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This paper presents a density based topology optimization method for infinite fatigue life constraints of non-

proportional load cases, with a specific focus on parts with cyclic symmetry. Considering non-proportional loads 
in topology optimization significantly broadens the types of design problems that can be handled. The method 
estimates the local variation in Signed von Mises stress using a smooth min/max function and constrains the 
resulting stress amplitude using established stress based topology optimization methods. Accounting for non-

proportionality of loading significantly increases the computation cost with respect to existing proportional 
methods, as the time-varying stress field needs to be computed. Inertia effects are neglected in the structural 
analysis. Therefore, a quasi-static analysis is used to obtain the stress history. To reduce the computational cost, 
advantage is taken of cyclic symmetric properties to reduce the number of necessary time steps to evaluate. This 
reduces the computational cost roughly proportional to the number of unique load time steps present in the 
repeated segments as opposed to a standard implementation. The method is tested on numerical examples in 2D 
and 3D for both proportional and non-proportional loads and was found to be locally accurate up to the accuracy 
of the constraint aggregation.
1. Introduction

Rotating machinery is a common sight in industrial applications 
[35]. Due to relative rotation between a part and its loading, the 
load case generally varies periodically in time, resulting in fluctuating 
stresses in the material. These fluctuations cause material fatigue even 
for stresses below the yield stress of the material. Fatigue failure as op-

posed to static failure is, therefore, often the critical failure constraint 
for dynamically loaded structures. The life time of a part with respect 
to material fatigue is dependent on the magnitude and amount of load 
cycles it is subjected to. For parts where a long lifetime is desired, for ex-

ample due to costly or inconvenient replacement, a requirement can be 
that the part should be designed for infinite fatigue life. This constraint 
can be conflicting with other design requirements like minimizing the 
material usage of the part to reduce weight, inertia or cost. While in 
some cases a proportional load case applies, many applications are sub-

jected to a non-proportional load case like moving loads or out of phase 
loads. This has implications for both the structural analysis and choice 
of fatigue criterion, which substantially increase the computational cost. 
Inertial loads can also be relevant for rotating parts. The origin of this 
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work lies in the design of direct-drive parts for wind turbines which ro-

tate at relatively low rotation speeds. In such cases, centrifugal inertial 
forces can be neglected. For fast rotating applications however, these 
inertial forces may become relevant to include in the fatigue load case. 
Another common aspect of rotating parts subjected to periodic loading 
is the presence of cyclic symmetry in the design, which can result from 
cyclic symmetry in the load case or possibly for manufacturing reasons. 
This symmetry can often be exploited to reduce the computation cost of 
the structural analysis.

Finding a low mass design while fulfilling the structural require-

ments can be challenging. Density based Topology Optimization (TO) 
has become a well-established design method for finding lightweight 
structures which adhere to a certain set of design constraints. Using TO 
to minimize for mass while constraining fatigue and exploiting cyclic 
symmetry could be very useful for rotating machinery design.

TO methods separately considering infinite fatigue life, time-varying 
non-proportional loading and cyclic symmetry have been proposed pre-

viously. However, a suitable method which combines them is lacking in 
existing literature. This paper, therefore, aims to present a TO method 
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Fig. 1. A design problem combining the three key aspects of this paper. The 
gray design region consists of twelve cyclic symmetric segments and must be 
designed for infinite fatigue life while minimizing material usage. The loads 
vary periodically in position and magnitude around the circumference.

that can be used to design parts like illustrated in Fig. 1 containing the 
following aspects:

• The part is to be designed for infinite fatigue life.

• The part is subjected to periodic loads which vary non-proportionally

in time.

• The part is dividable in a number of cyclic symmetric segments.

Below the state of the art regarding each individual aspect is briefly 
reviewed and choices are motivated, before the contributions of this 
paper are stated.

1.1. Fatigue based TO

Fatigue failure is caused by subjecting a structural component to dy-

namic loading conditions. Even though resulting stresses can be well 
below the static failure criteria, the component will break due to mate-

rial fatigue after a certain amount of loading fluctuations. To evaluate 
the expected fatigue life of a structural component, different approaches 
can be considered: crack propagation rate, strain-life and stress-life. 
Crack propagation rate approaches are used to estimate the propagation 
of surface cracks through the material after crack initiation and there-

fore more commonly used for finite lifetime applications. Strain-life is 
commonly used for short lifetime applications where plastic deforma-

tions occur. For longer lifetime applications, including infinite lifetime, 
a stress-life approach is commonly used [24]. The majority of existing 
fatigue based TO research is based on a stress-life approach. For these 
reasons a stress-life approach is used in this paper.

Stress-life fatigue analysis looks at the variations in stress caused by 
the dynamic loading. These stress fluctuations, called stress cycles, can 
then be interpreted to an expected life time using an SN-diagram, for 
illustration shown in Fig. 2. Three approximate regions can be distin-

guished in the SN-diagram, the first region being for low-cycle fatigue 
which is characterised by plastic deformations. The second region is for 
high-cycle, but finite fatigue life. The third region is for infinite fatigue 
life [24]. Some loading might result into stress fluctuations where defin-

ing stress cycles is non-trivial. A Rainflow counting method [1] can then 
be used to dissect the complicated fluctuations into a combination of 
stress cycles and Palmgren-Miner rule can be used to evaluate the accu-

mulative fatigue damage [24]. It is important to note that SN-diagrams 
are based on experimental data and are only valid for uniaxial and zero 
mean stress cases. When this is not the case, correction methods are 
necessary. Methods such as the Signed von Mises stress, largest princi-

pal stress direction and critical plane methods are commonly used in 
2

fatigue analysis for defining an equivalent uniaxial stress from a multi-
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Fig. 2. A general representation of an SN-diagram. It shows an approximation 
of the expected amount of lifetime in number of cycles N for a given stress cycle 
amplitude. Some materials, like most steel types, have an endurance limit 𝜎𝐷
below which no fatigue damage occurs.

axial stress state [5]. For mean stress correction the Modified Goodman, 
Soderberg or Gerber corrections can be used [24].

Since a stress-life fatigue approach is based on stress fluctuations, 
fatigue based TO problems are closely related to stress based TO and 
evidently the same problems arise as have been observed with stress 
based TO.

One of these problems is the so called “singularity” problem, which 
was observed by Cheng and Jiang [6] when including stress constraints 
in a truss optimization problem. It is caused by stress constraints vanish-

ing when one of the design variables reaches zero density. This results 
in a part of the design domain being of a lower dimension known as 
a degenerate subdomain. The desired optimum can reside in this sub-

domain and is called a singular optimum. Gradient based optimization 
algorithms cannot reach this subdomain and will converge to a different 
local optimum.

This can be resolved using constraint relaxation methods, which 
smooth the discontinuous point of the stress constraint so that the de-

generate subdomain is reunited with the rest of the feasible domain and 
can be reached by the optimization algorithm. Methods like 𝜖-relaxation 
[7,11] and 𝑞𝑝-relaxation [3,26], have been shown to successfully deal 
with this issue.

A second difficulty is the local nature of stress and fatigue. The con-

straint should be satisfied everywhere in the design domain. This gives 
a large set of local constraints, which makes the computation of sensi-

tivities expensive, as the efficiency of the adjoint method used for the 
sensitivity analysis is lost.

This problem can be dealt with by aggregating the many local con-

straints into a single global constraint. This has been done with the use 
of aggregation functions like the 𝑝-norm [12] and the Kresselmeier–

Steinhauser (KS) function [47], which approximate the maximum local 
constraint value in a differentiable manner. The reason for using smooth 
alternatives for non-differentiable functions like the max function is to 
enable gradient-based optimization. The accuracy of the approxima-

tion is controlled with an aggregation parameter. For large aggregation 
parameters, however, the global constraint becomes unstable. To im-

prove the inaccuracy of the approximation, Le et al. [26] proposed a 
global constraint scaling measure, that uses the true and approximated 
maximum stress of the previous optimization iteration to scale the ap-

proximation of the current iteration. In Verbart et al. [44], a unified 
aggregation and relaxation method is proposed to deal with both the 
local constraints and singularity problem simultaneously using a single 
aggregation parameter. This was done by introducing a lower bound 
version of the 𝑝-norm and KS-function aggregation.

Disadvantages of aggregation methods are a loss in local stress con-
trol as well as the accuracy of the approximation being problem and 
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mesh size dependent. Recent studies have, therefore, proposed the use 
of the Augmented Lagrangian (AL) method to handle the local stress 
constraints [36,38]. The AL method treats the stress constraints as a 
local quantity by adding them to the objective function in the form 
of a penalty term, which is updated at each iteration. This uncon-

strained problem is expected to converge to the solution of the original 
constrained problem, but requires only a single adjoint vector in the 
sensitivity analysis. The local stress control of the AL method was shown 
to be significantly better than global constraint approaches by da Silva 
et al. [38].

