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Reinforcement Learning for Safe Robot Control
using Control Lyapunov Barrier Functions

Desong Du∗1,2, Shaohang Han∗2, Naiming Qi1, Haitham Bou Ammar3,4, Jun Wang4 and Wei Pan5,2

Abstract— Reinforcement learning (RL) exhibits impressive
performance when managing complicated control tasks for
robots. However, its wide application to physical robots is
limited by the absence of strong safety guarantees. To overcome
this challenge, this paper explores the control Lyapunov barrier
function (CLBF) to analyze the safety and reachability solely
based on data without explicitly employing a dynamic model.
We also proposed the Lyapunov barrier actor-critic (LBAC), a
model-free RL algorithm, to search for a controller that satisfies
the data-based approximation of the safety and reachability
conditions. The proposed approach is demonstrated through
simulation and real-world robot control experiments, i.e., a 2D
quadrotor navigation task. The experimental findings reveal this
approach’s effectiveness in reachability and safety, surpassing
other model-free RL methods.

I. INTRODUCTION

Reinforcement learning (RL) has achieved impressive and
promising results in robotics, such as manipulation [1],
unmanned vehicle navigation [2], drone flight [3], [4], etc.,
thanks to its ability of handling intricate models and adapting
to diverse problem scenarios with ease. Meanwhile, a safe
control policy is imperative for a robot in the real world,
as dangerous behaviors can cause irreparable damage or
costly losses. Therefore, the RL methods that can provide a
safety guarantee for robot control have received considerable
interest and progress [5], [6], [7], [8], [9], [10].

A recent line of work focuses on designing novel RL al-
gorithms, e.g., actor-critic, for constrained Markov Decision
Process (CMDP). In these methods, the system encourages
the satisfaction of the constraints by adding a constant
penalty to the objective function [6] or constructing safety
critics while doing policy optimization in a multi-objective
manner [5], [7], [11], [12]. Although these approaches are
attractive for their generality and simplicity, they either need
model [6], or only encourage the safety constraints to be
satisfied probabilistically.

An alternative type of methods focuses on reachability
and safety guarantee (sufficient conditions) by construct-
ing/learning control Lyapunov functions (CLF) and control
barrier functions (CBF) that can respectively certify the
reachability and safety [8], [10], [13], [14], [15], [16], [17],
[18]. The relevant safe controllers are normally designed by
adding a safety filter to a reference controller, such as a RL
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controller [8], [10], [13], a model predictive control (MPC)
controller [14], etc. Unfortunately, these approaches have two
disadvantages: (1) there might be conflicts between CLFs
and CBFs as separate certificates [19], [20] (see Figure 2
in Section V-A); (2) the CLFs and CBFs are generally non-
trivial to find [19], especially for nonlinear systems. Even
though there are learning methods to find CLFs and CBFs,
knowledge of dynamic models has to be explicitly used [21].

Fig. 1. The 2D quadrotor navigation task. Lines stand for trajectories. The
circles are the initial position. The blue regions represent obstacles. Video
is available at https://youtu.be/_8Yr_QRRYik.

In this paper, we propose a data-based reachability and
safety theorem without explicitly using the knowledge of
a dynamic system model. The contribution of this paper
can be summarized as follows: (1) we used samples to
approximate the critic as a control Lyapunov barrier function
(CLBF), a single unified certificate, which is parameterized
by deep neural networks, so as to guarantee both reachability
and safety. The corresponding actor is a controller that
satisfies both the reachability and safety guarantees. (2) we
deploy the learned controller to a real-world robot, i.e., a
Crazyflie 2.0 quadrotor, for a 2D quadrotor navigation task.
The 2D quadrotor navigation task is shown as in Figure 1.
The experiments show our approach has better performance
than other model-free RL methods. Our approach, by using
CLBFs, can avoid conflicts between the CLFs and CBFs
certificates. Compared to the model-based approaches that
learn CLBFs using supervised learning [19] or handcraft
CLBFs [22], our method does not need the knowledge of
models explicitly.

