since large lateral deviations from
the path may occur. When the assumption of ṡ ≈ v
fails, two undesired behaviours may arise depending on the
values of q2 and q3. The first undesired behavior is that
since the predicted value of s is no longer accurate, any
s-dependent constraints will be inaccurately evaluated. A
relevant example in the context of autonomous driving are
lane boundaries, that are often defined as bounds on εc [12],
[19], namely εcmin ≤ εc(s) ≤ εcmax. The erroneous evaluation
of the lane boundaries may lead the open-loop solution to
violate these constraints without the solver returning any
infeasibility errors. This issue is typical for low q2 and q3
gain values. In Figure 1(a) we show the open-loop solution
obtained for a scenario in which a vehicle enters a tight
curve. Note that the lane boundaries are expressed with
respect to the vehicles’ rear axle position (i.e., it is this point
that should remain within the bounds). It is clear how the
inaccurate s prediction induces the controller to violate the
real lane constraints, yet it is very important to note that
the solver converges to a feasible solution since according to
it the lateral error remains within the bounds. This type of
failure is particularly dangerous since it is not detectable by
looking at the solver outcome.

The second undesired effect is connected with the fact that
p and s are closely related, as the following definition shows:

pk =

k∑
i=0

vidt, sk =

k∑
i=0

||vi||2dt

3205

Authorized licensed use limited to: TU Delft Library. Downloaded on August 03,2023 at 10:53:19 UTC from IEEE Xplore. Restrictions apply.

(a) MPCC

(b) CA-MPCC

Fig. 1: Comparison of the open-loop trajectories. The
dots are the vehicle rear axle positions for solver stages
1, 12, 18, 23, 30 ordered from lighter to darker shades of blue,
the diamonds are the corresponding ϕ(sk) as evaluated by
the solver and the solid lines are the corresponding local lane
boundaries.

When the vehicle is unable to closely follow the path (e.g.,
due to an obstacle), the optimal solution to Problem (2) may
be to reduce the value of v in order to reduce p − ϕ(s),
and in turn εc and εlag. This effect is more evident for
higher q2 and q3 gains. Figure 2(a) shows the open-loop
solution in a scenario in which the vehicle enters a turn with
a certain amount of initial lateral error. Steering limitations
force the vehicle to keep a certain distance from the path, as
a result we can see how ϕ(s) is wrongly evaluated. Figure
2(b) shows the open-loop velocity profile. Note that the
vehicle starts from a stationary condition. We can see how
in the first stages the algorithm fails to track the velocity,
only to recover once the vehicle exits the curve. Notice that
both limitations can lead to dangerous driving scenarios.
In addition, the occurrence of these problems is highly
dependent on the tuning of the controller. This makes the
tuning of the controller extremely challenging and scenario
dependent. Our method aims to solve these limititations, as
discussed in the next section.

III. CURVATURE-AWARE MPCC

Accurately evaluating ṡ is key to overcome the issues
listed in the Sec. II-B. The analytical expression of ṡ is:

ṡ =
v · t̂(s)

1− κ(s)εc
, (4)

(a) (b)
Baseline MPCC

(c) (d)
Curvature-Aware MPCC

Fig. 2: Plots (a) and (c) show the open-loop solutions. Plots
(b) and (d) show the velocity and ṡ profile, respectively. The
dots match the predictions plotted in (a) and (c).

where κ(s) is the curvature of the path. As described in
[15] this expression can be obtained by re-writing p in
the t̂ and n̂ frame and taking the first time derivative.
Using Eq. (4) directly in Problem (2), however, comes
with a significant increase in computation time required for
online optimization. This is because t̂ and κ(s) have to
be evaluated starting from an analytical expression of ϕ(s)
that is generally computationally expensive. For this reason
we provide a lightweight approximation of ṡ. According to
Eq. (4) ṡ can be interpreted as the projection of v on t̂ times a
curvature-dependent scaling ratio. We can define the scaling
ratio σ as:

σ =
1

1− κ(s)εc
=

R(s)

R(s)− εc
,

where we have rewritten κ as 1
R , R is the curvature radius.

