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Wastewater-based epidemiology predicts
COVID-19-induced weekly new hospital
admissions in over 150 USA counties

Xuan Li1, Huan Liu1, Li Gao2, Samendra P. Sherchan3,4, Ting Zhou1,
Stuart J. Khan 5, Mark C. M. van Loosdrecht 6 & Qilin Wang 1

Although the coronavirus disease (COVID-19) emergency status is easing, the
COVID-19 pandemic continues to affect healthcare systems globally. It is cru-
cial to have a reliable and population-wide prediction tool for estimating
COVID-19-induced hospital admissions. We evaluated the feasibility of using
wastewater-based epidemiology (WBE) to predict COVID-19-induced weekly
new hospitalizations in 159 counties across 45 states in the United States of
America (USA), covering a population of nearly 100million. Using county-level
weekly wastewater surveillance data (over 20 months), WBE-based models
were established through the random forest algorithm. WBE-based models
accurately predicted the county-level weekly new admissions, allowing a pre-
paration window of 1-4 weeks. In real applications, periodically updated WBE-
based models showed good accuracy and transferability, with mean absolute
error within 4-6 patients/100k population for upcoming weekly new hospita-
lization numbers. Our study demonstrated the potential of using WBE as an
effective method to provide early warnings for healthcare systems.

The coronavirus infectious disease (COVID-19) has created a severe
public health crisis globally. During the peaks of the pandemic in the
United States of America (USA), COVID-19 infections overwhelmed
healthcare systems in most states, occupying up to 90% of their
capacity1. Unexpected and heavy burdens from COVID-19 exhausted
frontline healthcare workers in 60–75% of hospitals or clinics2, subse-
quently leading to increased fatality rates3. Even in recent months
(December 2022 to February 2023), COVID-19-induced hospitalizations
still occupied an average of 10–20% of beds in healthcare systems in
many counties, andup to60% in somecounties4. Reliable predictions of
hospitalization numbers are thus crucial for adequate public health
decision-making and evaluation, and healthcare system preparedness.

To date, the prediction of hospitalization admissions due to
COVID-19 ismajorly at the state or national level, relying on confirmed

COVID-19 cases or historical records of daily or weekly COVID-19-
induced admissions as the key indicators5,6. However, with the end of
the COVID-19 public health emergency in many countries, changes in
test availability, behavior, and reporting strategies reduced the cer-
tainty of COVID-19 infection numbers, especially for asymptomatic
infections1. In addition, clinical testing may only capture a portion of
the true infections in the community due to factors such as insurance
coverage, individual willingness to be tested, and socioeconomic sta-
tus in the area7,8. In clinical settings, it is common that some patients
have been admitted to hospitals before obtaining positive COVID-19
tests5. Ensembled probabilistic forecasts for daily incident hospitali-
zations were also provided based on the forecast frommultiple teams
at state and national levels9. However, hospitalization rates and pat-
terns can vary significantly at the county level due to differences in
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population demographics, healthcare resources, etc., even within the
same state10. More granular insights for predicting hospitalization at
county-level are more ideal for practical application.

Wastewater-based epidemiology (WBE) is considered an effi-
cient approach for COVID-19 case surveillance, providing unbiased
infection estimations at the community level with limited cost
(0.7–1% of the population-wide testing)11–14. Many studies have suc-
cessfully quantified and correlated SARS-CoV-2 concentrations
(CRNA) in wastewater to COVID-19 cases11–13,15. Few studies have
reported the association between CRNA in wastewater (or primary
sludge) with hospitalizations16,17 and endeavored to create surveil-
lance models for forecasting hospital admissions with various lead-
ing times ranging from 1 to 8 days18–20. Nevertheless, these
observations andmodels were developed using data from only a few
localities for a short period (a couple of months). A recent study
revealed the predictive potential for state-level hospitalization
occupancy (census hospitalizations) with a leading time of 8–18 days
in Austria21. However, population demographics (such as race/eth-
nicity, vaccination, chronic conditions, etc.) that have been clinically
observed impacting the COVID-19 symptom severity22–27 were not
considered in all these precedent predictionmodels. This limits their
temporal and geographic scope, thus making it uncertain whether
they (both the model and the hospitalization indicators predicted)
could be generalized to other areas. Considering that hospitals/
healthcare facilities often allocate their resources and workers on a
weekly basis for upcoming patients28, a large-scale (temporal and
geographic) prediction system for hospitalizations at the county
level on a weekly basis would be more informative for local health-
care facilities, which unfortunately is lacking.

In this work, we used county-level weekly WBE data from the
recent 20 months (June 2021 to January 2023) covering 159 counties
from 45 states in the USA (Fig. 1) with their corresponding county-level
hospital admission records, vaccination records, and weather condi-
tions. The county-level population demographics were incorporated
from COVID-19 Community Vulnerability Index (CCVI)23,29, which is in
use by the Centers for Disease Control and Prevention (CDC), for easy-
adaption and transfer in different regions. Random forestmodels were
established using these factors to predict the county-level

hospitalization indicators over the course of the upcoming week, as
well as the second, third, and fourth weeks after the wastewater sam-
pling to address the following: (1) The feasibility of using WBE for
predicting hospital admission numbers in healthcare systems: which
hospitalization indicator can be predicted by WBE-based prediction
and how accurate are the predictions in comparison to the current
approaches (cases-based prediction and record-based predictions)?
(2) The contribution of CCVI indexes, vaccination, and weather factors
for the prediction: how are they affecting the WBE-based prediction?
(3) For real applications, is a periodic update of the model necessary?
(4) The transferability of the models to other counties and states: how
accurate is the model prediction for other counties and how to
improve the accuracy? (Fig.1). Our results would help improve the
preparedness of healthcare systems and vulnerable counties in the
USA in coping with the COVID-19 pandemic or endemic.

Results
Geographic, socioeconomic, and epidemiological character-
istics of the counties involved in the model establishment
The 99 counties involved in the model establishment (Fig. 2a) cov-
ered 40 states in the USA, with 1–8 counties involved in each state.
The population size in each county ranged from 0.02 to 3.4M
(Supplementary Table S1), covering nearly 60M population in total.
The CCVI indexes in these counties ranged from 0.02 to 0.99, which
are representative of most USA counties (Supplementary Fig. S1)23,29.
Most of the counties (interquartile range, IQR) had the overall VI at
0.31–0.74, CCVI in socioeconomic status at 0.25–0.65, minority and
language at 0.57–0.89, household and transportation at 0.23–0.60,
epidemiological factors at 0.15–0.35, healthcare system at 0.22–0.61,
high-risk environment at 0.28–0.63, and population density at
0.80–0.96 (Fig. 2b).