II. RELATED WORKS

Prior work has studied safety in RL in several ways,
including imposing constraints on expected return [5], [7],
risk measures such as Conditional Value at Risk and per-
centile estimates [12], [23], [24], and avoiding regions where
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constraints are violated [25], [26], [27]. This paper focuses
on the reach-avoid problem that belongs to the last situation.

To solve the reach-avoid problem, a popular strategy
involves modifying the policy optimization procedure of
standard RL algorithms to reason about task rewards and
constraints simultaneously. One method is constrained policy
optimization (CPO), which adds a constraint-related cost
to the policy objective [5]. Another type of method tries
to optimize a Lagrangian relaxation [7], [11], [23], [27],
[28]. They normally use a safety critic to ensure safety, but
this separate critic can only evaluate risk in a probabilistic
way. Other methods involve constructing Lyapunov functions
for the unsafe region [29], [30]. However, these approaches
require a baseline policy that already satisfies the constraints.

III. PRELIMINARIES AND BACKGROUND

In RL for safe control, the dynamical system is typically
characterized by CMDP M̂ = (S,A, P, c, γ, I) [31]. st ∈
S ⊆ Rn is the state vector at time t, S denotes the state
space. The agent then takes an action at ∈ A ⊆ Rm accord-
ing to a stochastic policy/controller π (at | st). The transition
of the state is dominated by the transition probability density
function P (st+1 | st, at), which denotes the probability den-
sity of the next state st+1. A cost function c(st, at) is used
to measure the immediate performance of a state-action pair
(st, at), and I(st) indicates whether the state violates the
safety constraints or not. The goal is to find π∗ that can
minimize the objective function return the expected return
J(π) ≜

∑∞
t=1 Est,at

γtc (st, at) with the discount factor γ ∈
[0, 1), and ∀t ∈ Z+, I(st) = 0. Moreover, some notations are
to be defined. The closed-loop state distribution at a certain
instant t as p(s | ρ, π, t), which can be defined iteratively:
p (s′ | ρ, π, t+ 1) =

∫
S P (s′|s, π(s))p(s | ρ, π, t)ds,∀t ∈

Z+ and p(s | ρ, π, 0) = ρ(s).
In this paper, we focus on the reach-avoid problems, in

which the agent reaches the goal condition and avoids certain
unsafe conditions. It is defined as follows:

Definition 1. (Reach-Avoid Problem). In a CMDP setting
with a goal configuration sgoal and a set of unsafe states
Sunsafe ⊆ S , find a controller π∗ (a|s) such that all trajec-
tories st under P (st+1 | st, at), and s0 ∈ Sinitial ⊆ S have
the following properties: Reachability: given a tolerance δ,
∃T ≥ 0, such that Est ∥st − sgoal∥ ≤ δ, ∀t ≥ t0+T ; Safety:
P(st /∈ Sunsafe | s0, π, t) =

∫
S\Sunsafe

p(s | s0, π, t)ds = 0,
∀t ≥ t0.

The state sirrecoverable ∈ Sirrecoverable ̸⊂ Sunsafe are not
themselves unsafe, but inevitably lead to unsafe states under
the controller π. Thus, we also consider sirrecoverable to be
unsafe for the given controller π.

Definition 2. A state is said to be irrecoverable if s /∈ Sunsafe
under the controller a ∼ π(a|s), the trajectory defined by
s0 = s and st+1 ∼ P (st+1|st, π(st)) satisfies P(st ∈
Sunsafe | s0, π, t) =

∫
Sunsafe

p(s | s0, π, t)ds ̸= 0, ∃t̂ > t0.

Therefore, the safety and unsafety of a certain state can
be described as: the state s ∈ Sunsafe = Sirrecoverable ∪ Sunsafe
is unsafe, while the state s ∈ Ssafe = S\Sunsafe is safe.

In reach-avoid problems, CLFs and CBFs are widely used
to ensure reachability and safety of the system [21], respec-
tively. To avoid the conflicts between separate certificates,
we rely on the CLBF, a single unifying certificate for both
reachability and safety [22]. In this paper, the definition of
the CLBF is related to [19]. We extend it from a continuous-
time system to CMDP (similar to the definition of CBF in
discrete-time system [32]). In CMDP, the definition of CLBF
is given as follows.

