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Diffusion Bridges for Stochastic Hamiltonian Systems and Shape Evolutions\ast 

Alexis Arnaudon\dagger , Frank van der Meulen\ddagger , Moritz Schauer\S , and Stefan Sommer\P 

Abstract. Stochastically evolving geometric systems are studied in shape analysis and computational anatomy
for modeling random evolutions of human organ shapes. The notion of geodesic paths between
shapes is central to shape analysis and has a natural generalization as diffusion bridges in a sto-
chastic setting. Simulation of such bridges is key to solving inference and registration problems in
shape analysis. We demonstrate how to apply state-of-the-art diffusion bridge simulation methods to
recently introduced stochastic shape deformation models, thereby substantially expanding the appli-
cability of such models. We exemplify these methods by estimating template shapes from observed
shape configurations while simultaneously learning model parameters.

Key words. shape analysis, bridge simulation, conditional diffusion, hypoelliptic diffusion, landmark dynamics,
guided proposals, shape matching
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1. Introduction. We develop a general scheme for simulation of conditioned diffusion
processes---diffusion bridges---for finite-dimensional landmark manifolds appearing in fields
including shape analysis and fluid dynamics. We demonstrate several important properties of
the scheme, including that the approach applies to more general classes of stochastic models
than presently covered in the literature, that it effectively handles challenging aspects of shape
spaces, nonlinearity, and partial observability, and that it generalizes the inexact matching
scheme that is commonly used in applications to the stochastic setting. Importantly, the
simulation scheme allows for statistical inference of properties of the evolution of the shapes.
We exemplify this by estimating template shapes from observed shape configurations.
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294 A. ARNAUDON, F. VAN DER MEULEN, M. SCHAUER, AND S. SOMMER

1.1. Background. The geometry of landmark spaces and the landmark matching prob-
lem, exemplified by matching of finite sets of anatomical markers on medical images, have
been extensively studied in shape analysis. Examples include the seminal work of Kendall [23]
on landmark configurations modulo scaling and rotation, and the extensive interest of land-
mark dynamics for diffeomorphic shape models [21, 46]. The landmark matching problem
has a geometric formulation in the language of geometric mechanics where diffeomorphisms
of the underlying domain act to move the landmarks, and optimal trajectories between ob-
served landmark configurations satisfy geodesic equations for a right-invariant metric on the
diffeomorphism group [47]. These equations are also called Euler--Poincar\'e equations [17].
Landmark dynamics are intrinsically linked to soliton dynamics in fluid dynamics [18], e.g.,
soliton solutions of the Camassa--Holm equations [11], or more generally singular solutions of
the Euler--Poincar\'e equation [16]. Stochastic models of landmark evolutions are therefore of
interest in both shape analysis and fluid dynamics.

Several recent models include stochastic effects in landmark analysis [28, 42, 45, 29, 1, 2].
The interest appears for several reasons:

1. If v denotes the observed landmark configuration, the presence of noise in the obser-
vation implies that landmark analysis is classically performed in the inexact setting
where the requirement that the flow qt satisfy qT = v at observation time t = T is
essentially relaxed to qT = v+\epsilon for some perturbation \epsilon . This thus amounts to adding
noise at the endpoint qT of the flow qt. If the perturbation is not linked to observation
noise but instead comes from intrinsic stochastic behavior of the shape or soliton evo-
lution, it is more natural to make the noise intrinsically time-continuous, i.e., added
to qt for each t on an infinitesimal level.

2. The flow qt can have multiscale behavior where the coarse-scale evolution is modeled
by a deterministic flow, while the fine-scale behavior, which in a fluid system is closer
to turbulence, can be summarized with stochastic terms.

3. In medical applications, it can be hypothesized that the shape evolution is not purely
deterministic, and that the stochastic deformation happen continuously in time.

4. It is generally hard to construct natural families of probability distributions on geomet-
ric spaces without linearizing the spaces around a center point. Solutions to stochastic
differential equations, however, provide such probability models [39].