Three indicators for hospitalization numbers were used
including: 1) weekly new admission, 2) total number of patients who
stayed in an inpatient bed during the week (census inpatient sum),
and 3) daily average number of patients who stayed in an inpatient
bed in the week (census inpatient average). The weekly new
admission, census inpatient sum, and census inpatient average had
a range of 0–100 patients/100k population, 0–1220 patients/100k

Model Establishment

• 4 leading times
i.e. Next 1, 2, 3, 4 week of the
wastewater sampling

Leading times

• Weekly new admission
• Census inpatient sum
• Census inpatient average

Indicators

• WBE-based prediction
• Case-based prediction
• Record-based prediction

Type of prediction

• Time: weekly from June 2021-
May 2022 (12 months)

• Location: 99 counties from 40
states

Data

Model Evaluation

Each models was progressively
updated every 4 weeks

Necessity of periodical 
updates 

Based on batch model performance
in predicting future targets

Indicator selection and 
prediction type comparison

• Time: weekly from June 2022-
January 2023 (8 months)

• Location: 99 counties from 40
states

Data 

Model Transferability

• 4 leading times
• Using the progressively learning

models established in the
previous stage

Transferability ability 
evaluation 

• Data from new counties was
progressively updated into the
progressively learning models

• 4 leading times

Necessity of localized 
data update

• Time: weekly from June 2022-
January 2023 (8 months)

• Location: 60 new counties from
30 states

Data

• Prediction accuracy
• Contribution of explanatory

factors

Leading time comparison

Fig. 1 | Flow chart of the paper methodology, process, and structure. The data, indicators, leading times, and prediction approaches used for model establishment,
evaluation, and transferability stage in this study.

Article https://doi.org/10.1038/s41467-023-40305-x

Nature Communications |         (2023) 14:4548 2



population, and 0–175 patients/100k population, respectively. The
highest peaks were observed during August 2021 to February 2022
(Fig. 2c, Supplementary Fig.S2). The CRNA of wastewater samples
ranged from 0.4 to 9000 copies/mL (IQR:101.54–546.53 copies/mL)
(Supplementary Fig. S2). The weekly new COVID-19 cases ranged
from 0 to 4065 incidence/100k population (IQR: 48–271 incidence/
100k population). The hospitalization indicators and CRNA were
skewed to higher ranges (Supplementary Fig. S2), which is con-
sistent with the inherent development of the outbreak. The ratio of
vaccinated people among the population in these counties
increased from 4.5–84.8% (IQR: 45.2–61.9%) in June 2021 to
42.7–95.0% (IQR: 71.2–92.5%) in January 2023 for the first does
(Vaccine_1st). Meanwhile, the ratio of vaccinated people among the
population for the second dose (Vaccine_2nd) increased from
4.0–69.6% (IQR: 39.3–69.6%) in June 2021 to 37.9–92.5% (IQR:
63.15–77.2%) in January 2023. The major vaccines used were Pfizer/
BioNTech and Moderna during the time of the study. The average
daily air temperature (Ta), average daily precipitation, (‘precipita-
tion’ hereafter), and average daily wastewater temperature (Tw)
were −16.5–32.7 °C (IQR: 4.0–22.1 °C), 0–1.1 mm (IQR: 0.1–0.2mm),
and 7.3–32.8 °C (IQR: 15.1–29.9 °C), respectively. At the national
level, the major variants of COVID-19 shifted progressively from
Alpha and Beta in June 2021 to Delta in June–November, 2021 and

Omicron in December 2021 to April 2022 with 33 different lineages
occurred (Supplementary Fig. S3).

Correlations between explanatory factors and hospitalization
indicators for model establishment
The records of these three hospitalization indicatorsover the course of
the upcoming week (Hos1w), as well as the second (Hos2w), third
(Hos3w), and fourth weeks (Hos4w), were used as prediction targets,
providing prediction leading times of 1, 2, 3 and 4 weeks, respectively.
Under the same leading time, CRNA exhibited slightly stronger corre-
lations with weekly new admissions (Hos_wn, R =0.47–0.61), than
census inpatient average (Hos_ca) and census inpatient sum (Hos_cs)
(R = 0.46–0.56). Notably, the correlation between CRNA and the targets
in thefirst twoweeks (Hos1wandHos2w)washigher than that in the 3rd

and 4th weeks (Hos3w and Hos4w) for the same type of indicator
(Fig. 2). This suggests that the predictive performance of WBE may
differ for various indicators and at different leading times. Other
explanatory factors, including population size, and factors associated
with vaccination, CCVI, and the weather showed significant correla-
tions (|R| of 0.1–0.4) with at least one of the targets (Fig. 3a). Con-
sidering the randomness of random forest algorism (see Methods), all
these 15 explanatory factors were used for establishing WBE-based
prediction models.
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Fig. 2 | Geographic location, COVID-19 Community Vulnerability Index (CCVI),
and average weekly new COVID-19-induced hospitalizations in each month in
the 99 counties involved. a The state (filled in color) and counties (indicated by
the dot with dot size reflecting the population size of the county) involved in the
model establishment. The data for the map was obtained from ‘USmap’ package in
R, where the shape data was provided by the USA Census bureau. bThe CCVI of the
counties involved in the model establishment is represented by a violin plot for

each index. c The average weekly new hospitalization admission numbers of each
month from these 99 counties. The data before June 2022 (12 months) were used
for model establishments while data after June 2022 (8 months) were used for
model evaluation. In the box plot (top of subplot c), the colored box indicates the
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each box.
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Performance and leading time of the established models in
predicting future admissions
WBE-based predictionmodels were established for all twelve targets (3
indicators ×4 leading times) using the data obtained from June 2021 to
May 2022 (Fig. 1). The model performance was evaluated using cor-
relation coefficients (R), mean absolute error (MAE), and normalized
MAE (NMAE) between model predictions and targets. For all three
types of hospitalization indicators (i.e. weekly new admission, census
inpatient sum, and census inpatient average), the established WBE-
based model well described the pattern of data observed from June
2021 to May 2022 with overall R values over 0.90 and NMAE within
0.30 (Supplementary Table S2). When applying the established batch
models for predicting the future hospitalization indicators in June
2022–January 2023, themodel performance for weekly new admission
was greatly better than census inpatient sum, and census inpatient
average (Table 1). The prediction accuracy achievedRof 0.81–0.82 and
NMAE of 0.32–0.37 for predicting weekly new admission, but only R of
0.59–0.67 and NMAE of 0.53–0.76 for census inpatient sum and R of
0.66–0.69 and NMAE of 0.51–0.65 for census inpatient average
(Table 1). This indicates that WBE-based predictions are likely more
capableof capturing theweeklynewadmissions rather than the census
average or sum of inpatients in the week.