Previous studies have successfully incorporated fatigue into TO. [17]

were the first to incorporate the methods from stress based TO and ap-

ply them to a fatigue based problem. The fatigue analysis is performed 
in advance of the optimization by computing the largest allowable stress 
amplitude for which the accumulative damage, for a known load spec-

trum, is not exceeded. This stress amplitude is then incorporated like a 
stress constraint. Oest and Lund [31] takes a similar approach, but in-

corporates the fatigue analysis into the optimization problem directly, 
by constraining the accumulative damage function. Jeong et al. [19]

consider infinite fatigue life for non-zero-mean harmonic loading in 
steady state. The mean stress is computed from a static analysis of the 
mean load and the amplitude stress from a harmonic analysis of the load 
amplitude. They employ a SIMP like interpolation scheme on the mass 
matrix, with the aim to avoid localized mode issues. Furthermore, they 
provide differentiable versions of some commonly used mean stress cor-

rection methods. Collet et al. [9] incorporates the mean stress correction 
in a different manner by implementing the endurance envelope of the 
modified Goodman correction as separate stress constraints. Further-

more, they use an active constraint set to limit the number of local 
constraints considered instead of aggregating them into one constraint. 
Since the amount of active constraints changes during the optimization, 
a global compliance constraint is introduced to smooth any discon-

tinuities. Lee et al. [27] consider fatigue constraints for a stochastic 
load case and utilises and compares frequency based fatigue analy-

sis methods. Jeong et al. [20] perform a transient analysis to acquire 
the time-varying stress history caused by variable amplitude loading. A 
multiaxial cycle counting method by Wang and Brown [45] is used to 
extract effective stress cycles. Since the computation of transient sensi-

tivities is expensive, they are computed from the equivalent static load 
[21] at discrete time steps.

The fatigue constraint studies discussed so far have only considered 
proportional load cases. This is computationally advantageous, as the 
stress history can be obtained by linearly scaling the stress field from 
a single reference load. For non-proportional load cases, like moving 
loads or out of phase loads, the time response cannot be obtained in 
this manner and these methods will therefore not suffice.

Recent contributions have proposed fatigue based TO methods 
which involve non-proportional load cases. Zhang et al. [49] propose 
that the non-proportional loading can be decomposed into a linear 
combination of unit loads with time varying weight factors. The stress 
history can then be constructed by summing the resulting unit stress 
fields multiplied by the corresponding time varying weight factors. 
From the stress history, the equivalent Signed von Mises stresses are 
computed and rainflow counting is used to extract stress cycles at ev-

ery element in the design domain. Suresh et al. [40] use a continuous 
time fatigue analysis method developed by Ottosen et al. [32] to ap-

proximate the evolution of damage at each element using differential 
equations. An endurance surface is defined in the stress space, which 
evolves depending on the current stress and a back stress tensor. Dam-

age is accumulated when the stress state is outside of the endurance 
surface while it is evolving.

In this paper an alternative approach is presented to deal with non-

proportional load cases. Since the goal is to design for infinite fatigue 
life, the fatigue analysis can be simplified to determining whether the 
amplitude of the largest stress cycle is below the endurance limit. There-
3

fore, a smooth min/max function is used to approximate the local stress 
Computers and Structures 286 (2023) 107113

extrema in time, which defines the largest stress cycle locally. These lo-

cal stress cycles are constrained using the stress constraint formulations 
presented in Bruggi [3] and Verbart et al. [44].

1.2. Time-varying TO

To obtain the time response of a structure under non-proportional 
loading, three types of approaches can be considered:

1. Quasi-static analysis

2. Transient analysis

3. Frequency response analysis

Previous studies have successfully implemented these approaches for 
different time-varying TO problems. The aforementioned approach by 
Zhang et al. [49] and the Equivalent Static Load (ESL) method by Kang 
et al. [21] are examples of a quasi-static analysis. The ESL is defined as 
a static load that would results in the same displacement field caused by 
a time-varying load at a chosen time point. Choi and Park [8] used an 
approximate version of the ESL method to obtain the quasi-static time 
response for all time intervals.

For the transient analysis approach, time integration of the Equa-

tions of Motion (EoM) is required. Giraldo-Londoño and Paulino [14]

have implemented the HHT-𝛼 integration scheme by Hilber et al. [15], 
which is based on a Newmark integration method, to solve time-varying 
compliance minimization problems. Time integration is a computation-

ally expensive approach for TO problems. To reduce the computational 
burden, model reduction methods can be used to transform the EoM’s 
into a reduced set of uncoupled equations, which can be solved more 
efficiently. Either modal DoF’s or Ritz vectors can be used to replace the 
nodal DoF’s as a base of the EoM’s [10].

These model reduction methods can also be used for frequency re-

sponse analysis. The frequency response gives the response of a DoF 
to harmonic excitation forces. It is computationally more efficient than 
time integration, but is limited to forces that can be expressed as a 
sum of Fourier series components, meaning that the forces should be 
periodic [10]. Studies by Yoon [48] and Liu et al. [28] have investi-

gated the accuracy and advantages of using model reduction methods 
for frequency response analysis in dynamic compliance minimization 
problems.

The main purpose for implementing the ESL method, transient anal-

ysis or frequency response analysis is usually to incorporate the dynam-

ics of accelerating masses or vibrations. For this paper, these dynamic 
effects are not deemed relevant and therefore not considered. A quasi-

static analysis similar to the approach used by Zhang et al. [49] will 
therefore be used to obtain the time-varying stress history.

1.3. Cyclic symmetry

Many studies have exploited symmetry and periodicity to reduce 
the computational burden of solving optimization problems. An often 
considered example is the “MBB-beam”, where instead of optimizing 
the entire beam, half the beam is modelled and a boundary condition is 
added to represent the symmetry.

In other cases, the design problem itself might not be symmet-

ric, but a design requirement could be that the resulting geometry is. 
Kosaka and Swan [23] proposed a method to enforce symmetry into 
the design by combining the densities of symmetrically correspond-

ing elements into one design variable. A similar approach was used 
by Huang and Xie [18] and Zuo [51] for problems containing finite pe-

riodic cells. They average the sensitivities of corresponding elements 
to enforce periodicity. For infinitely periodic problems, where the load 
case is equivalent between periodic cells, Barbarosie and Toader [2]

used a periodic boundary condition. This links the nodes of correspond-

ing periodic boundaries and reduces the structural analysis to a single 

Representative Unit Cell (RUC).
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An equivalent way to formulate cyclic symmetry is as periodically 
repeating segments in tangential direction. Moses et al. [30] studied 
periodic compliant minimization problems where the loads do not ad-

here to the periodicity of the geometry. They made use of the Discrete 
Fourier Transform (DFT) to solve the boundary value problem. Due 
to the specific nature of the DFT, this method is limited to infinitely 
periodic problems and complex numbers arise in the computation. 
Thomas [43] presents two approaches to reduce the FE-analysis to a 
RUC for cyclic symmetric problems, where the periodic loading be-

tween segments is shifted in time. The first is through modal analysis, 
where the periodicity is described by mode shapes containing complex 
numbers. The second is by describing the periodic loading using com-

plex numbers. Petrov [34] uses the complex mode shape approach and 
performs a frequency response analysis.

This paper considers load cases where each cyclic symmetric seg-

ment is subjected to the same load case. The load case of each segment, 
however, is out-of-phase with respect to the other segments. Therefore, 
the complete load case does not follow the cyclic symmetry of the ge-

ometry at a single point in time. The approaches by Moses et al. [30], 
Thomas [43] and Petrov [34] are capable of reducing the structural 
analysis of such a problem to a time-varying analysis on a single seg-

ment. However, the introduction of complex numbers has a higher 
computational cost. Therefore, in this paper a different approach is cho-

sen. The cyclic symmetry is enforced similarly to the method used by 
Kosaka and Swan [23], where the full structure is modeled. The disad-

vantage of not reducing the FE-analysis to a single segment, however, 
is mitigated by utilizing a single static response of the entire structure 
for multiple time steps in the quasi-static analysis as will be explained 
further in Section 2.4.

1.4. Contribution

This paper presents a method to incorporate infinite fatigue life 
constraints into topology optimization of structures subjected to non-

proportional loading. The largest stress cycle is determined using a 
smooth min/max function on the time-varying Signed von Mises stress 
obtained from a quasi-static analysis. The method is combined with an 
approach to enforce cyclic symmetry in the design. This combination is 
of interest, as it can significantly reduce the computational cost of the 
quasi-static analysis when the loading adheres to the following condi-

tions:

1. The loading is periodic.

2. Each segment is subjected to the same loading over one time pe-

riod.

3. Between segments exists a constant shift in time over the loading 
period.

When these conditions are met, a single static analysis of the struc-

ture can represent multiple time steps of the quasi-static analysis. Types 
of loading that follow these conditions are load cases that appear to act 
like a traveling wave around the axis of symmetry, which is not uncom-

mon in rotating machinery.

The presented fatigue constraint approach is first tested indepen-

dently on three numerical examples, where a comparison is made to 
proportional approximations of the problems. This is meant to illustrate 
the relevance of taking non-proportionality of loading into considera-

tion. The combination of the method with cyclic symmetry is thereafter 
tested on a 2D and a 3D example.

The results are verified for fatigue using both the Signed von Mises 
method and Dang Van critical plane method [22]. A comparison is made 
to identify weaknesses of using the Signed von Mises stress as equivalent 
fatigue stress.

The remainder of the paper is structured as follows. In Section 2

first the density based TO method used is explained and subsequently 
4

the proposed method is presented. The analysed fatigue test problems 
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including the cyclic symmetric problems are introduced in Section 3

and the results of the problems are presented in Section 4 and thereafter 
discussed. Finally, conclusions are drawn in Section 5.

2. Methodology

2.1. Density based topology optimization

The objective in the considered design problems is to minimize the 
mass of the structure, while adhering to a global infinite fatigue life con-

straint. An equivalent interpretation is to minimize the material volume 
𝑉 used within the design domain, which is normalised with respect to 
the total volume 𝑉Ω of the design domain. Density based TO will be 
used to achieve this. The domain is partitioned into finite elements, 
where an artificial density design variable 𝜌𝑒 ∈ [0, 1] is assigned to 
each element 𝑒. A density of 1 represents a volume element containing 
material, while a density of 0 represents a void volume element. The 
isotropic material properties of the finite elements are made dependent 
on these design variables in a continuous manner, such that the global 
structural performance with respect to the design variables can be anal-

ysed.