In this paper, we focus on models defined by stochastic differential equations. In all of the
above enumerated cases, it is common that observations are discrete in time. Constructing
paths that are conditioned on such partial-in-time observations is called bridge simulation
and the paths bridges. Bridge simulation is essential for likelihood-based inference as it pro-
vides a stochastic method for approximating the intractable likelihood. If possible, it enables
methods such as sequential Monte Carlo, Markov chain Monte Carlo, stochastic expectation-
maximization, or stochastic gradient descent. This in turn allows for estimation of parameters
in the processes' dynamics and recovery of latent states at observation times. Moreover, in
applications like landmark matching, there is intrinsic interest in bridge simulation as bridges
appear as stochastic perturbations of landmark geodesics or as critical paths for a stochasti-
cally perturbed energy. Bridges therefore present a stochastic generalization of the geodesic
paths usually considered when matching sets of landmarks.

Bridge simulation is generally a challenging problem. It has been addressed in the Euclid-
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ean setting in a series of works, including [12, 7, 34, 9, 38]. For shape manifolds, previous
papers have centered on simulation in landmark spaces. Manifolds of finite numbers of land-
marks are generally of finite dimensionality, in contrast to spaces of continuous shapes, which
are in essence infinite-dimensional. While bridge sampling on infinite-dimensional shape spa-
ces remains an open question, bridge sampling for landmark spaces has been considered re-
cently [1, 2, 40] using the approach of [12, 27]. The underlying diffusion arises from stochastic
Euler--Poincar\'e equations [15] and, in a different setting, Brownian motion on the landmark
space [40]. The difficulty in landmark bridge sampling arises from the high-dimensionality,
the curvature and hence nonlinearity of the diffusion process, from the degenerate diffusion
processes in the stochastic Euler--Poincar\'e case (vanishing eigenvalues in the diffusion matrix),
and from observations being only in the position variable of the phase-space flow. The meth-
ods from [12] and [1, 2] apply only for certain classes of stochastic evolution, excluding other
important stochastic landmark approaches such as proposed in [42, 29], due to the degener-
acy of the flow. As stated in [29]: ``Unfortunately, none of the known methods for diffusion
bridges works with (2.1) to give computationally convenient algorithms. Without an efficient
method for sampling the diffusion bridge, it is hard to formulate an MCMC method with good
acceptance rates. Consequently, the generalised Langevin prior distribution is difficult to use
in Bayesian statistics, and we now turn to simpler prior distributions, which arise by approx-
imating the Langevin equation."" In the present paper, we show that resorting to such simpler
prior distributions is unnecessary.

1.2. Relation to image registration. Landmark matching in the large deformation dif-
feomorphic metric mapping (LDDMM [46]) setting is closely related to image registration,
both because landmarks often arise from annotations of images and because the LDDMM
model allows one to generate deformations of the full image domain from matching of only a
small number of landmarks. As such, landmark matching can partly be considered a reduced
problem compared to matching of full images. In this paper, we solve a different, but related,
problem compared to image registration: we aim to make possible statistical inference of
properties of the evolution of shapes, specifically in the form of landmark configurations. The
aim is thus not to find a good diffeomorphic matching between two images or shapes, but to
infer statistical properties of stochastic transformations between shapes. Nevertheless, some
of the stochastic models considered in the paper, particularly the Eulerian model, allows one
to generate full domain deformations, as is the case for LDDMM landmark matching (this is
called lifting of the trajectory from the landmark space to the space of diffeomorphisms). One
can therefore envision making bridge sampling with data sizes---full images or large numbers
of landmarks---comparable to what is currently used in image registrations algorithms. While
this will be extremely interesting, it is also very challenging both from a computational per-
spective and theoretically due to the high or even infinite dimensionality of the resulting shape
space. In the present paper, we aim to present one of the first applications of bridge sampling
in shape analysis that nevertheless applies bridge sampling techniques to stochastic processes
of much higher dimensionality than what is regularly seen in other areas of statistics. We will
pursue extension to deformations of the full domain in future work.

1.3. Contribution. We extend the Euclidean simulation approach of [38, 8] to a general
method for simulating stochastic landmark equations. We will pursue this under the stochastic
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296 A. ARNAUDON, F. VAN DER MEULEN, M. SCHAUER, AND S. SOMMER

models for landmark and soliton dynamics introduced in [42], [29], and [1]. The presented
method is the first in the literature to allow bridge sampling for the former schemes, and it
improves upon previous sampling schemes by better incorporating nonlinearity in the drift and
diffusion coefficients of the SDEs. For models with intrinsic noise, it is the first approach that
provides full uncertainty quantification via samples of the posterior. The approach generalizes
the notion of inexact shape matching as in [46]. We demonstrate how the sampling approach
can be used to estimate the starting conditions of the diffusion and parameters of the diffusion
dynamics. Particularly, we apply it for the problem of estimating a template shape given
observed shape configurations. In this case, we show how using the Riemannian Manifold
Metropolis Adjusted Langevin Algorithm (RMMALA) is crucial in obtaining efficient updates
of the estimated template.