Using WBE-based predictions for weekly new admission, the
batch models achieved a reasonable performance with an overall
MAE of 4 patients/100k population for weekly new admissions in the
next 1–4 weeks (Table 1). In these 99 counties, the prediction

performance for weekly new admission in four leading times was
comparable, with aMAEof 1–19 patients/100kpopulation for the first
and secondweek (Hos1w andHos2w), 2–18 patients/100k population
for the third week (Hos3w), and 2–16 patients/100k population for
the fourth week (Hos4w) after the wastewater sampling (Fig. 3b).
Higher MAE was observed in counties with higher weekly new
admissions. Overall, the NMAE of most counties was within
0.2–0.4 (Fig. 3b).

To facilitate comparison, additional prediction models were
established using random forest algorithms based on weekly new
COVID-19 cases and test positivity (referred to as case-based predic-
tions) and the relevant weekly records for each hospitalization indi-
cator (referred to as record-based predictions) at the county level. For
model establishments, both case-based models (R = 0.81–0.97,
NMAE =0.25–0.41) and record-based models (R= 0.80–0.96,
NMAE =0.23–0.43) showed comparableor slightlyworse performance
than WBE-based predictions (R = 0.90–0.97, NMAE =0.22–0.30) in
describing the patterns in the data for all three hospitalization indi-
cators (Table S2, Supplementary Fig. S4). When being applied to pre-
dict the future targets in June 2022–January 2023, both case-based or
record-basedmodels showed slightly better prediction for weekly new
admission than census inpatient sum and census inpatient average
(Table 1). The NMAE values of our county-level case-based (0.40–0.42)
and record-based (0.38–0.45) models for weekly new admission were
comparable to previous case-base or record-based (or ensembled)
prediction for daily new admissions at the state or national level in the

Fig. 3 | Correlation between explanatory factors and hospitalization records
and performance ofWBE-based batch model for predicting future weekly new
hospital admissions. a Spearman’s correlation between all the explanatory factors
and hospital admission records (three types of hospitalization indicators (i.e.
Hos_wn: weekly new admission, Hos_cs: census inpatient sum, and Hos_ca: census
inpatient average) under 4 leading times (Hos1w, Hos2w, Hos3w, Hos4w: the
upcoming week, the second, third and fourth week after the wastewater sampling,
respectively). The color and circle size indicate the strength of the correlation
(bigger circle = stronger correlation; blue color = positive correlation and red
color = negative correlation). The significance of the correlation is determined
through two-side t-test, and marked as *, **, and *** representing a p value of ≥0.01
and <0.05, ≥0.001 and <0.01 and <0.001, respectively. The detailed p values are
provided in Table S6. b The mean absolute error (MAE) of the established batch
model for predicting weekly new hospital admissions in these 99 counties from

June 2022 to January 2023. The main heatmap shows the MAE (reflected by the
color) between theprediction and the actual admission record for each county. The
box plot on the right shows theweekly new admissions (patients/ 100kpopulation)
for each county during June 2022–January 2023. The colored box indicates the 25th
and 75th percentiles, and the whiskers indicate the 1.5× the interquartile range. The
line in the box indicatesmedian and dots represent outliers.N = 31 for each county.
The top box plot summarizes the normalized MAE (NMAE) for the prediction at
different leading times (Hos1w, Hos2w, Hos3w, and Hos4w). The NMAE is calcu-
lated as the MAE divided by the mean of weekly new admission numbers (see
methods for equations). The colored box indicates the 25th and 75th percentiles,
and the whiskers indicate the 1.5× the interquartile range. The line in the box
indicates median and dots represents outliers. N = 99 for each prediction leading
time (Hos1w-Hos4w).
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USA (NMAE=0.35–0.45, leading time of 2–3 weeks)30,31. Nonetheless,
our WBE-based models showed superior performance compared to
case-based or record-based models for weekly new admission pre-
diction, including those from previous studies, with lower NMAE
(0.32–0.37) and longer leading time (1–4 weeks).

Contribution of explanatory factors for WBE-based prediction
for weekly new admissions
The importance of explanatory factors for models established for
weekly new admission prediction was evaluated by the increase in
mean squared error (MSE, %) of predictions when the value of a certain
explanatory factor was permuted32. Regardless of the leading time,
CRNA was found to be the most important factor for predicting weekly
new admissions, contributing to a significant increase inMSE (50–67%,
p =0.010) (Fig. 4a). Vaccination coverage (Vaccine_1st and Vacci-
ne_2nd) also played a crucial role, contributing to a 19–28% increase in
MSE (p =0.01–0.10), with Vaccine_2nd being more important (21–28%
increase in MSE, p =0.01). Most CCVI indexes showed significant

contributions of a 10–23% increase in MSE for predicting weekly new
admissions. As the leading times increased, there was a decrease in the
significance of CRNA in predicting weekly new admissions, going from
66–67% for the first three weeks to 51% for the fourth week after the
wastewater sampling. Meanwhile, the importance of CCVI in house-
hold and transportation increased from 10–11% for predicting the
weekly new admissions at the first two weeks to 14–17% for predicting
the weekly new admissions at the third and fourth week after the
wastewater sampling. Population density showed an increase from
15–16% for predicting the weekly new admissions at the first three
weeks to 19% for predicting the fourth week after wastewater sampling
(Fig. 4a). This suggests that COVID-19 transmission-related informa-
tion is more critical for predicting weekly new admissions in later
weeks. Other CCVI indexes showed comparable importance of a
15–25% increase in MSE, regardless of the leading time. The Tw, and Ta
showed limited contributions (7–14% increase in MSE, p = 0.28–0.99).
While precipitation showed negligible contribution to the model pre-
diction (1–2%, p =0.3–0.9), which is likely due to that CRNA being

Table 1 | Performance of WBE-based, case-based and record-based batch models predicting the future targets in June
2022–January 2023 under 4 leading times (Hos1w-Hos4w)

Indicators Model Hos1w Hos2w Hos3w Hos4w

R MAE NMAE R MAE NMAE R MAE NMAE R MAE NMAE

Weekly new
hospitalization

WBE 0.82 3.65 0.35 0.81 3.84 0.37 0.82 3.59 0.34 0.82 3.30 0.32

Record 0.78 3.90 0.38 0.70 4.05 0.39 0.65 4.20 0.40 0.56 4.63 0.45

Case 0.51 4.25 0.41 0.41 4.23 0.40 0.40 4.46 0.42 0.44 4.28 0.41

Census inpatient sum WBE 0.60 61.74 0.76 0.59 58.37 0.72 0.67 46.61 0.57 0.62 42.71 0.53