Since the fatigue constraint 𝑔𝑓
𝐺

only constrains the fluctuations in 
stress, which can allow for stresses above the yield stress, an addi-

tional global stress constraint 𝑔𝑠
𝐺

is necessary to constrain the static 
yield requirements of the structure, resulting in the following optimiza-

tion problem:

ℙ ∶min
𝜌

𝑉 = 1
𝑉Ω

∑
𝑒∈Ω

𝜌𝑒𝑣𝑒,

s.t. 𝑔
𝑓

𝐺
≤ 0,

𝑔𝑠
𝐺
≤ 0,

0 ≤ 𝝆 ≤ 1,

(1)

where 𝑉Ω is the volume of the design domain Ω, 𝑣𝑒 is the volume of 
a finite element and 𝜌𝑒 is the projected density field, which will be 
discussed further in Section 2.2.

The iterative optimisation works as follows: a FE-analysis is per-

formed on an initial design to acquire the displacements and stress field 
of the structure from which the constraint values and objective function 
are evaluated. This is followed by a sensitivity analysis of the constraints 
and objective function with respect to the design variables. The gradi-

ents and function values are used to update the design variable values 
for the next iteration.

The density based method used is the modified SIMP method by 
[37]. It applies a penalization function, 𝜂𝐾 (𝜌𝑒) = 𝜌𝑒

𝑝, on the Young’s 
modulus 𝐸0 used to construct the elemental stiffness matrices 𝐊𝑒 as 
follows:

𝐸𝑒(𝜌𝑒) =𝐸min + 𝜂𝐾 (𝜌𝑒)(𝐸0 −𝐸min), (2)

where 𝐸𝑒(𝜌𝑒) denotes the effective Young’s modulus. The penalization 
variable 𝑝 is chosen such that the elemental stiffness gained from inter-

mediate densities is low relative to the amount of mass gained. This is 
achieved for values of 𝑝 > 1. A common choice is 𝑝 = 3, which is also 
used for this paper and for which the interpolation is shown in Fig. 3. 
To avoid singularity of the global stiffness matrix 𝐊(�̄�), a lower bound 
value 𝐸min = 10−9𝐸0 is assigned to the effective Young’s modulus. The 
global stiffness matrix is assembled from the elemental stiffness matri-

ces 𝐊𝐞 as follows:

𝐊(�̄�) =
∑
𝑒∈Ω

𝐊𝑒(𝐸𝑒(𝜌𝑒)). (3)

An underlying constraint of the optimization problem is that the 
solution should satisfy the static equilibrium equations:
𝐊(�̄�)𝐮(�̄�, 𝑡𝑖) = 𝐟(𝑡𝑖), 𝑖 = 1, ..,𝑁, (4)



M. Slebioda, R. Giele and M. Langelaar

Fig. 3. Interpolation functions used for the Young’s modulus (𝜂𝐾 ) and stress 
(𝜂𝑆 ).

where 𝐮 is the nodal displacement vector and 𝐟 is the vector containing 
the external forces. This is implemented through the FE-analysis step. 
A time-varying stress history needs to be determined for fatigue anal-

ysis, while inertia effects can be neglected. A quasi-static FE-analysis 
is, therefore, performed at discrete time steps 𝑡𝑖. The number of time 
steps 𝑁 is an important consideration. In this paper the number of time 
steps used is chosen intuitively for the individual examples. The choice 
is based on the range of motion of the load and its variation in mag-

nitude, making sure that points of interest such as load and motion 
extrema are included.

2.2. Distributed density formulation

The design variables 𝝆 are connected to the density distribution field 
�̄� through a density filter and threshold projection. The density filter 
works like a blurring filter causing a gray transition between material 
and void regions in the design domain. It avoids mesh dependency of 
the solution and introduces control over minimal feature size. The gray 
transition region is also necessary for stress based problems to avoid 
high local stresses along jagged material boundaries. The density filter 
used is a Partial Differential Equation (PDE) based filter [25] and gives 
the density filtered field �̃� according to:

�̃� = 𝝆−𝑅2
PDE∇

2
�̃�. (5)

Here, 𝑅PDE is the filter radius. Unless specified otherwise, the filter 
radius is set to 𝑅PDE = 1.5 𝑙𝑒, where 𝑙𝑒 is the average element size.

A threshold projection subsequently controls the gray transition re-

gion and relates the filtered density field to the projected field using a 
Heaviside projection function [46]:

�̄� =
tanh (𝛽𝜂) + tanh (𝛽(�̃�− 𝜂))
tanh (𝛽𝜂) + tanh (𝛽(1 − 𝜂))

. (6)

Here, 𝜂 is the projection threshold and is set to 0.5. The steepness 
of the projection function and therefore the width of the gray transition 
region is controlled by the parameter 𝛽. In [39] an upper bound on 
𝛽 for stress based optimization problems using the given PDE filter is 
defined. The upper bound ensures a minimum transition width of one 
element and is given as 𝛽lim = 2𝑅

𝑙𝑒

√
3
, where 𝑅 is the filter radius of the 

classical linear hat function by [4], which is related to 𝑅PDE according √

5

to 𝑅 = 2 3𝑅PDE [25]. For the filter radius used this results in 𝛽lim = 6.
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2.3. Infinite fatigue life constraint

When the stress history is acquired from the quasi-static analysis, 
the largest stress cycle needs to be identified for the fatigue evaluation. 
To allow the use of gradient-based optimization, this operation needs to 
be fully differentiable. The Signed von Mises stress is used as equivalent 
stress measure. First, however, the singularity problem as mentioned in 
the introduction needs to be dealt with. This is done by using the 𝑞𝑝-

relaxation approach by [3] as applied by [27]. Giving the von Mises 
stress interpolation function 𝜂𝑆 as follows:

𝜂𝑆 (�̄�𝑒) =
𝜂𝐾 (�̄�𝑒)
�̄�
𝑞
𝑒

= �̄�(𝑝−𝑞)
𝑒

. (7)

Choosing a stress interpolation parameter 𝑞 < 𝑝 relaxes the stress for 
intermediate densities and resolves the singularity problem. A value of 
𝑞 = 2.5 is chosen, giving the interpolation function 𝜂𝑆 (𝜌𝑒) = 𝜌𝑒

1
2 shown 

in Fig. 3 and the relaxed stress computation:

�̂�𝑒(�̄�𝑒, 𝑡𝑖) = 𝜂𝑆 (�̄�𝑒)𝐂𝑒𝝐𝑒(𝑡𝑖). (8)

Here, �̂�𝑒 is the relaxed stress, 𝐂𝑒 the elasticity tensor based on the 
non-penalised Young’s modulus and 𝝐𝒆(𝑡𝑖) the infinitesimal strain at 
time step 𝑖.

The Signed von Mises stress is computed from the relaxed stress as 
shown in Equation (9), where 𝐉2 is the second invariant of the devia-

toric stress tensor. The sign is determined from the sign of the hydro-

static stress 𝜎H
𝑒
(𝑡). Since the sign operator is non-differentiable at 0, it 

is replaced by the hyperbolic tangent function tanh, which acts as a 
smooth sign function.

�̃�𝑒(�̄�𝑒, 𝑡𝑖) = tanh(𝜎H
𝑒
(𝑡𝑖))

√
3𝐉2(�̂�𝑒(�̄�𝑒, 𝑡𝑖)). (9)

For an infinite fatigue life constraint, the fatigue life analysis can be 
reduced to whether the largest stress cycle in the stress history of each 
element is below the endurance limit 𝜎𝐷 and no complex cycle counting 
method is required. The largest stress cycle is determined by approxi-

mating the maximum 𝜎max
𝑒

(�̄�𝑒) and minimum 𝜎min
𝑒

(�̄�𝑒) Signed von Mises 
stress in time using the upper bound KS-function as follows:

𝜎max
𝑒

(�̄�𝑒) =
1
𝑘1

ln

(
𝑁∑
𝑖=1

𝑒𝑘1 �̃�𝑒(�̄�𝑒,𝑡𝑖)

)
. (10)

𝜎min
𝑒

(�̄�𝑒) =
1

−𝑘1
ln

(
𝑁∑
𝑖=1

𝑒−𝑘1 �̃�𝑒(�̄�𝑒,𝑡𝑖)

)
. (11)

The KS-function is chosen over the 𝑝-norm, because the latter can-

not distinguish negative from positive input values. The aggregation 
parameter 𝑘1 controls how much the function will overestimate the 
true maximum and minimum. A value of 𝑘1 = 20 is chosen. From the 
maximum and minimum stresses the mean and amplitude stress of the 
largest stress cycle are computed according to:

𝜎m
𝑒
(�̄�𝑒) =

𝜎max
𝑒

(�̄�𝑒) + 𝜎min
𝑒

(�̄�𝑒)
2

. (12)

𝜎a
𝑒
(�̄�𝑒) =

𝜎max
𝑒

(�̄�𝑒) − 𝜎min
𝑒

(�̄�𝑒)
2

. (13)

Mean stress can have a negative effect on the fatigue life. To correct 
for the mean stress, the modified Goodman method, as illustrated in 
Fig. 4, is applied. Since only the tensile mean stress is assumed to nega-

tively impact the fatigue life, the correction is non-smooth at 𝜎m
𝑒
(�̄�𝑒) = 0. 