1.4. Outline. The paper starts in section 2 with a review of finite-dimensional shape
analysis and its stochastic extensions. In section 3 we explain how guided proposals can
be used for bridge simulation. Their specific implementation for the two stochastic landmark
models considered in this work is specified in section 4.2. Markov chain Monte Carlo sampling
schemes are detailed in section 5, and experimental evaluation on synthetic and empirical
datasets are given in section 6. We end with a discussion section with suggestions for future
work.

2. Finite-dimensional shape analysis. To provide the necessary background for the sto-
chastic landmark models, we provide here a short review of landmark shape spaces with
geometry inherited from a right-invariant metric on the diffeomorphism group. Landmark
shape spaces are finite-dimensional in contrast to spaces of continuous curves and surfaces
that are inherently infinite-dimensional. On a formal level, the geometric setting as outlined
below is, however, equivalent. This makes the landmark case an example of how stochastics
and bridge simulation can be used in a geometric setting, while we can postpone the intricacies
of infinite dimensionality in other shape spaces to later works.

Shape analysis as pursued in the large deformation diffeomorphic metric mapping (LD-
DMM [46]) framework starts with actions of the diffeomorphism group on shapes spaces. For
landmarks, let q = (q1, . . . , qn) be a configuration of n distinct landmarks qi \in \Omega in a domain
\Omega \subset \BbbR d. Let \varphi be an element of the set Diff(\Omega ) of diffeomorphism on \Omega , smooth invertible
mappings with smooth inverses. Then \varphi acts on q by composition \varphi .q = (\varphi (q1), . . . , \varphi (qn)).
For fixed q, the map \pi : Diff(\Omega ) \rightarrow \scrM , \pi (\varphi ) = \varphi .q is denoted the action map.

The landmark space \scrM = \{ (q1, . . . , qn) \in \Omega n | qi \not = qj , i \not = j\} can be given the structure
of a manifold by letting it inherit the differentiable structure from its embedding as an open
subset of \BbbR nd (\BbbR nd except for the subset of points where landmark pairs coincide). It can
furthermore be equipped with a Riemannian metric, which in turn defines the length and
energy of path in the landmark space, and from this the matching energy (2.4) used below is
defined. This happens with the following geometric structure.

(1) Let \scrX (\Omega ) be the space of vector fields on \Omega . We equip subsets V of \scrX (\Omega ) with an
inner product using a reproducing kernel Hilbert space (RKHS) structure: For q1, . . . , qn \in \Omega 
let V be the completion of the set of vector fields on the form

\sum n
i=1K(\cdot , qi)ai, ai \in \BbbR d. Here

K : \Omega \times \Omega \rightarrow \BbbR d\times d is a matrix-valued map denoted a kernel. K is required to be symmetric
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and positive definite in the sense that

n\sum 
i,j=1

aTi K(qi, qj)bj > 0 \forall ai, bj \in \BbbR d, qi, qj \in \Omega , n \in \BbbN .

In this case, V receives an inner product by completing the inner product

(2.1) \langle K(\cdot , qi)ai,K(\cdot , qj)bj\rangle V =
n\sum 

i,j=1

aTi K(qi, qj)bj

to all of V by continuity. This makes V a Hilbert space.
(2) Since \scrM \subset \BbbR nd, tangent vectors v \in T\scrM can be represented as vectors in \BbbR nd. Let

q \in \scrM be a landmark configuration. The LDDMM Riemannian metric is then the inner
product