Record 0.78 25.78 0.32 0.69 32.82 0.40 0.61 35.68 0.43 0.47 38.25 0.47

Case 0.56 34.39 0.43 0.80 33.71 0.42 0.56 34.99 0.43 0.63 34.11 0.42

Census inpatient
average

WBE 0.69 7.26 0.65 0.68 6.84 0.61 0.67 6.22 0.55 0.66 5.77 0.51

Record 0.87 3.71 0.34 0.56 4.74 0.42 0.55 5.46 0.48 0.54 5.11 0.45

Case 0.69 4.49 0.40 0.65 4.61 0.41 0.53 7.58 0.67 0.62 4.63 0.41

Note: Hos1w, Hos2w, Hos3w, and Hos4w represent the first, second, third, and fourth week after wastewater sampling, respectively. R denotes the correlation coefficient, MAE indicates the mean
absolute error, and NMAE refers to the normalized mean absolute error (refer to the Methods section for detailed calculations). WBE means the wastewater-based epidemiology.
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Fig. 4 | Importance and contribution of the explanatory factors to the estab-
lished model for weekly new admissions prediction. a The importance of
explanatory factors was ranked by the increase in %MSE (percent change in mean
square error when the explanatory factor is permuted). A higher increase in %MSE
corresponds to higher importance. The significance of the explanatory factors was
marked as *, **, and *** representing a p value of ≥0.01 and <0.05, ≥0.001 and <0.01
and <0.001, respectively. Hos1w, Hos2w, Hos3w, Hos4w are the upcoming week,
the second, third and fourth week after the wastewater sampling, respectively. The

two-factor partial dependence for predicting weekly new admissions at the second
week (Hos2w, subfigure b) and fourth week (Hos4w, subfigure c), on CRNA and four
significant explanatory factors used in the models. The horizontal axis represents
the values of CRNA, whereas the vertical axis represents the values of the other four
explanatory factors (as shown in the title). The color gradients in the figure indicate
the partial dependence of the predicted target concerning a specific x-value and
y-value combination.
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normalized to pepper mildmottle virus (a fecal indicator) to minimize
any potential dilution-related variations15.

Through one-factor partial dependence analysis, clear non-linear
relationships were observed between the weekly new admissions and
explanatory factors (Supplementary Fig. S5), with the overall increas-
ing or decreasing trend consistent with the positive or negative cor-
relation observed in Fig. 3a. Considering the key role of CRNA inWBE as
it reflects the infection status in the community, two-factor partial
dependence analysis was conducted based on CRNA and explanatory
factors with significant contributions (as shown in Fig. 4a). Vaccination
showed a clear impact on reducing weekly new admissions under the
same infection status (reflected by CRNA) for all eight targets (Fig. 4b, c
and Supplementary Fig. S6), especially when Vaccine_2nd was over
60%.A higher vulnerability inoverall VI, household and transportation,
epidemiological factors, or socioeconomic status increased theweekly
new admissions under the same infection status, with a more pro-
nounced impact observed when these CCVI indexes exceeded 0.5
(Fig. 4b, c, and Supplementary Fig. S6). In addition, population size,
while significantly impacting the increase of MSE, had a negligible
impact on changes in weekly new admissions under the same infection
status (Supplementary Fig. S6).

The necessity of periodical updates of WBE-based models
The random forest models developed in the previous sections for
predicting weekly new admissions under different leading times were
progressively updated every four weeks between June 2022 and Jan-
uary 2023, considering the healthcare system settings (Fig. 1). The
performance of the models improved greatly through progressively
learning compared to the batch model (Fig. 5b, c). The MAE reduced
from 4 patients/100k population in the batch models to 3 patients/
100k population in the progressively learning models, and the NMAE
decreased from 0.32–0.37 in the batch models to 0.28–0.29 in the
progressive learning models (Supplementary Table S3). The errors
between the model predictions and actual clinical records in both
batch and progressive learning models followed a normal-like dis-
tribution, with a mean value of 1.68–3.77 in the batch models and
0.88–1.39 in the progressively learning models (Fig. 5b, c). For each
leading time, the peaks of the error distribution were closer to 0 in the
progressively learningmodels than in thebatchmodels (Fig. 5b, c). The

autocorrelation functions (ACF)33 confirmed that the residuals (errors)
weremerely white noise with no significant serial correlation and were
not dependent on an adjacent observation (Supplementary Fig. S7).
The MAE observed in each county also reduced from 1–19 patients/
100k population (Fig. 3b) to 1–12 patients/100k population in the
progressively learningmodels (Fig. 6a), regardless of the leading time.
This implies that a progressive update of the model is essential for
improving the prediction accuracy.

Specifically, the prediction performance of the batch and pro-
gressively learning models were illustrated in eight representative
counties (selected based on population size). Predictions from both
batch models and progressively learning models reached good
agreements with the actual admission records (Fig. 5a), regardless of
the leading time. Compared with batch models, progressively
learningmodels reduced theMAEby 10–70% for a certain county and
showed better prediction capability towards the rapid changes in the
trends (both sudden rise and drops) (Fig. 5a). The population size in
the county did not appear to have a clear impact on the model’s
accuracy, with most counties achieving comparable NMAE
(0.14–0.35) (Fig. 5a). Although both batch models and progressively
learning models tended to underestimate some peaks in Harrison-
burg city, which had the smallest population size (Fig. 5a), this was
more likely due to higher admission numbers recorded in the county,
which were less frequently presented in the datasets (Fig. 2c). This
resulted in fewer data points for models to learn and subsequently
predict the peaks.

Transferability of the progressively updatedWBE-basedmodels
The progressive learning models (established in above sections) using
the data from 99 counties were applied for predicting the weekly new
admissions in another 60 different counties from 30 states in the USA
with a population size ranging from 0.2M to 10.0M (nearly 40M
population in total, Supplementary Table S4). These 60 counties were
all unknown to the model (not included in the model establishment
process), and 7 of them were from 5 new states (i.e. DC, GA, NM, ND,
SD, Supplementary Table S4). From June 2022 to January 2023, the
progressively learning models reasonably predicted the weekly new
admissions in these 60 counties in the next 1-4 weeks after the was-
tewater sampling (Fig. 6b, c), with an averageMAE of 7-8 patients/100k
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Fig. 5 | Comparison between actual admission records and the prediction
results from batch models and progressive learning models for data in June
2022- January 2023. a The prediction results from the batch model (in blue) and
progressive learning model (in orange) and the actual admission records (in black)
for weekly new admissions in eight representative counties. Hos1w, Hos2w, Hos3w,
Hos4w are the upcoming week, the second, third and fourth week after the

wastewater sampling, respectively. b The prediction results from the batch model
(in blue) and progressive learning model (in orange) verse the actual admission
records for weekly new admissions. c The error distribution between prediction
results and actual admission records for the batchmodel (in blue) and progressive
learning model (in orange) for predicting weekly new admissions.
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population and an average NMAE of 0.43–0.48 (Fig. 6a). In six repre-
sentative counties, although the progressively learning models cap-
tured the overall trends of the data, the models were insensitive to
sudden changes in the patterns (drop or rise), especially for the
counties fromanew sate to themodel (the first three counties in Fig. 7)
at longer leading times (Hos3w and Hos4w) (Fig. 7).