Definition 3. (CLBF). A function V: S → R is a CLBF, for
some constant ĉ, λ > 0, 1⃝ V (sgoal) = 0, 2⃝ V (s) > 0,∀s ∈
S\Sgoal, 3⃝ V (s) ≥ ĉ,∀s ∈ Sunsafe, 4⃝ V (s) < ĉ,∀s ∈ Ssafe.
5⃝ there exists a controller π, such that Es′ [V (s′)−V (s)+
λV (s)] ≤ 0,∀s ∈ S\sgoal, where s′ ∼ P (s′|s, π(s)).

Thus, any controller π ∈ {π | Es′ [V (s′) − V (s) +
λV (s)] ≤ 0, s′ ∼ P (s′|s, π(s))} can satisfy reachability and
safety [19]. In this definition, the transition P (s′|s, π(s))
requires the knowledge of a dynamic system model, but
modeling error can hardly be avoided in reality. Next, we
will show how we can use model-free RL to learn CLBFs
and controllers with reachability and safety guarantee.

IV. REINFORCEMENT LEARNING ALGORITHM WITH
SAFETY GUARANTEE

In an actor-critc framework, the high-level plan is as
follows. We first choose the value function V (s) to be the
CLBF, similar to those done in approximate/adaptive dy-
namic programming [33] on choosing the Lyapunov function.
Then we expect to impose some properties of CLBF as
constraints in the Bellman recursion to find the value function
(i.e., CLBF) and hope to search the corresponding policy,
similar to what is done in [25], [29], [34]. Conceptually, we
are interested in the following conceptual problem formula-
tion:

Repeat
• Find: V. Subject to: CLBF constraints
• Find: π using V
Untill V, π convergence.

A. CLBF as Critic

To enable the actor-critic learning, the control Lyapunov
barrier critic QLB is designed to be dependent on s and a,
while V (s) = QLB(s, πθ(s)). Then we present a method to
construct a QLB through the Bellman recursion. The target
function Qtarget is a valid control Lyapunov barrier critic
which is approximated by:

Qtarget (st, at) = c(st, at) + γQ′
LB (st+1, π(st+1)) (1)

where Q′
LB is the network that has the same structure as

QLB, but parameterized by a different set ϕ′, as typically
used in the actor-critic methods [35], [36]. The parameter ϕ′

is updated through exponential moving average of weights
controlled by a hyperparameter τ ∈ R(0,1), ϕ

′
k+1 ← τϕk +

(1− τ)ϕ′
k.

Such that the value function meets the requirements of
our main theorem (Theorem 1 in Section IV-B), the tuples
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{st, at, c(st, at), st+1} are set as follows:
{st, at, 0, st} st ∈ Sgoal

{st, at, c(st, at), st+1} st ∈ Ssafe \ Sgoal

{st, at, C, st} st ∈ Sunsafe

(2)

where the terminal cost C is a constant.

B. Data-based CLBF Theorem

In this part, inspired by Definition 3 of CLBF, we propose
a novel data-based theorem, on which the constraints should
be in the conceptual problem formulation at the beginning
of Section IV. Instead of explicitly using a dynamic model,
the following theorem provides a sufficient condition for
reachability and safety based on samples.

Before presenting the main theorem, we need the follow-
ing Lemma 1, in addition to (2), on the terminal cost C to
hold, so that V (sunsafe) ≥ ĉ and V (ssafe) < ĉ, as required in
(3).

Lemma 1. Suppose that N is the maximum number of steps

in each episode, let C >
cmax(s,a)(1−γN)

γN , when γ < 1.
Under the controller π, if s ∈ Sunsafe , V (s) ≥ ĉ, and s ∈
Ssafe , V (s) < ĉ.

Proof: The proof can be found in Appendix I.