Let C be the centre of curvature of the path. We consider
an infinitesimal change in position dp = vdt and we denote
the corresponding infinitesimal change in the path parameter
as derived from Eq. (4) as ds∗. Let the point p̃t and s̃ be
defined respectively as:

p̃t = p+ vdt · t̂,
s̃ = ϕ(s) + t̂ds∗.

We can now give a geometrical interpretation to Eq. (4)
by noticing that the length of the segments Cϕ(s) and Cp
are respectively R and R − εc. Since the triangles ∆Cpp̃t

and ∆Cϕ(s)s̃ are similar we can write:

ds∗

vtdt
=

||s̃− ϕ(s)||2
||p̃− pt||2

=
R

R− εc
= σ,

where for ease of notation purposes we have defined vt = v·t̂
and dropped the R(s) dependency. From this expression we

3206

Authorized licensed use limited to: TU Delft Library. Downloaded on August 03,2023 at 10:53:19 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Geometrical interpretation of the traditional (orange)
and proposed (blue) ṡ formulation.

can see how σ can be interpreted as a projection ratio, see
Figure 3. This geometrical interpretation highlights how even
the analytical expression of ṡ becomes inaccurate for large
∆t values and high path curvature. We thus propose a novel
ṡ expression that is exact under the assumptions of constant
curvature radius and robot velocity, and is therefore a suitable
approximation for large ∆t values when curvature and robot
velocity vary smoothly. To simplify notation (without loss of
generality) we assume that t0 = 0. In this way we can rewrite
∆t as t. We also define the point p̃ = p+vt. The proposed
method relies on first evaluating the angle θ between p, C
and p̃ and then evaluating ds as ds = Rθ. Defining vn =
v · n̂, as shown in Figure 3, the angle θ can be calculated
as:

θ = arctan

(
vtt

R− εc − vnt

)
(5)

To obtain ṡ we simply take the derivative of ds = Rθ with
respect to t, that is:

ṡ(t) =R
vt(R− εc − vnt) + vtvnt

(R− εc − vnt)2 + (vtt)2
(6)

Notice that for t −→ 0 Eqs. (4) and (6) coincide. It is also
important to highlight that since vt and vn are fixed, (6)
is the time derivative of s for a point moving in a constant
direction. Expressions (4) and (6) have similar computational
complexity since they both require the evaluation of n̂(s)
and t̂(s) to obtain R, vt and vn. However we propose to
use Eq. (6) in its integral form, that is, ds = Rθ, for the
whole integration step. After evaluating dp by means of any
integration scheme, we evaluate vtt and vnt as dp · t̂ and
dp · n̂, respectively, and use them in Eq. (5) to evaluate
ds = Rθ. Notice that by construction (6) has the property∫ t

0
ṡdt = Rθ. This approach has similar computational cost

as using (4) in a Forward Euler method, yet it achieves much
higher accuracy for small R and large t values, as can be seen
in Figure 3. Another advantage of this formulation is that
the integration scheme used to evaluate the system dynamics
(dp) is decoupled from the one used to evaluate ds, since
the latter is evaluated after the former. This also implies that
any dynamic model can be chosen, as long as it provides

the change in position of a chosen reference point on the
vehicle.

The new definition of ṡ in (6) can be used to derive the fol-
lowing Curvature-Aware MPCC formulation, namely a CA-
MPCC, suitable for generic motion planning applications:

min
uk

N∑
k=0

q1(ṡk − ṡt)
2 + q2(ε

c
k)

2 + uT
kQuuk (7a)

s.t.
[
xk

sk

]
=

[
f(xk−1,uk−1)

sk−1 +Rk−1θk−1

]
(7b)

Eq. (2d), (2c), (2e), (7c)

where Rk−1 and θk−1 are the respective quantities defined
for time instant k−1. Equation 7b is also suitable for straight
paths, since for R −→ ∞, Rθ = R arctan vtt

R−εc−vnt
−→ vtt.