(2.2) \langle v, w\rangle q =
n\sum 

i,j=1

vTi K(qi, qj)
 - 1wj

between vectors v, w \in Tq\scrM . Landmark dynamics are often described in terms of momenta,
covectors in the dual bundle T \ast \scrM . The corresponding inner product between momentum
vectors a, b \in T \ast 

q\scrM (the cometric) is then

(2.3) \langle a, b\rangle q =
n\sum 

i,j=1

aTi K(qi, qj)bj ,

i.e., the cometric coincides with the inner product (2.1) on V .
(3) The Riemannian structure on\scrM described here has its geometric origin in the following

facts: The tangent space T\mathrm{I}\mathrm{d}Diff(\Omega ) of the Lie group Diff(\Omega ) is diffeomorphic to \scrX (\Omega ), and the
Riemannian metric (2.2) is the Riemannian metric on \scrM that makes the action map \pi above
a Riemannian submersion with respect to the right-invariant (invariant to the composition of
diffeomorphisms on the right) Riemannian metric on Diff(\Omega ) that the inner product (2.1) on
V \subset \scrX (\Omega ) specifies. In the current context, the main implication of this geometric argument
is that the metric (2.2) and cometric (2.3) have their definitions rooted on a well-defined
geometric structure.

The Riemannian metric defines the energy of a path \bfitq = (qt, t \in [0, T ]) of landmark
configurations by

E(\bfitq ) =

\int T

0
\langle \.qs, \.qs\rangle q ds .

This allows matching of landmark configurations q and v by searching for a minimal energy
path q, qt \in \scrM such that q0 = q and qT = v,

(2.4) argmin
\bfitq ,q0=q,qT=v

E(\bfitq ) ,

as pursued below. Paths realizing this energy are geodesics on \scrM .

D
ow

nl
oa

de
d 

08
/0

8/
23

 to
 1

31
.1

80
.1

31
.2

18
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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2.1. Inverse problem of landmark matching. The interest in landmark matching arises
from the case where a fixed sets of meaningful landmarks, for example, anatomical markers
in medical images, can be identified. Shapes can then be analyzed by identifying differences
between configurations of markers, in the medical case either between subjects or intrasubject
when consecutive images are acquired over time. Interestingly, the LDDMM framework allows
matching of landmarks as well as curves, surfaces, and even images on \Omega via the same frame-
work with a metric on Diff(\Omega ) descending to the particular shape spaces. However, we will
restrict ourselves to the landmark case here for two primary reasons: The landmark manifold
\scrM is finite-dimensional, and it has a natural embedding in \BbbR nd allowing us to write landmark
dynamics in Euclidean coordinates.

Assume two landmark configurations q and v are given. A matching consists in solving
the variational problem

(2.5) argmin
\bfitq 

E(\bfitq ) such that q0 = q, q1 = v ,

with the energy E from (2.4). This is known as exact matching and results in a t-dependent
transformation of the configuration q to the configuration v. Due to the uncertainty often
present in observations of landmarks, e.g., with manual annotations on medical images, inexact
matching is instead often used in practice. The variational problem is now

argmin
\bfitq 

E(\bfitq ) + S(q1, v) such that q0 = q ,(2.6)

with the added term S measuring the dissimilarity between the two landmark configurations
q1 and v. This term is often taken to be of the form S(q1, v) = n - 1\| q1  - v\| 2 using the
norm from the embedding of \scrM in \BbbR nd. Intuitively, we can think of Gaussian noise on the
observations in \BbbR nd and S being proportional to a log-likelihood.

Note that the t-dependence of solutions to (2.5) and (2.6) allows us to think of q1 as an
observation of landmark trajectories qt at time t = 1. This will in particular relate to the
conditioning of stochastic processes later, where we assume a fixed observation time T > 0.
In the matching case, the notation implies T = 1 without loss of generality.

2.2. Deterministic landmark dynamics. The energy (2.4) has a Hamiltonian formulation
which involves the kernel K, where the Hamiltonian is

(2.7) H(q, p) =
1

2
\langle p, p\rangle q =

1

2

n\sum 
i,j=1

pTi K(qi, qj)pj .

Let x \in \BbbR 2dn be the vector obtained by concatenating the tuples \{ (qi, pi)\} ni=1. That is, x
represents an element of the phase space T \ast \scrM of the landmark space. Let K be a kernel as
discussed above, and we assume it is scalar, i.e., of the form K(y) = k(y) Idd for a real-valued
function k. Hamilton's equations of motion are then explicitly given by

d

dt
qi =

\partial H

\partial pi
=

n\sum 
j=1

pjk(qi  - qj) ,

d

dt
pi =  - \partial H

\partial qi
=  - 

n\sum 
j=1

\langle pi, pj\rangle \nabla k(qi  - qj) ,

(2.8)
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where p is the momentum of the flow and \nabla k(y) the gradient of k.
Solutions q to (2.5) and (2.6) appear as the q-variable of solutions (q,p) to (2.8). There-

fore, the search space for optimal solutions of the optimization problems can be reduced to
solutions of Hamilton's equations, a reduction from an infinite to a finite-dimensional space.