Theorem 1. If there exists a function V (s) : S → R+ and
positive constants α1, α2, α3, α4, such that

α1cπ(s) ≤V (s) < min (α2cπ(s), ĉ) < ĉ, ∀s ∈ Ssafe

ĉ ≤V (s) ≤ ĉ+ α3cπ(s) < (1 + α3)ĉ, ∀s ∈ Sunsafe
(3)

and

Es∼µN
(Es′∼Pπ

V (s′)1∆(s
′)− V (s)1∆(s))

< −α4Es∼µN
cπ(s)1∆(s)

(4)

where cπ (st) ≜ Ea∼πc (st, at), and cπ (s) ≤ ĉ,∀s ∈ S. The
cost function c(st, at) = EP (·|st,at) ∥st+1 − sgoal∥ describes
the distance to the goal set. µN (s) denotes the average
distribution of s over the finite N time steps,

µN (s)
.
=

1

N

N∑
t=1

p(s|ρ, π, t)

N is the maximum number of steps in each episode. 1∆(s)
denotes the function;

1∆(s) =

{
1 s ∈ ∆
0 s /∈ ∆

where ∆ = S\ (Sgoal ∪ Sunsafe), Sgoal = {s | cπ(s) ≤ δ} =
{s | ∥s− sgoal∥ ≤ δ}. Note that cπ(s) > δ, ∀s ∈ ∆.

Then the followings hold: i) if s0 ∈ Ssafe, V (s0) ≤ ĉ,
the system is reachable with tolerance δ and safe within N
steps; ii) if s0 ∈ Sunsafe, V (s0) > ĉ, the agent would reach
the unsafe areas within N steps.

Proof: The proof can be found in Appendix II.

C. Lyapunov Barrier Actor-Critic Algorithm

Recent advance in [34] has guaranteed reachability by the
Lagrangian relaxation method. Taking inspiration from their
work, we extend to safety guarantee by designing an actor-
critic RL algorithm. The proposed Algorithm 1 is named
Lyapunov barrier actor-critic (LBAC), which gains a value
function that satisfies the requirements of Theorem 1, and a
corresponding safe controller.

The control Lyapunov barrier critic function QLB and the
actor function (controller) πθ(at|st) are parametrized by ϕ
and θ, respectively. Note that the stochastic controller πθ is
parameterized by a deep neural network fθ that depends on
s and Gaussian noise ϵ. The goal is to construct the CLBF
as the critic function with constraints (4) under the controller
πθ(at|st). By using the Lagrange relaxation technique [37],
QLB is updated using gradient descent to minimize the
following objective function

J(ϕ) = ED

[
1

2
(QLB(s, a)−Qtarget(s, a))

2

+λ(QLB(s
′, fθ(ϵ, s

′))1∆(s
′)−QLB(s, a)1∆(s) + α4ĉ)]

(5)
where Qtarget is the approximation target related to the chosen
control Lyapunov barrier candidate, λ is a Lagrange multi-
plier that controls the relative importance of the inequality
condition (4). D is the set of collected transition pairs that
are determined in (2) and Lemma 1. The control Lyapunov
barrier candidate acts as a supervision signal to the control
Lyapunov barrier critic function.

LBAC is based on the maximum entropy framework [36],
which can improve controller exploration during learning. A
minimum entropy constraint is added to the above optimiza-
tion problem to derive the following objective function

J(θ) =E(s,a,s′,c)∼D[QLB(s, fθ(ϵ, s))

+ β(log(πθ(fθ(ϵ, s)|s)) +Ht))]
(6)

where β is a Lagrange multiplier that controls the relative
importance of the minimum entropy constraint, Ht is the
desired entropy bound.

In the actor-critic framework, the parameters of the con-
troller are updated through stochastic gradient descent, which
is approximated by

∇θJ(θ) = β∇θ log(πθ(a|s)) + β∇a log(πθ(a|s))∇θfθ(ϵ, s)

+∇a′QLB(s
′, a′)∇θfθ(ϵ, s

′)
(7)

Finally, the values of Lagrange multipliers λ and β are
adjusted by gradient ascent to maximize the following ob-
jectives, respectively,

J(λ) = λED∆ [QLB (s′, fθ (s
′, ϵ))1∆ (s′)

− (QLB(s, a)− α4ĉ)1∆(s)] ,

J(β) = βED [log πθ(a | s) +Ht]

(8)