Notice that the definition of the cost differs from Eq. (3).
We replace the velocity and lag errors’ penalties with an ṡ
tracking term. This is now possible since thanks to (6) we
have access to this quantity. Notice that in the cost function,
ṡk is required. This is equivalent to taking the limit for t −→ 0
in Eq. (6), that is equivalent to (4) as previously pointed out.
It also worth mentioning that if the application requires a
trade-off between v and ṡ tracking, it is straightforward to
add the velocity tracking term back into the cost function.
We were also able to eliminate the lag error term since ṡ also
carries information on the heading direction of robot relative
to the path. Having removed such an additional cost term
simplifies the tuning of the CA-MPCC, as further discussed
in Section IV-A.

Figure 1(b) shows the open-loop solution obtained with
our CA-MPCC in the same conditions and same q1, q2, Qu

as for the baseline MPCC. Notice how, compared to the
baseline MPCC, the lane boundaries are correctly evaluated
thanks to a more precise s prediction. As a result the open-
loop solution does not violate the lane boundary constraints.
Figure 2(c) shows the solution to an initial standstill condi-
tion featuring some initial lateral error. Steering limitations
do not allow the solver to reduce the initial lateral error, yet,
as Figure 2(d) shows, the open-loop solution can accurately
track the desired ṡ, leading to a safer driving experience.

IV. RESULTS

This section compares the closed-loop performance of the
baseline- and CA-MPCC formulations.

Model. We tested the method on an autonomous driving
application. The model used by both methods (i.e., in (2b)
and (7b)) is given by the following equations:

ẋ
ẏ
η̇
v̇

 =

v cos η
v sin η
v tan(δ)

l
−cv + ατ − β

where the states x, y, η and v are respectively the position
of the rear axle, orientation, and longitudinal velocity of
the vehicle. The inputs τ and δ are throttle and steering,
respectively; l is the length between the front and rear axle
of the robot. The longitudinal acceleration is defined as

3207

Authorized licensed use limited to: TU Delft Library. Downloaded on August 03,2023 at 10:53:19 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Track used for parameter sweep. The solid gray circle
is the dynamic obstacle, while the faded gray circles are the
dynamic obstacle’s predicted positions.

TABLE I: Overview of the tuning parameters used for the
baseline MPCC and for the CA-MPCC.

Weights sweep parameters
MPCC CA-MPCC

q2 q2 = i, i ∈ {0, ..., 11} q2 = 0.2i, i ∈ {0, ..., 25}
q3 q3 = 0.5i, i ∈ {0, ..., 11}

Trials per data point 20 20
Other parameters

Problem Vehicle Obstacle
vt = 0.75 m/s (MPCC) δmax = 20◦ robst ∈ [0.10, 0.15] m

ṡt = 0.75 m/s (CA-MPCC) l = 0.175 m ṙobst ∈ [0.01, 0.02] m
Rtrack = 0.5 Rmax = 0.48 m ṡobst ∈ [0.2, 0.3] m/s

εcmax,min = ±0.3 m

v̇ = −cv + ατ − β, where c is the damping coefficient,
and α and β are motor coefficients. We evaluated their
values experimentally through step-response tests on the real
platform that will be used for the experiments (Section IV-
B). Actuator limitations are defined as τmin ≤ τk ≤ τmax

and δmin ≤ δk ≤ δmax.
Local Path. Both methods require a strategy to evaluate

ϕ(s). For this, we decided to describe the local path with
Chebyshev polynomials [20]. We split ϕ(s) into its x and
y components, and perform the respective polynomial fits.
This fitting operation is repeated at each control loop.

We also add a terminal cost term xT
NQPxN in (2a) and

(7a), which approximates the cost-to go from k = N to
k = +∞ and thus ensures that the closed-loop behaviour
resembles the open-loop predictions [21].

In the remainder of the section, we test the baseline MPCC
and our CA-MPCC both in simulation and with real-life
experiments on an autonomous driving scenario.