2.3. Stochastic landmark dynamics. As already indicated, there are several reasons to
introduce stochastic evolutions. We review here two different models of stochastic evolutions
on landmarks which we will consider later. These are formulated in terms of stochastic
differential equations. A good introduction to such equations is given in [24], whereas more
advanced treatments are, for example, [33], [22], and [37].

2.3.1. Stochastic forcing: Lagrangian and Langevin models. The first stochastic per-
turbation of the dynamics landmarks described above has been introduced in [42, 45] and
consists in an additive Lagrangian noise of the form

dq\alpha i =
\partial H

\partial p\alpha i
dt and dp\alpha i =  - \partial H

\partial q\alpha i
dt+ \gamma i dW

i
t ,(2.9)

where \gamma i \in \BbbR is a scalar noise amplitude given for each landmark. We will refer to this system
as the Lagrangian model.

More recently, [29] generalized the Lagrangian model by adding a dissipative term to

(2.10) dp\alpha i =  - \lambda \partial H
\partial p\alpha i

dt - \partial H

\partial q\alpha i
dt+ \gamma i dW

i
t ,

where \lambda > 0 is a damping coefficient which implies existence of the Gibbs invariant measure
for this SDE. This model in the following is referred to as the Langevin model.

2.3.2. Transport noise: Eulerian model. In addition to the Lagrangian noise of the
previous model (where each Wiener process is associated to a landmark), [2] introduced an
Eulerian noise, where the noise fields are functions of the domain \Omega . In general, any set of
functions could be used, but in practice we will fix a family of J noise fields \sigma 1, . . . , \sigma J , which
are kernel functions centered at locations \{ \delta \ell \} of the form

(2.11) \sigma \alpha \ell (q) = \gamma \alpha \=k\tau (q  - \delta \ell ) ,

where \=k\tau is a kernel with length-scale \tau and \gamma \in \BbbR d is the vector of noise amplitudes. Note
that it is possible to choose both \gamma and \tau dependent on the location \delta \ell , though we will not
use this flexibility here.

The stochastic dynamics are then obtained as in the deterministic case to be a Hamiltonian
system but in both the drift and the noise. It reads, in Stratonovich form,

dqi =
\partial H

\partial pi
dt+

J\sum 
l=1

\sigma l(qi) \circ dW l
t ,

dpi =  - \partial H
\partial qi

dt - 
J\sum 
l=1

\partial 

\partial qi
(pi \cdot \sigma l(qi)) \circ dW l

t .

(2.12)

We will refer to this system as the Eulerian model.
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3. Bridge dynamics. All models of the previous section can be written in the general It\^o
form

(3.1) dXt = b(t,Xt) dt+ \sigma (t,Xt) dWt, X0 = x0, t \in [0, T ] ,

where b : [0, T ]\times \BbbR N \rightarrow \BbbR N and \sigma : [0, T ]\times \BbbR N \rightarrow \BbbR N\times N \prime 
are the drift and diffusion coefficient,

respectively. Wt is a Wiener process in dimension \BbbR N \prime 
with independent components, and the

stochastic integrals are It\^o.
In its most basic form, the previous problems correspond to simulating trajectories of

X := (Xt, t \in [0, T ]), where bothX0 andXT are partially observed. We will encode the partial
observation with two possibly different projection operators, L0 and LT , such that only the
vectors L0X0 and LTX0 are observed. As an example, if only landmark positions are observed
at times 0 and T , then L0 = LT and L0 is such that L0Xt extracts only those components of the
vector Xt that correspond to landmark positions, thus ignoring the momentum components.

To model inexact matching, the observed vectors have extrinsic noise, and the realizations
of random vectors

(3.2) V0 \sim N(L0X0,\Sigma 0) and VT \sim N(LTXT ,\Sigma T )

are observed instead of L0X0 and LTXT . Notice that the exact matching limit is obtained
upon taking \Sigma = \varepsilon 2I and \varepsilon \rightarrow 0.