During training, the Lagrange multipliers are updated by

λ← max(0, λ+ δ̄∇λJ(λ)), β ← max(0, β + δ̄∇βJ(β))

where δ̄ is the learning rate. The pseudocode of the proposed
algorithm is shown in Algorithm 1.
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Algorithm 1 Lyapunov Barrier Actor-Critic (LBAC)
Require: Maximum episode length N ; maximum iteration

steps M
repeat

Sample s0 according to ρ
for t = 0 to N do

Sample at from πθ(at|st) and step forward
Observe st+1, ct and store (st, at, ct, st+1, I) in D

end for
for i = 1 to M do

Sample mini-batches of transitions from D and up-
date QLB, π, Lagrange multipliers with (5), (6), (8)

end for
until (4) is satisfied

V. RESULTS AND VALIDATION

In this section, we consider a 2D quadrotor navigation
task, i.e., aiming to reach a target while avoiding obstacles,
as illustrated in Figure 1. The experiment setup is detailed in
Appendix III. First, we show separate CLFs and CBFs can
lead to local optimums by implementing a CLF-CBF based
Quadratic Program (CLF-CBF-QP). Then, we show the
effectiveness of the proposed LBAC algorithm and evaluate
it in the following aspects:

• Training convergence: does the proposed training algo-
rithm converge with random parameter initialization;

• Validation of CLBF: how do the learned CLBFs fit
the goal and obstacles in the 2D quadrotor navigation
task, and does the reachability and safety condition, i.e.,
Theorem 1, hold for the learned controllers;

• Sim-to-Real transfer: can we transfer the simulation
training result directly to real-world robots, e.g., using
a CrazyFlie 2.0 quadrotor.

In this part, the performance of LBAC on the CMDP
tasks is evaluated compared with Risk Sensitive Policy Op-
timization (RSPO) [23], Safety Q-Functions for RL (SQRL)
[11], and Reward Constrained Policy Optimization (RCPO)
[7]. We use the public codebase of [27] to implement the
comparison experiments. The hyperparameters are described
in Appendix IV.

A. Conflicts between CLFs and CBFs

To show there exist conflicts between CLFs and CBFs as
separate certificates, we implemented a model-based CLF-
CBF-QP controller [38] which incorporates a CLF and
CBFs as constraints through quadratic programs. As shown
in Figure 2(b), the quadrotor easily gets stuck before the
wall which is in front of the target. This is because the
attraction of the CLF is balanced by the repulsion of CBFs, as
illustrated by Figure 2(a). The quadrotor can still successfully
reach the target if it luckily avoids conflicting areas. We also
tried CLFs and CBFs as separate critics in a multi-objective
RL setting, but failed to converge. The failure of the above
CLF-CBF controllers motivates our CLBF approach which
satisfies both safety and reachability in this 2D quadrotor
navigation task, as illustrated in Figure 7(a).

The gradient direction of CBF

The gradient direction of CLF

(a) Illustration of CLF-CBF

0.5 1 1.5 20.0-0.5-1

0.5

0

1

0.75

1.25

0.25

1.75

1.5

Y

X

Obstacle

Goal

(b) Results of CLF-CBF-QP

Fig. 2. Performance of a CLF-CBF-QP controller. (a) is an intuitive
illustration of CLF-CBF. In (b), lines are trajectories. The blue circles stand
for the starting points. The red stars represent the final position.

B. Training Convergence

The main criterion we are interested in is the convergence
of the controller during the training process. Each approach
is trained with five different random seeds. The total cost
and number of violations during training are plotted in
Figure 3. Among the RL algorithms to be compared, LBAC,
RSPO, and SQRL can converge within 2300 episodes, while
RCPO fails to converge even in 3000 episodes. As shown
in Figure 3, LBAC leads to a fewer number of violations
during training than other model-free safe RL methods.

(a) Total Cost (b) Training-time violations

Fig. 3. Total cost and the number of violations during training. The Y-axis
indicates the total cost in one episode in (a) and total violation times during
training in (b). The X-axis indicates the total episodes. The shaded region
shows the 1-SD confidence interval of five random seeds.