A. Simulations

To compare the reliability and the ease of tuning of the
two approaches we tasked the algorithms with guiding an
autonomous vehicle through a racetrack at a desired speed.
The racetrack features some sharp turns that almost match
the steering capabilities of the vehicle and some slow-
moving dynamic obstacles that need to be overtaken. Figure
4 shows the chosen track. We have subsequently performed
a parameter sweep on the weights. For both methods and
for all tests, we kept q1 = 1, and qτ = 0.1, qδ = 0.1, where
qτ and qδ weight the respective inputs. Since q1 = 1 the

Fig. 5: Baseline MPCC parameter sweep.

Fig. 6: Curvature-Aware MPCC parameter sweep.

other weights are normalized with respect to the latter. Table
I indicates the relevant parameters for the tests. Rtrack is the
radius of the curves in the track, while Rmax is the maximum
curvature radius of the vehicle. The dynamic obstacle moves
along the path at a speed ṡobst, and we simulate uncertainty
in its occupancy predictions by increasing its radius at a rate
ṙobst along the prediction horizon. Once a dynamic obstacle
is overtaken, it is re-positioned ahead of the mobile robot,
each time randomly drawing new obstacle parameters from
the sets described in Table I. A test is considered to be
a success if no lane boundary violation occurs, and if the
vehicle reaches the end of the track within a given time
interval. This time interval is chosen such that if the average
velocity of the robot was less than 60% of vt or ṡt, the test
results in a failure. This occurs if the vehicle is unable to
overtake the dynamic obstacle.

Figure 5 shows the results for the baseline MPCC. As
evident from the figure, the tuning of the baseline MPCC can
be extremely challenging. In contrast, Figure 6 shows the
results for the Curvature-Aware MPCC. This figure shows
that below a certain threshold of q2, the behaviour of the
closed loop system is very reliable, since the success rate
is close or equal to 100%. Over this threshold the success
rate gradually decreases. The failures are entirely due to
the vehicle no longer being able to overtake the dynamic
obstacle. This behaviour is to be expected for very large εc

weights. These results support our claim that the CA-MPCC
is easier to tune, since it features one less parameter in the
cost function, and the closed-loop behaviour is much more
consistent within a certain q2 range. Furthermore, this range
can be conservatively estimated by keeping q2 ≤ q1 (in the

3208

Authorized licensed use limited to: TU Delft Library. Downloaded on August 03,2023 at 10:53:19 UTC from IEEE Xplore. Restrictions apply.

(a) t = 0 s (b) t = 8.6 s

(c) t = 16.6 s (d) t = 22.4 s

Fig. 7: CA-MPCC performing the circuit at different time
instants.

tests the weights are normalized with respect to q1). This
would generally be the case in real life application since
lower lateral error gains result in smoother robot trajectories.

B. Experiments

We validate our findings on a real mobile robot, a 1:10
scaled-down car-like vehicle, a modified Waveshare JetRacer
Pro AI kit. Since localization is not the focus of the present
work, we relied on a Motive OptiTrack motion capture
system. To control the vehicle a dedicated ROS network was
set up. The navigation algorithm runs on a laptop featuring an
AMD Ryzen 7 5800H processor. As for the simulations we
task both the baseline MPCC and the CA-MPCC with driving
along a track that features sharp turns while overtaking a
slow-moving virtual dynamic obstacle. Figure 7 shows the
CA-MPCC performing a circuit lap.

We fixed the lateral error weight q2 = 0.5 for the
baseline MPCC. The value was selected after some trial-
error experiments to achieve a consistent vehicle behavior
throughout all the experiments. Figure 8 examines the effects
of different q3 weights on the velocity tracking error of the
MPCC. For low q3 values the velocity drops significantly
during some turns (t ≈ 18s, 27s). This is due to the error
in lane boundary evaluation, as anticipated in Section II-
B. During the whole experiment the solver converged to a
seemingly valid solution, making this kind of failure difficult
to identify. For higher q3 weights this behaviour becomes
progressively less frequent and is absent in the final test.
However, a drop in velocity is still present in the tightest
bend of the circuit (t ≈ 23s). This behaviour is due to
the lag error term being too large compared to the velocity
tracking term. The open-loop solutions are similar to those
presented in Figures 1(a) and 2(a) for low q3 and high q3
respectively, as can be seen in the video attached to this
submission. To test the CA-MPCC algorithm we ran some
tests changing the lateral error weight. Figure 9 shows the
ṡ tracking performance during the experiments. We notice
drops in ṡ in the experiments featuring q2 = 0.5 and q2 = 1
(t ≈ 24s), yet this failure is due to modelling errors in the