We further included the data of these 60 different counties from
June 2022 to January 2023 into the progressively learning models with
the same update frequency (4 weeks). With the data of new counties

included, the MAE of the prediction for these 60 counties reduced to
4–5 patients/100k population with an average NMAE of 0.31–0.35 for
the next 1–3 weeks, andMAE of 6 patients/100k population and NMAE
of 0.45 for Hos4w. The inclusion of data from new counties did not
affect the prediction performance for the original 99 counties with
comparable MAE at 3 patients/100k population and NMAE of
0.27–0.28 for the first three weeks (Hos1w, Hos2w and Hos3w), but
slightly increased the MAE to 4 patients/100k population (NMAE of
0.35) for the fourth week (Hos4w).
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Discussions
The COVID-19 pandemic has profoundly impacted the healthcare
system with additional burdens to hospitalization demands. Using
wastewater surveillance data from the past 20 months from 99 coun-
ties, our studies revealed the feasibility of using WBE to predict the
county-level weekly new hospitalizations with a leading time of
1–4 weeks. The early warning capability of WBE for predicting the
weekly new hospital admission in the healthcare system is likely rela-
ted to viral RNA shedding from COVID-19 patients to sewers and the
transmission of COVID-19 within the population. Sputum and feces
have been identified as the major shedding sources of SARS-CoV-2
RNA in wastewater, with the shedding load peaked (102–103 higher
than other times) in the first couple of days before, to a week after, the
symptom onset34–37. Thus, the changes of CRNA in wastewater samples
are more sensitive to the variations in the numbers of COVID-19
infections at their early infection stages. Furthermore, recent meta-
analyses revealed that COVID-19 patients remain contagious for
around 12 days and the median time between symptom onset and
hospitalization was 7 days (IQR: 5–10 days)25,38,39. Thus, the CRNA of a
certain wastewater sample likely 1) directly reflects the newly infected
patients, and 2) indirectly reflects the future COVID-19 patients in the
following 12 days due to the close contact with the current patients.

Depending on the severity of the symptoms, part of these newly and
future infections are likely admitted to hospitals in the next 14 days,
and 14–26 days after wastewater sampling, respectively. This is con-
sistentwith the 1–4weeks of leading time inWBE-basedpredictions for
weekly new admissions in our study and also reflected by the con-
tributions of explanatory factors.

CRNA was found as the most crucial explanatory factor, followed
by population-health-related information (i.e. Vaccine_2nd, Vaccin-
e_1st, and CCVI index in epidemiology factors) and COVID-19 trans-
mission-related information (i.e. CCVI in population density and
household and transportation). While population-health information
showed comparable importance regardless of leading times, COVID-19
transmission-related information became increasingly important for
longer leading times. Under the same CRNA (infection status), a higher
CCVI index in population density or household and transportation
increased weekly new hospitalizations, especially when they are over
0.5. These two factors reflect the proximity to and interaction with
other people and exposure to diseases, which directly relates to the
transmission probability (impacting the number of future cases)22–24.
Under the same infection status, a higher Vaccine_2nd, higher Vac-
cine_1st, or lower CCVI in epidemiological factors reduced the weekly
new hospitalizations, particularly under Vaccine_2nd > 60% or CCVI in

Fig. 6 | Theperformanceofprogressively learningmodelswith andwithout the
data from 60 new counties in June 2022–January 2023. a The MAE of the pro-
gressively learning models with and without the data from new counties for pre-
dicting the weekly new admissions in these 159 counties (99 original counties and
60 new counties) in June 2022–January 2023. The 60 new counties are labeled with
yellowdot on the left. The color of each cell in themain heatmap indicates theMAE
between the prediction and the actual admission record in each county. The box
plot in the right presents the weekly new admissions (patients/ 100k population) in
each county during June 2022–January 2023. The colored box indicates the 25th
and 75th percentiles, and the whiskers indicate the 1.5× the interquartile range. The
line in the box indicates median. N = 31 for each county. The top box plot sum-
marizes the NMAE for the prediction in different leading times (Hos1w-Hos4w: the

upcoming week, the second, third and fourth week after the wastewater sampling)
for the original 99 counties (in purple, N = 99) and the 60 new counties (in orange,
N = 60). The colored box indicates the 25th and 75th percentiles, and the whiskers
indicate 1.5× the interquartile range. The line in the box indicates median. b The
prediction results from the progressively learning models with (on the right) and
without (on the left) the data from new counties for predicting the weekly new
admissions in the original 99 counties (in purple) and the 60 new counties (in
orange). c The error distribution between prediction results and actual admission
records from the progressively learningmodels with (on the right) and without (on
the left) thedata fromnewcounties forpredicting theweekly newadmissions in the
original 99 counties (in purple) and the 60 new counties (in orange).

Fig. 7 | Transferability of progressively learning models. The prediction results
from the progressively learning model without (in purple) and with (in orange) the
data from new counties for weekly new admissions in six representative counties.

Hos1w, Hos2w, Hos3w, and Hos4w: the upcoming week, the second, third and
fourth week after the wastewater sampling, respectively.
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epidemiological <0.5. This is consistent with the clinical observations
of over 1 million patients, where a single dose and two doses of any
vaccine (i.e. Pfizer-BioNTech, Oxford-AstraZeneca, Moderna that
commonly used in the USA) were associated with a 35% and 67%
reduction in the risk of hospitalization, respectively40. The CCVI in
epidemiological factors considers high-risk populations for COVID-19
such as elderly adults and individuals with underlying health condi-
tions (e.g. respiratory or heart conditions) that have been shown to be
associated with more severe COVID-19 symptoms in clinical
observations22–24. This supports our observations that health-related
information was critical for predicting COVID-19-induced hospitaliza-
tions under all four leading times, while transmission-related infor-
mation was more important for models with longer leading times.