C. Validation of CLBF

In this part, we examine the learned control Lyapunov
barrier critic function. We pick the controllers and corre-
sponding CLBFs trained in 1000, 1500, and 2000 episodes.
The contour plots of the CLBFs are shown in Figure 4 as
a function of x and y, where {vx, vy} is set to {0, 0}. The
white lines are the safety boundaries of the CLBFs, i.e. when
V (s) = ĉ and ĉ is set 2000. As shown in Figure 4, we find
that the safety boundary of CLBF where V (s) = ĉ gradually
approaches the obstacle boundary with increasing training
episodes. However, we also noticed some unsafe corner cases
are considered as safe (such as the bottom right corner
of the left obstacle). This could be due to the exploration
and exploitation dilemma LBAC suffers as a model-free RL
algorithm.

We also validate the learned CLBF by showing the out-
comes of the trajectory rollouts starting from uniformly
sampled initial positions. This is because of the well-known
fact that it is challenging to initialize uniformly throughout
the state space in a model-free setting. For example, we can
hardly make a robot have a specific velocity at a particular
position. Figure 5 shows that the quadrotors starting from the
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Fig. 4. The contour plots of the CLBF. The white lines show the contour
of the learned CLBF. The color bar denotes the function value. From left
to right, the contour plots are the CLBFs trained in 1000 episodes, 1500
episodes and 2000 episodes.

unsafe region would be violating, while those that start in the
safe region would successfully reach the goal. We present the
changes in CLBF values along the trajectories in Figure 6(a),
and the averaged changes in CLBF value of these trajectories
in Figure 6(b). We can observe that the averaged value has a
decreasing trend, which aligns with the theory before. These
results indicate that the learned CLBF is valid.
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Y

Fig. 5. Trajectories of the learned LBAC controllers in the simulator. The
shaded area corresponds to the unsafe region. The green ellipse area stands
for the goal. The blue circles are the initial positions, while the red stars
are the end positions.

(a) The changes in CLBF value (b) The averaged changes

Fig. 6. The changes in CLBF value under different initial conditions. In
(a), we show the changes in CLBF value along the trajectories starting from
ten different initial positions. In (b), the averaged change in CLBF value
of these trails is plotted. The solid line indicates the average value and
shadowed region for the 1-SD confidence interval of these trails.

D. Sim-to-Real Transfer

In this part, we evaluate LBAC by directly deploying
controllers learned in the simulators to the physical robot.
As shown in Figure 1, a nano Crazyflie 2.0 quadrotor
is used to achieve the autonomous navigation task and a
motion capture system is used for state estimation in the
real world. The trajectories of the Crazyflie starting from
different initial positions are shown in Figures 7(b) and 7(c).
The controllers trained by LBAC outperform other model-
free safe RL algorithms in terms of both reachability and
safety.

VI. CONCLUSION

In this paper, the control Lyapunov barrier function is
extended to the constrained Markov decision process, and

The gradient direction of CLBF

The trajectory path

(a) Illustration of CLBF
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Fig. 7. Controllers are evaluated in real-world using a Crazyflie 2.0
quadrotor. (a) is an intuitive illustration of CLBF. In (b) and (c), the
quadrotor’s initial heights are 0.35m and 1.2m. The blue circle represents
the starting points, and the red stars stand for the reached positions.

a data-based theorem is proposed to analyze closed-loop
reachability and safety. Based on the theoretical results, a
Lyapunov Barrier-based Actor-Critic method is proposed to
search for a controller. The proposed algorithm is evaluated
on a 2D quadrotor navigation task with safety constraints.
Compared to existing model-free RL algorithms, the pro-
posed method can reliably ensure reachability and safety
in both simulation and real-world tests. In the future, more
experiments will be conducted to validate the effectiveness
and scalability of our approach. We also plan to improve the
robustness of the learned controller using methods such as
domain randomization and adversarial training [39].

APPENDIX I
PROOF OF LEMMA 1

Proof: When ŝ ∈ Ssafe, it leads to the goal state within
N steps. Thus, V (ŝ) = E

a∼π
[
∑∞

t=0 γ
tc(st, at) | s0 = ŝ] <∑N−1

t=0 γtcmax(s, a) =
cmax(s,a)(1−γN)

1−γ . In order to have

V (ŝ) < ĉ, we set
cmax(s,a)(1−γN)

1−γ < ĉ. When ŝ ∈ Sunsafe,
it leads to unsafe state within N steps. Thus, V (ŝ) ≥∑N−1

t=0 γtcmin(s, a) +
∑∞

t=N γtC =
cmin(s,a)(1−γN)+CγN

1−γ .