For this reason the differentiable modified Goodman approach by [19]

is used, which puts all negative mean stresses to zero in a differentiable 
manner as follows:

𝜎m0
𝑒

(�̄�𝑒) =
𝜎m
𝑒
(�̄�𝑒)
2

+

√
𝜎m
𝑒
(�̄�𝑒)2 + 𝛾

2
. (14)

This operation can be considered as a smooth max(𝜎m
𝑒
(�̄�𝑒), 0) oper-
ation, where 𝛾 is a small value making the function smooth around 



M. Slebioda, R. Giele and M. Langelaar

Fig. 4. The effect of mean stress on the allowable stress amplitude according 
to the modified Goodman correction method. 𝜎𝑎0 is the stress amplitude at zero 
mean stress, 𝜎𝑦 is the yield stress and 𝜎𝑢 is the ultimate tensile stress of the ma-

terial. The combination of fatigue and static yield criteria define an endurance 
envelope which constrains a feasible region.

zero mean stress. This operation eliminates the effect of negative mean 
stresses in the modified Goodman correction which is given by:

𝜎a0
𝑒
(�̄�𝑒) = 𝜎a

𝑒
(�̄�𝑒)

(
1 −

𝜎m0
𝑒

(�̄�𝑒)
𝜎𝑈

)−1

, (15)

where 𝜎𝑈 is the ultimate tensile strength of the material and 𝜎a0
𝑒
(�̄�𝑒) is 

the stress amplitude we want to constrain, which is valid for comparison 
with an SN-diagram.

The stress amplitude of the largest stress cycle is constrained with 
the fatigue limit of the material 𝜎𝐷 according to:

𝑔𝑓
𝑒
=

(
𝜎a0
𝑒
(�̄�𝑒)

𝜎𝐷
− 1

)
�̄�𝑒 ≤ 0, 𝑒 ∈Ω (16)

The fatigue constraint 𝑔𝑓𝑒 is multiplied with �̄�𝑒, as the constraint 
should not apply to void elements (vanishing constraints) and this mul-

tiplication ensures that the constraints are satisfied when an element is 
at zero density. The result is a large set of local constraints on the design 
domain. The large set of local constraints is problematic, as this signifi-

cantly reduces the efficiency of the adjoint method used to compute the 
gradients. To solve this, the local constraints are aggregated into a sin-

gle global constraint by estimating the maximum constraint value using 
the lower bound KS-function from Verbart et al. [44] as follows:

𝑔
𝑓

𝐺
= 1

𝑘2
ln

(
1
𝑉Ω

∑
𝑒∈Ω

𝑒𝑘2𝑔
𝑓
𝑒

)
. (17)

Note that the upper bound KS-function was used for the maximum 
and minimum stress approximation and the lower bound KS-function 
for the constraint aggregation. The reason for this is that the KS-function 
is more accurate in estimating peak values in an array and the KS-mean 
more accurate when the values are at the same level [16]. The assump-

tion is that the former is better suited for approximating the max and 
min stress in time and the latter for aggregating the constraints. The 
aggregation parameters 𝑘1 and 𝑘2 are chosen as 𝑘1 = 𝑘2 = 20.

The global stress constraint 𝑔𝑠
𝐺

is obtained following Equations (16)

and (17), but in the equations 𝜎a0
𝑒
(�̄�𝑒), 𝜎𝐷 and 𝑔𝑓𝑒 are replaced by the 

relaxed von Mises stress �̃�vm
𝑒

(�̄�𝑒), yield stress 𝜎𝑌 and the local stress 
constraints 𝑔𝑠

𝑒
respectively.

2.4. Combining cyclic symmetry and quasi-static analysis

For cyclic symmetric design problems which adhere to the condi-
6

tions stated in Section 1.4, the cyclic symmetry and the quasi-static 
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Fig. 5. Two time steps of a cyclic symmetric problem with 12 segments and 13 
loads. The loads move counterclockwise. Time step 4 is essentially the same as 
physically rotating time step 1 counterclockwise by three segments. The load 
with the largest magnitude is plotted in blue for both time steps to illustrate 
how the model appears to have rotated.

analysis can be combined in a clever way. Cyclic symmetry is enforced 
by making material properties at corresponding locations dependent 
on the same design variable, which is similar to the method used by 
[23]. A benefit to this approach is that the density filter can cross the 
boundary to neighboring segments, ensuring a smooth density tran-

sition between them. This enforced cyclic symmetry approach would 
normally not save computation time for the FE-analysis as the static 
response of the entire structure is computed for every time step. How-

ever, for the type of design problems mentioned, the responses of the 
additional segments hold useful information for the quasi-static analy-

sis. The problem shown in Fig. 5 contains 13 equidistantly spaced point 
loads around the circumference of 12 segments. Together they appear 
to act like a single counterclockwise traveling wave. By looking at the 
difference between time steps 1 and 4 shown, it can be noted that this is 
the same as physically rotating the model three segment counterclock-

wise. For this problem, the static FE-analysis for a single time step of 
the entire structure, therefore, is a physical representation of a quasi-

static analysis containing a number of time steps equal to the number 
of forces present. The disadvantage of having to compute the entire 
structural response when enforcing symmetry in the presented way is, 
therefore, negated by reducing the necessary time steps to evaluate. 
This is a key insight that is exploited in the proposed method.

It should be noted that depending on the number of segments and 
number of traveling waves, it could occur that the entire structure 
contains two or more identical sets of segments. The copies of a set 
of segments do not provide additional information for the quasi-static 
analysis and are therefore redundant. The copies can in such cases be 
removed from the analysis by applying a periodic boundary condition 
like was used by Barbarosie and Toader [2]. This results in a lower 
computation cost per time step but more time steps need to be evalu-

ated for the quasi-static analysis, as the smaller set of segments returns 
less time information. For further clarification if there would have been 
14 equidistantly spaced loads over the 12 segments, there would be 6 
unique segments. Segments that are opposite of each other are loaded 
identically. This unique set of segments contains 7 loads and therefore 
provides 7 time steps. The number of identical sets can be determined 
from the largest common divider between the amount of segments and 
the amount of loads.

2.5. Centrifugal inertial force

Although inertial forces are not the primary focus of this work, for 
higher rotational speeds these forces can become a relevant contribu-

tion to the fatigue load case. The addition of centrifugal inertial forces 
does not require significant changes to the method. For constant rota-

tion speeds, the inertial loads can simply be included directly in the 
quasi-static analysis. Note that these loads are design-dependent body 

loads, as their existence and magnitude is linked to the existence of ma-
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Table 1

Properties and settings.

Property Value

Young’s modulus 𝐸0 = 200 [GPa]
Lower bound Young’s modulus 𝐸min = 10−9𝐸0
Poisson’s ratio 𝜈 = 0.3
Yield stress 𝜎𝑌 = 75 [MPa]
Ultimate tensile stress 𝜎𝑈 = 100 [MPa]
Endurance limit 𝜎𝐷 = 50 [MPa]
Material density 𝑚𝜌 = 7890 [kg∕m3]
2D Model Plane stress

Thickness 10 [mm]
Element type Bilinear quadrilateral

Element size 1 [mm]
Filter radius 𝑅PDE = 1.5 [mm]
Projection slope parameter 𝛽 = 6
Aggregation parameters 𝑘1 = 𝑘2 = 20
SIMP parameter stiffness 𝑝 = 3
SIMP parameter stress 𝑞 = 2.5
Initial density distribution 𝜌0 = 1

terial and its radial position. The centrifugal inertial load contribution 𝑙
in [N∕m3] that acts as a body load on element 𝑒 is given by:

𝑙 = 𝜂𝑚(𝜌𝑒)𝑚𝜌𝜔
2𝑟. (18)

Here, 𝑚𝜌 is the actual material density of the used material, 𝜔 is the 
rotational speed and 𝑟 is the distance from the center of rotation. 𝜂𝑚(𝜌𝑒)
is the interpolation function of the local material density resulting in 
the design-dependent load. An interpolation function of 𝜂𝑚(𝜌𝑒) = 𝜂𝐾 (𝜌𝑒)
is used instead of a linear interpolation, as this avoids artificially large 
local stains in gray regions resulting in artificially large stresses.

To illustrate the effect of the addition of centrifugal inertial forces, 
one of the analysed test problems is optimised including this inertial 
load for two different rotation speeds in Section 4.2.2 and compared to 
the optimisation without the inertial load.

2.6. Optimization approach

Due to the large amount of design variables 𝝆 used in TO, a gradi-

ent based optimization method is necessary to make the optimization 
problem computationally feasible. A sensitivity analysis is, therefore, 
performed after the FE-analysis to obtain the gradients of the constraints 
and objective function with respect to the design variables. The ad-

joint method [29] is used to compute the sensitivities, which is efficient 
for problems containing many design variables and few functional re-

sponses. The general expression of the gradient of a set of functionals 
𝐡(𝐮(𝝆), 𝝆) is as follows:

dℎ𝑖
d𝜌𝑗

=
𝜕ℎ𝑖

𝜕𝜌𝑗
+

𝜕ℎ𝑖

𝜕𝐮
⋅
d𝐮
d𝜌𝑗

, (19)

where 𝜕ℎ𝑖

𝜕𝜌𝑗
and 𝜕ℎ𝑖

𝜕𝐮 are explicit terms and d𝐮
d𝜌𝑗

is an implicit term. 
The explicit terms can be worked out analytically, the implicit term 
on the other hand is computationally expensive. The adjoint method 
eliminates this term from the problem by augmenting the func-

tional with the static equilibrium equations: 𝐊(𝝆)𝐮 − 𝐟 = 0 with a 
Lagrange multiplier 𝜆𝑖. This adds the following term to Equation (19): 

+𝜆𝑖
(

𝜕𝐟
𝜕𝜌𝑗

− 𝜕𝐊
𝜕𝜌𝑗

𝐮−𝐊 d𝐮
d𝜌𝑗

)
. After rearranging the terms into explicit and 

implicit parts as follows:

dℎ𝑖
d𝜌𝑗

=
𝜕ℎ𝑖

𝜕𝜌𝑗
+ 𝜆𝑖

(
𝜕𝐟
𝜕𝜌𝑗

− 𝜕𝐊
𝜕𝜌𝑗

𝐮
)
+
(
𝜕ℎ𝑖

𝜕𝐮
− 𝜆𝑖𝐊

)
d𝐮
d𝜌𝑗

, (20)

the implicit term d𝐮
d𝜌𝑗

can be eliminated from the problem by computing 

the Lagrange multiplier such that 𝜕ℎ𝑖
𝜕𝐮 − 𝜆𝑖𝐊 = 0.