The WBE-based predictions more accurately captured the weekly
new hospitalizations compared to the daily census average or census
sumpatient numbers in theweek. The census admission numbers for a
particular week encompass both new admissions and continuing
admissions from previous weeks. Hospital stays can vary significantly
from a few days to as long as 41 days, depending on factors such as
prescribed treatments, chronic conditions (like diabetes and hyper-
tension), nutritional risks (such as body mass index and cognitive
impairment), etc.41–44. Accurately capturing and integrating these
variables at the population level into WBE-based predictions (or any
other existing approaches) may be challenging. This is also commonly
observed in case-based or record-based models (the existing approa-
ches), where better prediction accuracy was achieved for new admis-
sions rather than census inpatient numbers31,45. More importantly, our
WBE-based predictions (NMAE =0.32–0.37) outperformed the record-
based or case-basedmodels in terms of the accuracy and leading time,
for county-level predictions (our study, NMAE =0.38–0.45, leading
time up to 4 weeks) and state/national-level predictions (previous
studies, NMAE=0.35–0.45, leading time of 2–3 weeks)30,31. The sub-
optimal performance of case-based predictions may be attributed to
the potential bias of clinical testing, where only part of the infections in
the community can be captured7,8. For record-based prediction, the
inherent lag between the infection and hospitalization might also
affect the prediction accuracy, especially for rapid changes in the
infection status31. In contrast, WBE unbiasedly captures the infection
status among the population at the early stage of the infection34–37. The
WBE-based prediction approach established in our study offers a
promising alternative or complementary approach to provide early
warning for future COVID-19-induced admissions, allowing a prepara-
tion window of 5–28 days in healthcare systems (considering several
hours to 2 days of turnover time for wastewater sample analysis).

For the application of the WBE-based models, progressively
updating the model with the most recent datasets greatly improved
the prediction accuracy, reducing the MAE by 10–70% for a certain
county in comparison to the batch models, reaching an overall NMAE
of 0.28–0.29 under a leading time of 1–4 weeks in these 99 counties.
The progressive learning models also showed reasonable transfer-
ability to other 60 counties from 30 states in the USA, with slightly
higher NMAE of 0.43–0.48. After incorporating the data from new
counties on amonthly basis into theprogressively learningmodels, the
updated model reached comparable prediction accuracy towards all
159 counties, with a NMAE of 0.31–0.35 for the next 1–3 weeks, and
0.45 for the fourth week. Thus, for future applications, the progressive
learningmodel with themost recent datasets from relevant counties is
highly recommended, and the methodology established in our study
has a huge potential to be applied in other regions/counties.

The necessity of periodic updates of localized data from relevant
counties is likely related to the variation and evolution of immunity
and SARS-CoV-2 variants in different counties, as well as the nature of
machine-learning approaches. As discussed in the above sections,
vaccination coverage showed a significant contribution to predicting
weekly new hospitalizations. However, the effect of vaccination on

immune protection typically declines over time due to antibody
neutralization46. The effectiveness of Pfizer or Moderna vaccines
decreased from around 65–70% to approximately 10%, 20 weeks after
the second dose40. Moreover, SARS-CoV-2 variants evolve over time
and exhibit distinct regional patterns across the nation47. Reduced
risks of progression to severe clinical outcomes (i.e. hospitalization)
were observed with Omicron infections than with Delta infections48.
Even during the Omicron infections, the effectiveness of vaccines and
the probability of hospitalization also varied against different Omicron
subvariants48–50. Thus, the number of hospitalizations under the same
infection status may also depend on the remaining immunity from
vaccinations and subvariants of infections in each county over time.
The progressively learning model provides the most up-to-date
information, allowing the model to adjust its structure to accom-
modate new changes.

There are several limitations in this study. The community’s
immunity is affected by several factors, such as booster shots’ reci-
pient coverage and the time interval between booster shots and the
second dose of vaccination, as well as infection-induced immunity51.
Unfortunately, such information on booster shots was not available at
the county level, and the effectiveness and duration of infection-
induced immunity remain largely unknown46,48. Thus, such informa-
tion was not included in our models. For future research, it is recom-
mended to incorporate time-weighted vaccination andprior infections
to evaluate community immunity to predict hospital admissions.
Additionally, immune protection from vaccination or prior infections
varies against different subvariants48. Since reports on the proportion
of infections fromdifferent variants/subvariants often delay due to the
time required for clinical and wastewater analyses (which can take up
tomonths depending on analytical capabilities), such information was
not included in our study. However, it is encouraged for future
investigations when timely information becomes available.

It is worth noting that the WBE data used in this study is retro-
spective. Risks of severe clinical outcomes and the time between the
infection/symptom onset and the admission likely vary with the
population structure changes (aging, relocation, and seasonal popu-
lation movements)48–51. Adjustment of the model structure based on
the localized conditions should be considered in future studies.
Additionally, although normalization techniques that use endogenous
population biomarkers can reduce the potential noise caused by the
population size captured by the wastewater sample17,52,53, the uncer-
tainty caused by populationmobility cannot be avoided inWBE-based
predictions, as well as case-based or record-based predictions53–55.
Recently, researchers have employed mobility surveillance data, such
as cell phone mobility data, to enhance prediction accuracy31,56.
Although this information is not included in our models due to its
unavailability at the county level during the study period, it is highly
recommended for future studies when the data becomes accessible. In
addition, considering the regional variations in the leading time and
the turnover time for sample analysis (up to several days), the WBE-
based models predicted hospitalizations on a weekly basis. Although
this meets the weekly resource allocation and staff arrangement in
most healthcare systems, for certain regions where a high-resolution
(such as daily) prediction is required, the case-based or record-based
prediction might be more suitable than WBE-based predictions.

Methods
County-level wastewater surveillance data in the US
Wastewater surveillance data was obtained from the Biobot Nation-
wide Wastewater Mentoring Network (biobot.io/data), the largest
publicly available dataset on SARS-CoV-2 RNA concentrations in was-
tewater. The Biobot Nationwide Wastewater Mentoring Network was
selected by the USA Department of Health and Human Services for
wastewater-based monitoring, covering 30% of the USA population.
The detailed sampling, analytical, and data process protocol for the
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wastewater data were described in Duvallet, Wu15, and Supplementary
information Text 1. Briefly, the concentration of SARS-CoV-2 RNA
detected in each wastewater sample was normalized to pepper mild
mottle virus (a fecal indicator) to minimize any potential noise caused
by the dilution, population size, andwastewater flow15. The normalized
SARS-CoV-2 RNA concentration was further aggregated based on
county and sample amount to preserve the anonymity of participating
utilities, providing one SARS-CoV-2 RNA concentration (CRNA) per
week for each county (details provided in Supplementary Text 1).
Considering the progress of the vaccination and experience in the
sample analysis, the county-level weekly SARS-CoV-2 concentrations in
wastewater (CRNA) from June 2021 to January 2023 were obtained from
Biobot and used in this study.