In order to have V (ŝ) ≥ ĉ, we set
cmin(s,a)(1−γN)+CγN

1−γ ≥

ĉ. Rearranging, we have C ≥ (1−γ)ĉ−cmin(s,a)(1−γN)
γN .

With cmin(s, a) = 0, it is simplified to C ≥ 1−γ
γN ĉ >

cmax(s,a)(1−γN)
γN . To this end, the condition (3) is achieved.

APPENDIX II
PROOF OF THEOREM 1

Proof: To prove that N is finite based on the conditions
and assumptions where N = max{t : P(s ∈ ∆|ρ, π, t) > 0},
we will assume that N is infinity and prove by contradiction.
N = ∞ if for any ϵ there exists an instant t > ϵ
such that P(s ∈ ∆|ρ, π, t) > 0. In that case, the finite-
horizon sampling distribution µN (s) turns into the infinite-
horizon sampling distribution µ(s) = limN→∞ µN (s) =
limN→∞

1
N

∑N
t=1 p(s|ρ, π, t). The existence of µ(s) is guar-

anteed by the existence of qπ(s) = limt→∞ p(s | ρ, π, t),
which has been commonly exploited by many RL literature
[34], [40]. Since the sequence {p(s|ρ, π, t), t ∈ Z+} con-
verges to qπ(s) as t approaches ∞, then by the Abelian
theorem, the sequence { 1

T

∑T
t=1 p(s|ρ, π, t), T ∈ Z+} also

converges and µ(s) = qπ(s). Then one naturally has that
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the sequence {µN (s)V (s), T ∈ Z+} converges pointwise to
qπ(s)V (s).

According to Lebesgue’s dominated convergence theorem
[41], if a sequence fn(s) converges point-wise to a function
f and is dominated by some integrable function g in the
sense that,|fn(s)| ≤ g(s),∀s ∈ S,∀n,

then one has limn→∞
∫
S fn(s)ds =

∫
S limn→∞ fn(s)ds.

Applying this theorem to the left-hand side of (4)

Es∼µ (Es′∼pπV (s′)1∆(s
′)− V (s)1∆(s))

=

∫
S

lim
N→∞

1

N

N∑
t=1

p(s|ρ, π, t)(
∫
S
pπ(s

′|s)V (s′)1∆(s
′)ds′

− V (s)1∆(s))ds

= lim
N→∞

1

N

N∑
t=1

∫
S
V (s′)1∆(s

′)

∫
S
pπ(s

′|s)p(s|ρ, π, t)dsds′

− lim
N→∞

1

N

N∑
t=1

∫
S
p(s|ρ, π, t)V (s)1∆(s)ds

= lim
N→∞

1

N
(

N+1∑
t=2

Ep(s|ρ,π,t)V (s)1∆(s)

−
N∑
t=1

Ep(s|ρ,π,t)V (s)1∆(s))

= lim
N→∞

1

N
(Ep(s|ρ,π,N+1)V (s)1∆(s)− Eρ(s)V (s)1∆(s))