The explicit terms 𝜕ℎ𝑖
𝜕𝜌𝑗

and 𝜕ℎ𝑖
𝜕𝐮 have to be worked out analytically, 
7

which is shown for Equations (9), (10) and (11), as these are specific 
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to the presented method of this paper. Sensitivities of the other steps of 
the method and the objective function can be found in their respective 
literature. The sensitivity of the maximum Signed von Mises stress with 
respect to the design variables 𝜕𝜎

max
𝑒 (�̄�𝑒)
𝜕𝜌𝑒

reads as follows:

𝜕𝜎max
𝑒

(�̄�𝑒)
𝜕𝜌𝑒

=

(∑𝑁

𝑖=1 𝑒
𝑘1 �̃�𝑒(�̄�𝑒,𝑡𝑖) 𝜕�̃�𝑒(�̄�𝑒,𝑡𝑖)

𝜕𝜌𝑒

)
(∑𝑁

𝑖=1 𝑒
𝑘1 �̃�𝑒(�̄�𝑒,𝑡𝑖)

) . (21)

The sensitivity of the minimum Signed von Mises stress 𝜕𝜎
min
𝑒 (�̄�𝑒)
𝜕𝜌𝑒

is 
obtained by replacing 𝑘1 with −𝑘1. The sensitivity of the Signed von 
Mises stress 𝜕�̃�𝑒(�̄�𝑒,𝑡𝑖)

𝜕𝜌𝑒
is as follows:

𝜕�̃�𝑒(�̄�𝑒, 𝑡𝑖)
𝜕𝜌𝑒

= tanh(𝜎H
𝑒
(𝑡𝑖))

𝜕�̃�vm
𝑒

(�̄�𝑒, 𝑡𝑖)
𝜕𝜌𝑒

+
(
1 − tanh2(𝜎H

𝑒
(𝑡𝑖))

) 𝜕𝜎H
𝑒
(𝑡𝑖)

𝜌𝑒
�̃�vm
𝑒

(�̄�𝑒, 𝑡𝑖), (22)

where �̃�vm
𝑒

(�̄�𝑒, 𝑡𝑖) =
√
3𝐉2(�̂�𝑒(�̄�𝑒, 𝑡𝑖)) is the von Mises stress. The sensitivi-

ties with respect to 𝐮 are obtained equivalently.

The gradient based optimization algorithm used is GCMMA (Glob-

ally Convergent Method of Moving Asymptotes) [42], which is an ex-

tension to the commonly used Method of Moving Asymptotes (MMA) 
by [41]. The ordinary MMA solves the optimization problem by first 
approximating a set of convex subproblems between two asymptotes at 
the current iteration. The asymptotes are updated based on informa-

tion from the previous iteration, while the convex approximations are 
based on the gradient information at the current iteration. The set of 
convex subproblems can be efficiently solved using a dual method and 
the optimal solution found are the new design variable values 𝝆 for the 
next iteration. GCMMA extends MMA by considering inner and outer 
iterations. The outer iterations represent the regular MMA. However, 
for every outer iteration, there can be multiple inner iterations. The 
GCMMA method aims to always reduce the objective function between 
outer iterations using these inner iterations.

For the examples considered in this paper the default settings are 
used with the addition of a move limit of 0.1. The maximum number of 
inner iteration per outer iterations is set to 10. The outer iterations con-

tinue until either the optimality tolerance at 0.001 is obtained, which is 
the default convergence criteria of GCMMA in COMSOL, or a maximum 
outer iteration of 500 is reached.

3. Test problems and procedures

The method is implemented in COMSOL Multiphysics using the 
structural mechanics and optimization modules. Unless specified oth-

erwise, the properties and settings as listed in Table 1 are used for the 
test problems analysed. The test problems contain both 2D and 3D prob-

lems. For the first three problems, which are 2D, cyclic symmetry is not 
yet considered. The intend of these first three problems is to test the 
performance of the non-proportional fatigue constraint method inde-

pendently. Thereafter, the method is applied to two cyclic symmetric 
problems, the first of which is in 2D and the second in 3D.

3.1. Fatigue test problems

The three Test problems considered for the independent fatigue 
constraint test are: an L-bracket subjected to a proportional periodic 
load (Fig. 6), an L-bracket subjected to two periodic out-of-phase loads 
(Fig. 7) and a beam subjected to a time varying moving load (Fig. 8). 
For each test case two optimization approaches are considered, one pro-

portional and the other non-proportional.

For the proportional approach assumptions are made to replace non-

proportional loading by a proportional interpretation of the loading if 

necessary. In the proportional optimization approach Equations (10)
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Fig. 6. Test problem 1 is an L-bracket. The design domain is shown in light 
gray. The bracket is fixed at the black bar and a small region around the load 
application point marked in dark gray is excluded from the design domain. 
The proportional load is sinusoidal with an amplitude 𝐹𝑎 = 1 [kN] and a mean 
𝐹𝑚 = 0.25 [kN]. Dimensions are in [mm].

Fig. 7. Test problem 2 is the same L-bracket from Test problem 1, but now 
a horizontal (P1) and vertical (P2) load are applied both with an amplitude 
𝐹𝑎 = 1 [kN] and a mean 𝐹𝑚 = 0 [kN]. The loads are 90◦ out of phase, which 
results in a rotating load with constant rotation speed and a constant magnitude 
of 1 [kN]. Dimensions are in [mm].

and (11) are removed and 𝜎max
𝑒

and 𝜎min
𝑒

are instead obtained from 
scaling a reference stress field, as obtained from a unit load, with the 
known maximum and minimum force in time.

For the non-proportional optimization approach no simplifications 
of the loading are necessary and the method as described in Section 2.3

is used. The results of both approaches are compared to establish to 
what extent using the more computationally intensive non-proportional 
method improves the constraint adherence of the optimised design as 
opposed to making proportional assumptions. It is expected that the 
proportional approach will show a significantly worse fatigue perfor-

mance than the non-proportional approach for the problems subjected 
to non-proportional loading when the non simplified loading is applied 
to the optimized geometry.

3.1.1. L-bracket with proportional periodic loading

The L-bracket is a commonly considered design problem for stress 
and fatigue based optimization problems, due to the stress concentra-

tion at the re-entrant corner. For this first Test problem, a proportional 
sinusoidal load case is considered with a mean load 𝐹𝑚 = 0.25 [kN] and 
load amplitude 𝐹𝑎 = 1 [kN]. Since the load case is proportional, both 
the proportional and non-proportional approach should yield accept-

able results. The main intend of this problem is, therefore, to establish 
a benchmark to which the problems subjected to non-proportional load-

ing can be compared.

The design problem is shown in Fig. 6 and the properties and set-

tings used are listed in Table 1. The proportional load is distributed 
and applied over 7 nodes at the top of the right most boundary and 
8

a small section of 4 × 6 elements is excluded from the design domain, 
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Fig. 8. Test problem 3 is a beam with a moving load that varies sinusoidal 
between 1 [kN] and 4 [kN] with respect to its position on the beam. The light 
gray region is the design domain. The dark gray bar is set to solid material and 
the blue boundary connections are rolling contacts. Dimensions are in [mm].

Fig. 9. The proportional interpretation of Test problem 3 is three separate pro-

portional load cases P1, P2, and P3 with a maximum magnitude of 4 [kN] and a 
minimum of 0 [kN]. The separate load cases are evaluated for fatigue indepen-

dently and combined in a multiple loading optimization.

meaning that the density is set to fully solid and local constraints are 
not included in the constraint aggregation. This is to avoid large local 
stresses at the application point from influencing the global constraint. 
Along the inside boundaries, connected to the re-entrant corner, a pas-

sive void region is added which allows the filter to create a smooth 
transition between void and solid around the re-entrant corner.

3.1.2. L-bracket with non-proportional out-of-phase loading

In the second problem a non-proportional load case is applied to the 
L-bracket. Apart from the load case the problem is equivalent to the first 
test problem. The loading consists of two proportional sinusoidal loads 
P1 and P2 in 𝑥- and 𝑦-direction at the application point. Both loads have 
an amplitude of 1 [kN] and a mean of 0 [kN]. The loads are out-of-phase 
with respect to each other by a phase of 90◦ , which makes the combined 
loading non-proportional. The resulting load case is a load that has a 
constant magnitude of 1 [kN] and rotates with a constant rotation speed 
around the application point as illustrated in Fig. 7.

For the proportional approach the proportional loads P1 and P2 are 
evaluated for fatigue separately from each other and are combined in 
the optimization by implementing them as a multiple loading optimiza-

tion. In the non-proportional approach 12 time steps are used in the 
quasi-static analysis for one full rotation of the load.

3.1.3. Moving load across beam

For the third fatigue test problem a moving load across a beam is 

considered. The design problem is shown in Fig. 8 and the properties 
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and settings used are listed in Table 1. A load moves along the top 
surface of the beam at a constant speed and is equally distributed over 
11 nodes. The magnitude of the load varies sinusoidal with respect to 
its position on the beam with a mean of 2.5 [kN] and an amplitude of 
1.5 [kN]. The beam has roller connections at both lower ends. The top 
layer is a passive region set to full solid, but is included in the constraint 
aggregation, as the load is distributed over a sufficient amount of nodes 
to avoid too high application stresses.