County-level hospitalization data in the USA
Three indicators for hospitalization numbers were used including: 1)
weekly new admission, 2) the total number of patients who stayed in
an inpatient bed during the week (census inpatient sum), and 3) the
daily average number of patients who stayed in an inpatient bed in
the week (census inpatient average). The data for weekly new hos-
pitalizations, census inpatient sum, and census inpatient averagewas
retrieved from HealthData.gov. This dataset is derived from reports
with facility-level granularity across two main sources: (1) the
Department of Health and Human Services (HHS) TeleTracking, and
(2) reporting provided directly to HHS Protect by state/territorial
health departments on behalf of their healthcare facilities. By com-
bining data from these sources, the dataset from HealthData.gov
ensured a comprehensive and validated data collection. Briefly,
facility-level data for hospital utilization in each county was reported
on a weekly basis, along with the corresponding county where each
facility is located. In the dataset, when there are fewer than 4 patients
in a data field, the cell is redacted and replaced with -999999. To
ensure the accuracy of the prediction, we removed such missing
values from the data in our study. The county-level values for each
indicator were then obtained from the aggregation of facilities within
the same week and county. Considering the preparation window,
records for each indicator in the next 1–4 weeks of the wastewater
sampling were summarized for each county and used in this study.
The hospitalization numbers used in this study are anonymous,
which do not require ethical approval.

County-level population-related and weather data
For better management and policy-making, COVID-19 Community
Vulnerability Index (CCVI) was established by Surgo Foundation and
used by CDC for COVID-19-related response in the USA57. The CCVI is
adapted from Social Vulnerability Index (SVI) from CDC with mod-
ifications regarding COVID-19-related risk factors (such as high-risk
population and environment)23,29. The CCVI is also widely used for
evaluating the epidemiological impacts/responses under COVID-
1958,59. At the county level, CCVI considers 40 measures from census
data, covering 7 themes including i) socioeconomic status; ii) minority
status and language, iii) housing type, transportation, household
composition, and disability (“household and transportation” here-
after), iv) epidemiological factors, v) healthcare system, vi) high-risk
environment, and vii) population density, with an overall VI summar-
izing these 7 themes23,29. The CCVI overall score as well as the 7 theme
indices range from0 to 1, with 1 representing themost vulnerable area
and 0 representing the least vulnerable area23,29. The CCVI indexes of
the overall score and 7 themes were obtained from the publicly
available website (https://precisionforcovid.org/ccvi). We chose to use
CCVI to reflect the population demographic rather than incorporating
multiple measures from population census data to ensure that the
model/approach could be easily adapted to most regions based on
their existing management systems, thereby promoting the transfer-
ability of the established approach.

The ratio of vaccinated people (%) recorded on Monday of the
sampling week for the first dose (Vaccine_1st) and the second dose
(Vaccine_2nd) among the total population in eachcountywasobtained
from the CDC record (https://data.cdc.gov/Vaccinations). For com-
parison purposes, the case-based prediction was also established. The
daily COVID-19 cases (cases/100k population), and test positivity
(positive tests/total tests) were collected from publicly available
records in USAFacts (https://usafacts.org/visualizations/coronavirus-
covid-19-spread-map) and aggregated on a weekly basis.

Considering the potential dilution of wastewater due to pre-
cipitation, the daily average precipitation (mm) in the week of waste-
water sampling was obtained from the USA Environmental Protection
Agency for each county (https://www.ncdc.noaa.gov/cdo-web/
datatools/lcd). During in-sewer transportation, potential decay of
SARS-CoV-2 RNA occurs and is impacted by the wastewater
temperature60,61. Although the wastewater temperature was not
reported in the Biobot data, previous studies revealed that it can be
calculated from air and soil temperature62. Thus, the daily air tem-
perature in the week of the wastewater sampling was obtained from
the USA Environmental Protection Agency for each county (https://
www.ncdc.noaa.gov/cdo-web/datatools/lcd). The average air tem-
perature of the week (Ta, °C) was summarized and used to further
calculate the average wastewater temperature (Tw, °C) using the
method described by Hart and Halden62.

Model establishment using random forest algorithm
Random forest is a non-parametric machine learning approach to
modeling the relationship between the potential explanatory factors
(input variables) and the target63,64. Random forest algorithm relies on
establishing a group of individual decision trees to optimize model fit.
Two approaches are incorporated to ensure the randomness and
diversity of the decision trees: i) bootstrapping the training data so
that each tree grows with a different sub-sample; ii) selecting features
randomly to generate different subsets of explanatory variables for
splitting nodes in a tree65. The correlations between observations in
the data generally do not affect the individual trees or the final model.
Thus, autocorrelation is not typically considered an issue for random
forest models63,64.

Prediction models were established for each hospitalization indi-
cator (i.e., weekly new hospitalizations, census inpatient sum, census
inpatient average) using three types of prediction (i.e. WBE-based,
record-based, and case-based), under four leading times (i.e., Hos1w,
Hos2w, Hos3w, and Hos4w). For model establishment, data from June
2021 to May 2022 (3162 data points for each target, 12 months) were
utilized to describe the patterns for each target through the random
forest algorithm inR (ver 4.2.0, R Foundation for Statistical Computing,
http://www.R-project.org/). For each hospitalization indicator, 13
common explanatory factors were used between the WBE-based
models and case-based or record-based models. These 13 common
factors included: CCVI indexes (8 factors); county-level vaccination
coverage (Vaccine_1st and Vaccine_2nd, %); population size of the
county; and weather (Ta, °C, and precipitation, mm). In addition to
these 13 common factors, the weekly new COVID-19 cases (cases/100k
population) and test positivity (positive tests/total tests) were used for
case-based predictions, CRNA and wastewater temperature (Tw, °C)
were used for WBE-based predictions, and hospitalization records for
each indicator (i.e., weekly new hospitalizations, census inpatient sum,
census inpatient average) in the week of wastewater sampling were
used for record-based prediction. The correlation between the hospi-
talization indicators and the explanatory factors for case-based and
record-based models were provided in the supplementary Text 3. As
the skewness of the data does not affect the structures and perfor-
mance of random forest models66 (which was also demonstrated in
Supplementary Table S5), transformations for data were not included
in our study. Considering thatCRNAused in the studywas normalized to
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pepper mild mottle virus (a fecal indicator) to minimize any potential
dilution-related variations15, the interaction between precipitation and
CRNA was not included as a factor in the WBE-based models.