(9)
Since Eρ(s)V (s) is finite, thus the limitation value
limN→∞

1
N (Eρ(s)V (s)1∆(s)) = 0. The above equa-

tion equals to limN→∞
1
NEp(s|ρ,π,N+1)V (s)1∆(s). Note

that V (s) ≥ α1cπ(s), ∀s ∈ S, and cπ(s) > δ,
∀s ∈ ∆. Thus, limN→∞

1
NEp(s|ρ,π,N+1)V (s)1∆(s) ≥

limN→∞
α1δ
N Ep(s|ρ,π,N+1)1∆(s) = 0

Since µ(s) = qπ(s), the right-hand side of (4)
equals to −α4Es∼qπcπ(s)1∆(s) ≤ −α4Es∼qπδ1∆(s) =
−α4δ limt→∞ P(s ∈ ∆|ρ, π, t). Combining the above in-
equalities with (4), one has limt→∞ P(s ∈ ∆|ρ, π, t) < 0,
which is contradictory to the fact that P(s ∈ ∆|ρ, π, t) is
nonnegative. Thus there exist a finite N such that P(s ∈
∆|ρ, π, t) = 0 for all t > N . In other word, the agent will
reach the goal region or the unsafe region within N steps.
According to (3), s0 ∈ Ssafe, V (s0) < ĉ where the agent
will reach the goal region and avoid the unsafe region, while
s0 ∈ Sunsafe, V (s0) ≥ ĉ where the agent will reach the unsafe
region within N steps. The process of building such function
V is described in Section IV-A.

APPENDIX III
2D QUADROTOR NAVIGATION

The state of the 2D quadrotor model is defined as
s = [px, py, vx, vy], with control input a = [vxdes , vydes ].
In this experiment, the controller is expected to navigate
a 2D quadrotor to the goal set Sgoal without colliding
with the obstacles. We define the state space as
S = {s : slb ≤ s ≤ sub} with slb = [−1, 0,−0.25,−0.25]
and sub = [2, 1.8, 0.25, 0.25], representing the lower

bound and upper bound of the set of the valid states.
The action space is set as A = {a : −ab ≤ a ≤ ab}
with ab = [0.25, 0.25], by considering the real
world hardware limitation. The cost function is
designed as c =

√
4p2x + (py − 0.5)2. We set the

obstacle set So1 = {s : 0.5 ≤ px ≤ 1, 0.2 ≤ py ≤ 1},
So2 = {s : −1 ≤ px ≤ 0, 1.3 ≤ py ≤ 1.8} and
So3 = {s : pz ≤ 0.2}, the unsafe state set
Sunsafe = {s : So1 ∪ So2 ∪ So3}, the goal state set
Sgoal =

{
s :

√
p2x + (py − 0.5)2 ≤ 0.3

}
. Once the

quadrotor reaches the Sunsafe, the episode ends in advance
and the cost function is set as C = 2000. The episodes are
of maximum length 200 and time step dt = 0.1 s. In the
experiments, we use Bitcraze’s Crazyflie 2.0 quadrotors. We
train the controllers in the simulator gym-pybullet-drones
[42] based on PyBullet. In the real world, we use a motion
capture system for state estimation.

APPENDIX IV
HYPERPARAMETER SETTING

For LBAC, there are two networks: the controller network
(actor) and the control Lyapunov barrier network (critic).
The controller network is represented by a fully-connected
neural network with two hidden layers of size 256 each,
with the ReLU activation function, outputting the mean
and standard deviations of a Gaussian distribution. A fully-
connected neural network represents the control Lyapunov
barrier critic network with two hidden layers of size 256,
each with a ReLU activation function. We use the vanilla Soft
Actor-Critic algorithm [36] for 500 episodes to explore the
environment effectively as a warm start. The hyperparameters
can be found in Table I

TABLE I
HYPERPARAMETER SETTING IN LBAC

Hyperparameters 2D Quadrotor Navigation
Minibatch size 512
Total episode 2500
Actor learning rate 3× 10−4

Critic learning rate 3× 10−4

Terminal cost C 2000
Discount factor γ 0.999

In RSPO and SQRL, another safety critic network Qrisk
is needed to estimate the discounted future probability of
constraint violation with discounted γrisk. The safety thresh-
old εrisk ∈ [0, 1] is an upper-bound on the expected risk of
the action. In this paper, the safety critic network shares the
same architecture as the task critic network, except that a
sigmoid activation is added to the output layer to ensure that
the outputs are on [0, 1]. We use the same hyperparameter
settings as LBAC in RSPO, RCPO, and SQRL. The other
hyperparameters can be found in Table II.

TABLE II
HYPERPARAMETER SETTING IN SAFE RL

Hyperparameters 2D Quadrotor Navigation
RCPO (γrisk , λ) (0.99, 3000)
RSPO (γrisk , εrisk , λ) (0.99, 0.2, 10000)
SQRL (γrisk , εrisk , λ) (0.99, 0.2, 5000)
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