A proportional interpretation of the loading is made by defining a 
proportional load case at critical time points of the moving load. At the 
locations of these critical time points a proportional load is applied, as 
illustrated in Fig. 9. This proportional load has a maximum equal to the 
magnitude of the moving load at that time point and a minimum equal 
to 0 [kN], which represents the presence and absence of the moving load 
at that location. Similar to the proportional approach of the second test 
problem these load cases are evaluated for fatigue separately from each 
other and combined in the optimization by implementing them as a 
multiple loading optimization. For this problem three critical time steps 
where the moving load magnitude is at its peak are identified, which 
conveniently cover the range of motion as well. For the quasi-static 
analysis performed in the non-proportional approach 13 time steps are 
used.

3.2. Cyclic symmetric fatigue problems

The remaining two problems analysed are cyclic symmetric, which 
is exploited to reduce the computation cost. The first problem consid-

ered is a 2D ring with flanges subjected to time-varying moving loads 
(Fig. 10). The second problem is a 3D casing where time-varying mov-

ing loads travel along the inside boundary (Fig. 11).

3.2.1. Cyclic symmetric problem in 2D

The first cyclic symmetric problem, shown in Fig. 10, consist of 12 
identical segments. It is fixed at the inner ring. The boundary loads 
move with a constant speed back and forth in the radial direction. The 
loads are applied over 6 nodes and magnitudes vary sinusoidal with 
a mean of 2 [kN] and amplitude of 1.5 [kN], as shown in Fig. 10c. The 
design domain (one segment) is meshed using 26 354 triangular mesh 
elements and is copied to the other eleven segments. The density dis-

tribution of the design domain is mapped onto the other segments to 
enforce the cyclic symmetry. The constant shift in time between the 
segments is 5 time steps clockwise or equivalently 7 time steps coun-

terclockwise, as illustrated in Fig. 10a. For this setup each segment 
provides a unique time step for the quasi-static analysis. Therefore, 
a single static response of the whole structure returns 12 time steps, 
which is considered sufficient to describe the load case.

3.2.2. Cyclic symmetric problem in 3D

The second cyclic symmetric problem analysed is 3-dimensional, as 
shown in Fig. 11. It consists of 12 cyclic symmetric segments. Each 
segment has an identical mesh containing 47 498 tetrahedral elements 
with an average element size of 25 [mm], giving a total mesh of 569 976
elements. Since this mesh is relatively coarse with respect to the di-

mensions of the problem, a smaller filter radius of 𝑅PDE = 1 𝑙𝑒, giving 
𝑅PDE = 25 [mm], is used to allow for smaller features. 13 loads are 
equidistantly spaced around the diameter, as shown in Fig. 12. The 
loads move in tangential direction and cross between segments. Both 
the radial and tangential components of the load magnitudes vary in 
time according to the graph shown in Fig. 13. The constant shift in time 
between the segments is 1 time step both clockwise as counterclock-

wise. Each load represents a time step in the quasi static analysis. As 
there are 13 loads distributed over 12 segments, there is a segment con-

taining two of the loads. This segment represents the time steps for both 
these loads and the static response of the complete structure, therefore, 
provides 13 time steps for the quasi-static analysis, which is considered 
9

sufficient for this problem.
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Fig. 10. Test problem 4 is the first cyclic symmetric problem considered. It 
consists of 12 segments each containing a radially moving load. The inner ring 
(black) is fixed. The dark gray region is solid material and excluded from the 
design domain (light gray). Along the boundaries connected to the re-entrance 
corners is a passive void region. Dimensions are in [mm].

3.3. Fatigue validation

The results of both proportional and non-proportional approaches 
are validated for fatigue failure by applying the non-simplified loading 
to the optimized structure. To define a geometry from the optimized re-

sult, the density distribution is first projected on a twice as fine mesh 
using a density filter step to improve the smoothness of transitions be-

tween material and void. COMSOL projects mesh data like the density 

distribution as a continuous field using shape functions. A geometry is 
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Fig. 11. Test problem 5 consists of 12 cyclic symmetric segments in 3D. The 
time steps for the 13 equidistantly spaced loads are shown.

Fig. 12. The dimensions and boundary conditions of Test problem 5. The dark 
gray ring where the load is applied is solid material and is excluded from the 
design domain. The blue boundaries are roller connections. Dimensions are in 
[mm].

Fig. 13. The magnitude of the loads in Test problem 5 expressed in radial and 
tangential directions with respect to the angular coordinate of a segment.

extracted by defining the boundaries at �̄� = 0.5. Densities above are set 
to full material and densities below to void. The resulting geometry is 
meshed with linear triangular elements for the 2D Test problems and 
linear tetrahedral elements for the 3D Test problem using a twice as 
fine mesh size as was used for the optimization.

A quasi-static FE-analysis is performed and material fatigue is deter-

mined by evaluating the largest variation in the Signed von Mises stress, 
10

which is the same approach used in Section 2.3. The fatigue constraint 
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Fig. 14. The local fatigue constraint values 𝑔𝑓𝑒 , which are aggregated using the 
lower bound KS-function. Results are shown for 𝜌 ≤ 0.5.

is evaluated in at least 10 000 evenly distributed points, which are used 
to establish percentually how much of the geometry domain adheres 
to the constraint. Furthermore, for the sampled evaluation points, the 
stress amplitude is plotted with respect to the mean stress in a plot as 
shown in Fig. 4. This shows local adherence to the fatigue and yield 
stress constraints defined by the failure envelope.

In addition to the variation in Signed von Mises stress, the Dang Van 
critical plane method [22] has been used to evaluate fatigue, as this is 
regarded as a more accurate fatigue approximation method for non-

proportional loading [33]. The validation using the Signed von Mises 
stress is shown in Sections 4.1 and 4.2 together with the optimized 
density distribution, whereas the results of the Dang Van method are 
discussed separately in Section 4.4 and compared to those of the Signed 
von Mises criterion.

4. Results and discussion

In this section the results of the Test problems described in the pre-

vious section are presented and discussed. First the three fatigue test 
problems and thereafter the 2D and 3D cyclic symmetric problems. Ul-

timately, the verifications using a critical plane method are shown and 
compared to the Signed von Mises stress results.

4.1. Fatigue test results

For each fatigue test problem two optimization approaches were 
performed, a proportional approach and a non-proportional approach. 
The results for both are presented and compared.

4.1.1. Test problem 1: L-bracket with proportional periodic loading

The results for both problem definitions were obtained after 500 
iterations and are shown in Fig. 15 and Table 2. As expected, the results 
for both approaches are very similar and nearly indistinguishable. The 
proportional approach has a material usage of 0.3151, which is about 
0.6% lower than the 0.3169 of the non-proportional approach. However, 
the percentage of the domain which satisfies the fatigue constraint is 
slightly worse for the proportional method at 97.1% versus the 97.5% of 
the non-proportional approach.

The difference in volume usage and constraint adherence between 
both approaches can be explained by the fact that the non-proportional 
approach makes an overestimation in its approximation of the largest 
stress cycle. This makes the approach more conservative and results in 
the trade off in volume performance and constraint performance.

Both approaches show a maximum normalized fatigue stress peak 
𝜎a0𝑒
𝜎𝐷

that is significantly higher than allowable. A peak of 1.3922 for the 
proportional approach and a peak of 1.3507 for the non-proportional 
approach. There are a couple of accountable reasons that contribute to 
these peaks. To start, in Fig. 14 can be seen that the lower bound ag-

gregation function underestimates the true local maximum constraint 

violation by about 10%. Secondly, due to the SIMP interpolation of the 
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Fig. 15. Results of Test problem 1. (a) and (b) show the density distribution and the normalized fatigue stress amplitude 𝜎
a0
𝑒

𝜎𝐷
. (c) and (d) show a scatter plot of the 

local stress behaviour.

Table 2

Results of Test problem 1: the normalised material usage 𝑉 and local fatigue constraint 
adherence differentiated into five ranges from satisfied (≤ 1) to exceeded by a factor 
larger than 1.2 are shown for the proportional (P) and non-proportional approach (NP). 
The fatigue constraint adherence is shown for both the optimization model as well as 
the verification model.

Test problem 1 𝑉 ≤ 1 1 − 1.05 1.05 − 1.10 1.10 − 1.20 > 1.20

P verification result 0.3151 97.1% 2.1% 0.5% 0.3% 0.1%
NP verification result 0.3169 97.5% 1.9% 0.3% 0.2% < 0.1%
material properties, which was necessary to enforce the optimization to-

wards a solid and void material distribution, representation of stresses 
by intermediate density variables found in the transition boundary is 
less accurate. When the sharpness of the boundary increases, as was 
done in the verification, the stresses increase. At last the large peaks 
can to an extent be attributed to the way the final result is interpreted 
at the 0.5 density threshold for the verification, as explained in Sec-

tion 3.3. Due to the underlying rectangular mesh, the threshold gives a 
boundary that is not perfectly smooth. This results in local stress peaks 
and, therefore, larger stress cycles.

In Appendix A a manual design iteration is performed in an at-

tempt to reduce local stress peaks which can be explained from this 
phenomenon by improving the smoothness of boundaries while avoid-

ing adding significant extra volume. After the manual iteration the 
maximum normalized fatigue stress is about 1.24 for the proportional 
approach and 1.19 for the non-proportional approach. This is consider-

ably less while only increasing the volume by 0.5% and 0.7% respec-

tively, which shows that the interpretation of a geometry from the 
11

optimized result is a significant reason for these higher then expected 
fatigue stresses found. Due to the manual iteration being inconsistent, 
the maximum constraint violation is not taken as a measure of compari-

son for the remaining Test problems but the domain percentages shown 
in Table 2 are instead.