To establish each of the 36 models (comprising 3 types of pre-
diction ×3 hospitalization indicators ×4 leading times), the data was
randomly divided into three parts, training set (70%of data), validation
set (15% of data), and test set (15% of data), regardless of their counties
and time points. The training set was used to train the random forest
models, and the validation set was used in conjunction to optimize
model structures. The test set was then used to evaluate the model’s
prediction capability over unseen data during the model establish-
ment stage. The rationale behind the randomized data selectionwas to
ensure that the models developed could accurately describe the gen-
eralized patterns within the datasets from June 2021 to May 2022.

The performance of themodel was assessed using the correlation
coefficient (R), mean absolute error (MAE), and normalized mean
absolute error (NMAE) as Eqs. (1) and (2). These evaluation criteria,
particularly NMAE, have been extensively employed in previous pre-
diction studies30,31, allowing for inter-study comparisons.

MAE =

Pn
i= 1 ∣ yi � ŷi∣

� �

n
ð1Þ

NMAE =

Pn
i = 1 ∣ yi � ŷi∣

� �

Pn
i= 1 yi

� � ð2Þ

where yi is the ith observation of y and ŷi the predicted yi value from the
model. The n is the total number of data points.

Significance and contribution of explanatory factors in estab-
lished models
The significance and contribution of each explanatory factor in the
model were determined using the frPermute package in R through a
5-fold cross-validation with 5 replicates32. For a certain set of data, the
importance score for each explanatory factor was determined as the
percentage increase in mean square error (%MSE) observed when the
value of an explanatory factor was permuted, compared to when no
metrics were permuted. The partial dependence between the output
(target) and explanatory factors (input variables) was analyzed using
the Pdp package in R. The partial dependence depicts the marginal
effect of one or two explanatory factors on the outputs while con-
trolling for other explanatory factors67. Mathematically, the partial
dependence function for regression is defined as (Eq. (3)).

^f S xS

� �
= EXC

f̂ xS,XC

� �h i
=
Z

f̂ xS,XC

� �
dPðXC Þ ð3Þ

The xS are the features of explanatory factors that we are inter-
ested in, andXC are the other explanatory factors used in the machine
learning model f̂ . The mathematical expectation is denoted by E and
probability by P. The partial function f̂ S xS

� �
shows the relationship

between xS feature and the predicted targets. The partial function
f̂ S xS

� �
is estimated by calculating averages in the training data, also

known as Monte Carlo method as Eq. (4):

^f S xS

� �
=

1
N

XN

i= 1
f̂ ðxS,XiCÞ ð4Þ

Where {X1C, X2C,…XNC} are the values of other variables XC in the
dataset, N is the number of instances. The partial dependencemethod
works by averaging the machine learning model output over the dis-
tribution of the features in set C, allowing the function to illustrate the
relationship between the features in set S (of interest) and the pre-
dicted outcome. By averaging over the other features, we obtain a
function that is dependent solely on the features in set S. In other

words, partial dependence reveals the relationship between the tar-
gets (outputs) and the explanatory factors in xS (explanatory factors
that we are interested).

Model evaluation and comparison
The 36 models established using the data from June 2021 to May 2022
were employed to forecast hospitalization indicators from June 2022
to January 2023 (‘future’ data to the model, 2308 data points for each
model) using relevant explanatory factors. The prediction accuracy of
themodels was evaluated usingMAE and NMAE to compare and select
the types of prediction (i.e.WBE-based, case-based, and record-based),
hospitalization indicators (i.e. weekly new hospitalizations, census
inpatient sum, census inpatient average) and leading times (i.e.
1–4 weeks).

Necessity of periodic updates
TheWBE-basedmodels for weekly new hospitalizations (selected based
on the model evaluation results) under 4 leading times were further
used to investigate the need for periodic updates to the model struc-
ture. In progressively learning models, the training dataset used for
random forest models was progressively updated every four weeks
from June 2022 to January 2023. This means that at week i, a new set of
modelswas establishedutilizing the data from thepreviousweeks up to
week i− 1 and used for prediction until the next update (in week i + 4).
The construction of the progressive learning models followed the
procedure described in the previous section, with 80% of the data used
for training and 20%used for testing. The performance of the batch and
progressive learning models was assessed using MAE and NMAE to
compare the predicted results to the actual admission record.

Transferability of progressive learning models
The transferability of progressive learning models established in the
section above was tested in another 60 counties from 30 states in the
USA from June 2022 to January 2023 (details provided in Supplemen-
tary Table S4, 1459 data points for each model). The wastewater sur-
veillancedata for these countieswas obtained fromBiobot,whileother
explanatory factors (e.g. CCVI indexes, precipitation etc.) and hospi-
talization records were obtained from relevant sources as described in
earlier sections.

Additionally, the study investigated the impact of localized data
updates on model transferability. Data in these 60 counties from June
2022 to January 2023 was progressively incorporated into the existing
progressive learning model under the same update frequency. This
means, at week i, the data in these 60 counties from June 2022 to week
i − 1, was incorporated into the dataset used for establishing the pro-
gressively learningmodel, providing the prediction till the next update
(week i + 4). Model predictions were compared with actual admission
records and evaluated using MAE, and NMAE.

Software used for statistical data analysis and data visualization
Weconductedall analyses anddata visualizationsusingR (version4.2.0,
R Foundation for Statistical Computing, http://www.R-project.org/)
with packages including reshape2 (version 1.4.4), dplyr (version 1.0.9),
tidyr (version 1.2.2), randomForest (version: 4.7-1.1), frPermute (version
2.5.1), Pdp (version 0.8.1), ggplot2 (version 3.3.6), corrplot (version
0.92), ComplexHeatmap (version 2.15.1), and USmap (version 0.6.2).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
We conducted secondary data analyses of publicly available data with
data source listed below.

County-level wastewater surveillance data: biobot.io/data
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County-level hospitalization data: COVID-19 Reported Patient
Impact and Hospital Capacity by Facility | HealthData.gov

County-level COVID-19 Community Vulnerability Index (CCVI)
indexes: https://precisionforcovid.org/ccvi

County-level vaccination coverage: https://data.cdc.gov/
Vaccinations

Daily county-level COVID-19 cases: https://usafacts.org/
visualizations/coronavirus-covid-19-spread-map

Daily temperature and precipitation in each county: Environ-
mental Protection Agency https://www.ncdc.noaa.gov/cdo-web/
datatools/lcd

The data for USA map in Fig. 2a was sourced from R package
‘USmap’ (version 0.6.2) where relevant shape data was provided by the
US Census bureau (open access): https://data.census.gov/map?layer=
VT_2021_040_00_PP_D1&loc=43.3751,-113.1138,z2.6270

Secondary data (wastewater surveillance data and relevant
weather, CCVI, and hospitalization data) used in the analyses could be
shared by contacting the corresponding author.

Code availability
The code for analysis and figures is provided at68: https://doi.org/10.
5281/zenodo.8128697.
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