Fig. 8: Velocity profile during baseline MPCC experiments.

Fig. 9: ṡ profile during CA-MPCC experiments.

system dynamics, rather than to the control algorithm. This
can be seen from the difference between the open-loop and
closed-loop behaviour as is evident from the video footage
[22]. In both sets of experiments we observe a constant bias
in the velocity or ṡ tracking, this is likely due to a modelling
error in the correlation between τ and v̇ (which affects the
experiments with both algorithms). Compared to the standard
MPCC formulation we notice that the closed-loop behaviour
is much more consistent, even for very large parameter
variations, this is in accordance with the simulations.

Concerning the computation times, we measured the full
control loop (i.e. including the polynomial fitting operation,
which takes on average 3 ms). Over all the MPCC exper-
iments the mean, 95% percentile, and the worst-case are
19.7, 28.2, and 44.2 ms, respectively. For the CA-MPCC
we measured 28.6, 52.3, and 65.0 ms, respectively. The CA-
MPCC does feature higher computation times, yet is still
achieves real-time feasibility. It is important to mention that
it may be possible to reduce computation time by tuning
the number of Chebyshev polynomial bases that represent
the local path. For our experiments we used 20 polynomial
bases, yet 10 could also have been sufficient.

V. CONCLUSIONS

This work presented an online Curvature-Aware MPCC
formulation capable of handling sharp turns in the reference
path, while avoiding collisions with dynamic obstacles. We
compared our method against a baseline MPCC formulation
and proved in both simulation and experiments that the
proposed method is both easier to tune and more reliable.
Future research directions are to extend this method to 3D
motion planning and racing where no previous knowledge
of the racetrack is available, yet effort should be directed
towards further reducing computation times.

3209

Authorized licensed use limited to: TU Delft Library. Downloaded on August 03,2023 at 10:53:19 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] N. Lang, A. Herrmann, M. Hagenmaier, and M. Richter,
“Can Self-Driving Cars Stop the Urban Mobility Meltdown?”
8 2020. [Online]. Available: https://www.bcg.com/publications/2020/
how-autonomous-vehicles-can-benefit-urban-mobility

[2] “The 6 Levels of Vehicle Autonomy Ex-
plained.” [Online]. Available: https://www.synopsys.com/automotive/
autonomous-driving-levels.html

[3] Yan Ding, “Three Methods of Vehicle Lateral Control: Pure
Pursuit, Stanley and MPC,” 3 2020. [Online]. Available: https:
//dingyan89.medium.com

[4] A. Nagariya and S. Saripalli, “An iterative lqr controller for off-road
and on-road vehicles using a neural network dynamics model,” in 2020
IEEE Intelligent Vehicles Symposium (IV), 2020, pp. 1740–1745.

[5] M. Schwenzer, M. Ay, T. Bergs, and D. Abel, “Review on model
predictive control: an engineering perspective,” pp. 1327–1349, 11
2021.

[6] S. He, J. Zeng, and K. Sreenath, “Autonomous racing with multiple
vehicles using a parallelized optimization with safety guarantee us-
ing control barrier functions,” in 2022 International Conference on
Robotics and Automation (ICRA), 2022, pp. 3444–3451.

[7] N. Chowdhri, L. Ferranti, F. S. Iribarren, and B. Shyrokau, “Integrated
nonlinear model predictive control for automated driving,” Control
Engineering Practice, vol. 106, p. 104654, 2021.