The local stress behaviours are plotted in Fig. 15c and 15d. Two 
straight lines are apparent. This is expected for proportional loading. 
The steepness of the lines can be derived from the choice of relative 
magnitude between the amplitude and mean of the proportional load. 
Convergence of the objective functions is shown in Fig. 18a and 18d. 
The convergence of both approaches is smooth and similar.

4.1.2. Test problem 2: L-bracket with non-proportional out-of-phase 
loading

The results for both problem definitions were obtained after 500 it-
erations and are shown in Fig. 16 and Table 3. The density distribution 
shows a clear difference in topology. The proportional approach has 
a material usage of 0.3606, which is about 9.3% lower than the 0.4010
of the non-proportional approach. As expected, however, the percent-
age of the domain which satisfies the fatigue constraint is significantly 
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Fig. 16. Results of Test problem 2: (a) and (b) show the density distribution and normalized fatigue stress amplitude 𝜎
a0
𝑒

𝜎𝐷
. (c) and (d) show a scatter plot of the local 

stress behaviour.

Table 3

Results of Test problem 2: the normalised material usage 𝑉 and local fatigue constraint 
adherence differentiated into five ranges from satisfied (≤ 1) to exceeded by a factor 
larger than 1.2 are shown for the proportional (P) and non-proportional approach 
(NP).

Test problem 2 𝑉 ≤ 1 1 − 1.05 1.05 − 1.10 1.10 − 1.20 > 1.20

P verification result 0.3606 90.3% 2.7% 2.1% 2.8% 2.1%
NP verification result 0.4010 97.8% 1.3% 0.7% 0.2% 0.1%
worse for the proportional method at 90.3% versus the 97.8% of the non-

proportional approach which is in accordance to the results from Test 
problem 1. Convergence of the objective functions is plotted in Fig. 18b

and 18e, which is again smooth and similar.

The difference in material usage and constraint adherence between 
both approaches can be explained by the fact that the proportional 
method only considers loads in the horizontal and vertical direction 
separately and therefore does not account for diagonal loads, which 
results in too high stresses when the rotating load is not oriented hori-

zontally or vertically. The non-proportional approach does consider the 
different orientations of the load and is therefore able to properly con-

strain the load and achieve results that are in accordance to the results 
of Test problem 1. To properly constrain the load, higher material usage 
is required. The result of the proportional definition could arguably be 
improved by increasing the number of loads with different orientations 
used in the multiple loading optimization.

Looking at the local stress behaviour in Fig. 16c and 16d, again a 
straight line is observed even though the loading is non-proportional. In 
this specific case the straight line is obtained from the fact that for every 
12

load, a counter load points in the opposite direction at some time during 
the rotation. This results in no present mean stress of the largest stress 
cycle in the structure after one rotation. Taking this into consideration, 
the results of the proportional definition might yield a comparable re-

sult when more load cases are used.

4.1.3. Test problem 3: moving load across beam

The results of both problem definitions are shown in Fig. 17 and 
Table 4. Smooth convergence of the objective functions is shown in 
Fig. 18c and 18f. The proportional problem reached the maximum num-

ber of 500 iterations, whereas the non-proportional problem reached 
the convergence criteria after 460 iterations.

A slight difference in topology can be observed between the two 
approaches. The main difference is close to the boundary where the 
loading is applied. With a material usage of 0.2879, which is about 
20.3% lower than 0.3556, similar to the previously analysed problem 
the proportional approach shows a lower material usage than the non-

proportional approach, but at 86.6% performs significantly worse in 
adhering to the fatigue constraint opposed to the 99.7% of the non-
proportional approach.
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Fig. 17. Results of Test problem 3: (a) and (b) show the density distribution and normalized fatigue stress amplitude 𝜎
a0
𝑒

𝜎𝐷
. (c) and (d) show a scatter plot of the local 

stress behaviour.

Table 4

Results of Test problem 3: the normalised material usage 𝑉 and local fatigue constraint 
adherence differentiated into five ranges from satisfied (≤ 1) to exceeded by a factor 
larger than 1.2 are shown for the proportional (P) and non-proportional approach (NP).

Test problem 3 𝑉 ≤ 1 1 − 1.05 1.05 − 1.10 1.10 − 1.20 > 1.20

P verification result 0.2879 86.6% 2.1% 1.8% 2.9% 6.5%
NP verification result 0.3556 99.7% 0.1% 0.1% 0.1% < 0.1%
The local stress behaviour in Fig. 17c and 17d shows that the viola-

tion of constraints is quite significant for the proportional simplification 
of the design problem. Nevertheless, it did manage to obtain the main 
topological features found in the non-simplified problem. This shows 
that simplified problems, where choosing the critical time steps is quite 
intuitive, might still result in an acceptable initial design, but quite 
some post processing will be necessary to satisfy the constraints. In 
general a proportional simplification might not be trivial and making 
drastic assumptions about the loading could be undesirable.

An observation, which was made for moving load problems, is that 
the method struggled to fully converge to an all black and white den-

sity distribution and a gray region remains in the final result. This can 
also be observed at the top middle of Fig. 17b. A definitive cause for 
this issue was not established. A possible explanation could be that the 
13

moving load can be seen as a distributed load over the entire range 
of motion. This issue of gray areas has been observed in existing re-

search that considers distributed loads [50]. If significant gray regions 
are found in the obtained design, using a continuation approach which 
gradually increases the parameter 𝛽 during the optimisation can be ef-

fective. In the case of Fig. 17b, increasing 𝛽 from 6 to 12 was found to 
result in a nearly black-white design.

4.2. Cyclic symmetric fatigue test results

For the cyclic symmetric problems only the non-proportional 
method has been considered.

4.2.1. Test problem 4: cyclic symmetric problem in 2D

The optimization converged after 286 iterations and the results are 
shown in Fig. 19 and Table 5. The resulting topology contains no ma-
jor gray regions and has a final volume usage fraction of 0.2832. The 
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Fig. 18. Convergence of the objective function for Test problems 1, 2 and 3.
local fatigue constraints are satisfied for 97.2% of the design domain. 
For the remaining 2.8%, where the constraint is violated, a comparable 
trend as in Test problem 1 can be observed, where the violations up to 
about 1.20 times the constraint can be attributed to the approximation 
of the aggregation function and the violations above 1.20 are mainly 
attributed to non-smooth boundaries of the optimized geometry.

From the local stress behaviour in Fig. 19d can be observed that a 
large portion of the points clusters into two opposing lines. These points 
are most likely located at the two main truss features of the resulting 
topology, where the effect of the motion of the loads is not as signifi-

cant. From the perspective of these points, the motion and magnitude 
variation of the load approaches proportional behaviour. The region 
where both trusses join at the inner ring seems to be a critical point. 
The reason for this is that a large tensile stress transverses through this 
region when the segment is under peak loading, while a large com-

pressive stress transverses through this region when the neighbouring 
segment is under peak loading. This results in a large change in the 
Signed von Mises stress. The Signed von Mises stress is known to be less 
accurate for such regions and gives exaggerated stress cycles [33]. A 
further analysis of these regions using a critical plane fatigue method is 
discussed in Section 4.4.

4.2.2. Centrifugal force

For test problem 4 two additional optimizations were performed in-

cluding centrifugal inertial loads at the rotation speeds 1500 [rpm] and 
6000 [rpm]. The former converged after 313 iterations and the latter af-

ter 245 iterations. The results are shown in Table 5 together with the 
result without this inertial load. The density distribution, resulting fa-

tigue and local constraint adherence are shown in Fig. 20.

Comparing the results of the optimisations with centrifugal force to 
the optimisation without in Table 5, it seems that the addition of the 
centrifugal load does not affect the constraint adherence of the method 
and only a slight difference in material usage is observed. This is consis-

tent with the results shown in Fig. 20 where only a slight difference in 
topology can be observed for the optimization with a 6000 [rpm] rota-
14

tional speed. An explanation for this is that the stress caused by the 
centrifugal load is relatively low and due to the constant rotational 
speed mainly acts as a shift in mean stress regarding fatigue.

4.2.3. Test problem 5: cyclic symmetric problem in 3D

The results of the optimization are shown in Fig. 21 and Table 6. 
The design converged to a black and white design in 96 iterations to a 
material usage factor of 0.4844. The local fatigue constraint adherence 
of 99, 3% of the domain is in agreement with the results found in the 
previous analysed Test problems. In Fig. 21d it can be seen that the lo-

cal stress behaviour is widely distributed below the failure envelope. A 
proportional approach would most likely not have yielded a satisfactory 
result.

4.3. Discussion

It could be argued that the effectiveness of the presented method is 
not yet optimal, as the optimised topology might still need manual de-

sign iterations to fully eliminate the > 1.00 constraint violations. Some 
approaches are suggested to further improve the effectiveness of the 
method.

The first and simplest suggestion is to choose a more conservative 
fatigue constraint. The approximation error of the aggregation function 
for instance can be accounted for in the initial choice of the fatigue 
limit. A more conservative choice should significantly improve the local 
constraint adherence.

The second suggestion is a less heuristic approach. The global con-

straint scaling method introduced by [26] can be implemented, which 
scales the aggregated approximation based on the true and approxi-

mated maximum of the previous iteration and has been shown to work 
for stress based optimization problems. Applying constraint scaling dur-

ing the optimisation is, however, not straightforward in the COMSOL 
environment.

A third suggestion is to replace the lower bound KS-function used in 
Equation (17) with the upper bound KS-function which is also used in 
Equations (10) and (11). This results in an overestimation of the local 

constraints instead of an underestimation. The choice between upper 
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Fig. 19. Results of Test problem 4: (a) and (b) show the density distribution and normalized fatigue stress amplitude 𝜎
a0
𝑒

𝜎𝐷
. (c) and (d) show the objective function 

convergence and a scatter plot of the local stress behaviour.

Table 5

Results of Test problem 4: the normalised material usage 𝑉 and local fatigue constraint 
adherence differentiated into five ranges from satisfied (≤ 1) to exceeded by a factor 
larger than 1.2 are shown for non-proportional approach (NP). The results of three 
optimisations are shown: one without centrifugal force (𝜔 = 0 [rpm]), and two including 
centrifugal force (𝜔 = 1500 [rpm], 𝜔 = 6000 [rpm]).

Test problem 4 𝑉 ≤ 1 1 − 1.05 1.05 − 1.10 1.10 − 1.20 > 1.20

NP verification result:

𝜔 = 0[rpm] 0.2832 97.2% 1.5% 1.0% 0.3% < 0.1%
𝜔 = 1500 [rpm] 0.2812 97.4% 1.4% 0.9% 0.3% < 0.1%
𝜔 = 6000 [rpm] 0.2887 97.2% 1.4% 0.9% 0.4% 0.1%
and lower bound KS-function, however, should be carefully considered 
depending on the design problem and the expected outcome, as the ac-

curacy of the estimation is highly dependent on the distribution range 
of the aggregated data. For the Test problems considered in this paper, 
where only a fatigue/stress constraint is used, the upper bound might 
yield unnecessary conservative results, as a fully stressed final design is 
expected where the fatigue limit is approached throughout the geome-

try.

A last suggestion is to use the Augmented Lagrangian method to 
handle the local constraints as opposed to a global constraint method, 
which has been shown to have an improved local control [38].

A final observation, which was made while working out the dis-

cussed problems, is that Equation (15) contains a discontinuity. When 
𝜎m0
𝑒

(�̄�𝑒) approaches 𝜎𝑈 , then 𝜎a
𝑒
(�̄�𝑒) is divided by zero and 𝜎a0

𝑒
(�̄�𝑒) goes to 
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infinity. For 𝜎m0
𝑒

(�̄�𝑒) > 𝜎𝑈 the resulting stress amplitude even becomes 
negative which always fulfills the constraint. In practice the discontinu-

ity does not necessarily cause problems during the optimization, since 
the additional stress constraint avoids 𝜎m0

𝑒
(�̄�𝑒) from reaching 𝜎𝑈 . For the 

initial conditions it should definitely be avoided though. A suggestion 
to avoid this issue is to implement a smooth min(𝜎m0

𝑒
(�̄�𝑒), 𝜎𝑈 ) operator 

[19] after Equation (14), such that the mean stress cannot exceed the ul-

timate tensile stress. To further limit 𝜎a0
𝑒
(�̄�𝑒) from becoming excessively 

large, Equation (15) can be modified as follows:

𝜎a0
𝑒
(�̄�𝑒) = 𝜎a

𝑒
(�̄�𝑒)

(
(1 + 𝛾) −

min(𝜎m0
𝑒

(�̄�𝑒), 𝜎𝑈 )
𝜎𝑈

)−1

. (23)

The small offset 𝛾 limits the effect of a large compressive mean 

stress.
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Fig. 20. Results of Test problem 4 including centrifugal inertial forces. In (a) and (b) the density distribution and normalized fatigue stress amplitude 𝜎
a0
𝑒

𝜎𝐷
are shown 

for rotation speeds of 1500 [rpm] and 6000 [rpm]. (c) and (d) show a scatter plot of the local stress behaviour for both rotation speeds.

Table 6

Results of Test problem 5: the normalised material usage 𝑉 and local fatigue constraint 
adherence differentiated into five ranges from satisfied (≤ 1) to exceeded by a factor 
larger than 1.2 are shown for non-proportional approach (NP).

Test problem 5 𝑉 ≤ 1 1 − 1.05 1.05 − 1.10 1.10 − 1.20 > 1.20

NP verification result 0.4844 99.3% 0.3% 0.1% 0.2% 0.2%
4.4. Critical plane method fatigue verification

Critical plane methods are considered to be more accurate for mul-

tiaxial fatigue evaluation of non-proportional loading [5]. The methods 
are based on locally defining the orientation of a failure plane, where 
some fatigue expression of stress or strain is maximal. The fatigue 
expression depends on the critical plane model used. The results ob-

tained above using the non-proportional method are verified using the 
Dang Van critical plane method [22] and compared to the results of 
the Signed von Mises stress fatigue evaluation shown in the previous 
subsections. The Dang Van method defines the fatigue expression as a 
combination of the shear stress 𝜏𝑛(𝑡) and the hydrostatic stress 𝜎H(𝑡). 
The orientation 𝒏 of the critical plane is the plane of maximal shear 
stress in time 𝑡 according to:

𝜏𝐷 =max
𝑡
(max

𝒏
(𝜏𝒏(𝑡)) + 𝛼𝜎H(𝑡)), (24)

where 𝛼 is the hydrostatic stress sensitivity coefficient, which can be 
calculated from the relationship:

𝜏𝐷 3
16

𝛼 = 3
𝜎𝐷

−
2
. (25)
The fatigue limit for bending 𝜎𝐷 and torsion 𝜏𝐷 are material properties. 
For metals, the ratio 𝜏𝐷

𝜎𝐷
is usually close to 23 [13]. This ratio is used for 

the material of this paper with 𝜎𝐷 = 50 [MPa], giving 𝜏𝐷 ≈ 33 [MPa].
From the results, shown in Fig. 22, can be seen that for Test prob-

lems 1 and 2, the difference between the Signed von Mises stress and 
Dang Van method is small. The difference between the two methods 
is more apparent in the succeeding analysed problems. Test problems 
3, 4 and 5 show some regions that are critical using the Signed von 
Mises stress, yet allowable according to the critical plane method. In 
these regions the sign of the hydrostatic stress suddenly shifts from 
positive to negative between time steps, which happens when the lo-

cal stress is close to pure shear stress. This results in a significantly 
large stress variation that is an unrealistic representation of the real-

ity. The Signed von Mises stress has in previous research been shown 
to be less accurate when dealing with non-proportional loading for this 
reason [33]. Another notable difference is that the Dang Van method 
is less conservative for regions with a compresive mean stress. This is 
due to a difference in assumptions on the effect of mean stress between 
the two methods used. In Equation (14) of the method of this paper it 

was assumed that compresive mean stress does not affect the fatigue 
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Fig. 21. Results of Test problem 5: (a) and (b) show the density distribution and normalized fatigue stress amplitude 𝜎
a0
𝑒

𝜎𝐷
. show the objective function convergence 

and a scatter plot of the local stress behaviour.
stress amplitude, whereas from Equation (24) can be seen that a neg-

ative hydrostatic stress reduces the fatigue criteria of the Dang Van 
method.

5. Conclusion and recommendations

In this paper, a method has been presented to implement infinite 
fatigue life constraints in density based topology optimization for non-

proportional loading problems as well as, in particular, cyclic symmetric 
problems. This combination has thus far not been studied, yet is highly 
relevant for the design of rotating machinery, where cyclic symmetry is 
common. The method was used to minimize the mass of design prob-

lems in both 2D and 3D and in general black and white converged 
designs were found.

The method was first tested on several academic problems, where 
the non-proportional method was compared to a proportional approach, 
where proportional assumptions of the loading conditions were made. 
It was found that the non-proportional method could properly constrain 
the fatigue locally up to the accuracy of the constraint aggregation. In 
contrast, the proportional approximations of the problems showed se-

vere local violations of the fatigue constraint when subjected to the 
original non simplified loading. Although the studied examples did 
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show that by making good assumptions, main topological features can 
be found, this is not always trivial and significant post processing would 
be necessary to obtain a final design which adheres to the constraints. 
In addition, the influence of inertial forces under high-speed rotation 
was studied. This turns the problem into an optimization with design-

dependent loads. It was found that up to 6000 [rpm], the effect on the 
design was minor.

The non-proportional method also worked properly in combination 
with the enforced cyclic symmetry. Both a 2D and 3D problem have 
been analysed, where a single static FE-analysis provided respectively 
12 and 13 time steps to the quasi-static analysis, significantly reducing 
the computation cost by a similar factor.

The Signed von Mises stress fatigue evaluation used is known to 
be inaccurate for regions where the sign of the hydrostatic stress sud-

denly changes in time. A critical plane method is more suitable for 
non-proportional loading fatigue evaluation and should be considered 
for a future extension of the method to improve accuracy. Other rec-

ommendations are to incorporate new or existing methods to improve 
the constraint aggregation approximation, so that local constraint ad-

herence is improved. Furthermore, the discontinuity in the modified 
Goodman correction, when the mean stress approaches the ultimate 
tensile strength, should be addressed and future research could also 
focus on suppressing the regions of intermediate density occasionally 

observed in moving load problems.
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Fig. 22. Verification of the normalized local fatigue constraints using the Dang Van critical plane method.
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Appendix A. Manual design iteration to remove local stress peaks

A manual design iteration is made for the result of Test problem 1 to 
reduce the maximum constraint violations presumed to originate from 
numerical reasons or jagged interpreted boundaries. Where necessary, 
boundaries are manually redrawn using smooth curves while avoiding 
18

adding additional material. After the manual adjustment, the design is
Fig. A.23. Reduced stress peaks after a manual design iteration for the propor-

tional approach of Test problem 1.

reanalyzed. The resulting maximum local fatigue for the proportional 
approach is 1.24307, as shown in Fig. A.23, while only increasing the 
material usage by 0.51%. The resulting maximum local fatigue for the 
non-proportional approach is 1.18526, as shown in Fig. A.24, with a 

material usage increase of 0.68%.
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Fig. A.24. Reduced stress peaks after a manual design iteration for the non-

proportional approach of Test problem 1.
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