[8] D. Lam, C. Manzie, and M. Good, “Model predictive contouring
control,” in Proceedings of the IEEE Conference on Decision and
Control. Institute of Electrical and Electronics Engineers Inc., 2010,
pp. 6137–6142.

[9] ——, “Application of model predictive contouring control to an XY
table,” IFAC Proceedings Volumes, vol. 44, no. 1, pp. 10 325–10 330,
2011.

[10] A. Rupenyan, M. Khosravi, and J. Lygeros, “Performance-based
trajectory optimization for path following control using bayesian
optimization,” in 2021 60th IEEE Conference on Decision and Control
(CDC), 2021, pp. 2116–2121.

[11] R. Skjetne, T. I. Fossen, and P. V. Kokotović, “Robust output maneu-
vering for a class of nonlinear systems,” Automatica, vol. 40, no. 3,
pp. 373–383, 3 2004.

[12] W. Schwarting, J. Alonso-Mora, L. Pauli, S. Karaman, and D. Rus,
“Parallel autonomy in automated vehicles: Safe motion generation
with minimal intervention,” in Proceedings - IEEE International
Conference on Robotics and Automation. Institute of Electrical and
Electronics Engineers Inc., 7 2017, pp. 1928–1935.

[13] O. De Groot, B. Brito, L. Ferranti, D. Gavrila, and J. Alonso-
Mora, “Scenario-Based Trajectory Optimization in Uncertain Dynamic
Environments,” IEEE Robotics and Automation Letters, vol. 6, no. 3,
pp. 5389–5396, 7 2021.

[14] A. Liniger, A. Domahidi, and M. Morari, “Optimization-based au-
tonomous racing of 1: 43 scale RC cars,” Optimal Control Applications
and Methods, vol. 36, no. 5, pp. 628–647, 2015.

[15] A. Rucco, G. Notarstefano, and J. Hauser, “An efficient minimum-
time trajectory generation strategy for two-track car vehicles,” IEEE
Transactions on Control Systems Technology, vol. 23, no. 4, pp. 1505–
1519, 7 2015.

[16] J. L. Vazquez, M. Bruhlmeier, A. Liniger, A. Rupenyan, and
J. Lygeros, “Optimization-based hierarchical motion planning for
autonomous racing,” in IEEE International Conference on Intelligent
Robots and Systems. Institute of Electrical and Electronics Engineers
Inc., 10 2020, pp. 2397–2403.

[17] S. Srinivasan, S. N. G. Nicolas Giles, and A. Liniger, “A Holistic
Motion Planning and Control Solution to Challenge a Professional
Racecar Driver,” IEEE Robotics and Automation Letters, vol. 6, no. 4,
pp. 7854–7860, 10 2021.

[18] A. Micaelli and C. Samson, “Trajectory tracking for unicycle-type and
two-steering-wheels mobile robots,” Ph.D. dissertation, INRIA, 1993.

[19] L. Ferranti, B. Brito, E. Pool, Y. Zheng, R. M. Ensing, R. Happee,
B. Shyrokau, J. F. P. Kooij, J. Alonso-Mora, and D. M. Gavrila,
“SafeVRU: A research platform for the interaction of self-driving
vehicles with vulnerable road users,” in 2019 IEEE Intelligent Vehicles
Symposium (IV), 2019, pp. 1660–1666.

[20] J. C. Mason and D. C. Handscomb, Chebyshev polynomials. Chapman
and Hall/CRC, 2002.

[21] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert,
“Constrained model predictive control: Stability and optimality,” Au-
tomatica, vol. 36, no. 6, pp. 789–814, 2000.

[22] Lorenzo Lyons and Laura Ferranti, “Curvature-Aware Model
Predictive Contouring Control,” 2023. [Online]. Available: https:
//www.youtube.com/watch?v=6-E3I99D2sc

3210

Authorized licensed use limited to: TU Delft Library. Downloaded on August 03,2023 at 10:53:19 UTC from IEEE Xplore. Restrictions apply.