Simulating X conditional on (V0, VT ) is challenging for several reasons:
1. Contrary to many papers on diffusion bridge simulations (e.g., [12, 7, 34, 9, 38]), the

conditioning is not on the full state, but on a subspace given by L0 and LT ;
2. the diffusion coefficient \sigma can be state-dependent, such as in the Eulerian model;
3. the dimension of the driving Brownian motion W may not equal the dimension of the

state space of the diffusion; and
4. the regularity of the paths of landmark locations and momenta may not be the same

(hypoellipticity), such as in the Lagrangian model.
We demonstrate how these challenges can be tackled with the approach of [38, 43, 8,

30], where new methods for simulating conditioned diffusions using guided proposals were
presented. In addition to these works, the current setting needs special attention to obtain
efficient numerical methods, due to the high dimension of the state space for a large number of
landmarks (given as N = 2dn, where d and n denote the dimension and number of landmarks
landmarks, respectively) and to the nonlinear nature of the problem (mostly in choice of
parameters and a particular ``auxiliary process,"" described in section 4.2). Also, the structure
of the landmarks configuration makes naive simple random-walk-type Metropolis--Hastings
schemes practically useless. As we will show, adaptations that take the geometry properly
into account, such as the Riemannian Adjusted Metropolis Adjusted Langevin Algorithm, can
be exploited instead.

3.1. Conditioned diffusions. Throughout, we will assume that X admits smooth transi-
tion densities p, such that \BbbP (Xt \in dy | Xs = x) = p(s, x; t, dy) for s < t. In this section, we
consider the problem of simulating the diffusion process X conditioned on

(3.3) X0 = x0 and VT = vT ,
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where VT \sim N(LTXT ,\Sigma ) and x0, vT are given vectors. This condition is different from (3.2),
as here the initial state is fully observed, which turns out to be an important step in the
algorithms that we present.

The diffusion conditioned on the events specified in (3.3) is rather loosely referred to as a
bridge process, as it bridges available observations on the state of the process at times 0 and
T .

It is known that bridge processes satisfy an SDE similarly to that of the unconditioned
process, but with an additional guiding term in the drift. This additional drift term can be
obtained using Doob's h-transform (see [37] or the theory of enlargement of initial filtration
[20, 5]) to yield the bridge process X \star = (X \star 

t , t \in [0, T ]) as the strong solution of the SDE

(3.4) dX \star 
t = b(t,X \star 

t ) dt+ a(t,X \star 
t )r(t,X

 \star 
t ) dt+ \sigma (t,X \star 

t ) dWt, X \star 
0 = x0,

where a = \sigma \sigma \prime (where \prime denotes matrix transpose), r(t, x) = \nabla x log \rho (t, x), t \in [0, T ), x \in \BbbR N ,
and

(3.5) \rho (t, x) =

\int 
\BbbR N

p(t, x;T, \xi )\psi (vT ;LT \xi ,\Sigma ) d\xi .

Here, \psi (x;\mu ,\Sigma ) denotes the density of the N(\mu ,\Sigma )-distribution, evaluated at x, for any \mu \in 
\BbbR N and \Sigma \in \BbbR N\times N . Although we focus here on inexact matching, we remark that in the case
of exact matching (where \Sigma \equiv 0) the formula for \rho is more complex; see, for example, section
1.3.2 in [8].

Example 1. To help gain the reader some intuition on the term a(t,X \star 
t )r(t,X

 \star 
t ), consider

the setting where b \equiv 0, \sigma is constant, and the diffusion is fully observed at time T with
N(0, \varepsilon 2I)-noise. In that case, the SDE for the conditioned process is given by dX \star 

t = (T +
\varepsilon 2  - t) - 1(vT  - X \star 

t ) dt+ \sigma dWt (this follows by first computing \rho in (3.5) and subsequently r).
Note that for small values of \varepsilon , the guiding term is roughly ``remaining distance to endpoint""
divided by ``remaining time"" and that a value of \epsilon that is strictly positive avoids dividing by
zero in the drift at time T .

3.2. Bayesian formulation for landmark matching. We will follow the Bayesian paradigm
for statistical inference in this paper. Within Bayesian statistics it is common to write the
data-generating model in a hierarchical way. This hierarchical scheme (to be read from bottom
upwards) is as follows:

vT | xT \sim N(LTxT ,\Sigma T ) ,

v0 | x0 \sim N(L0x0,\Sigma 0) ,

xT | x0 \sim p(0, x0;T, xT ) ,

x0 \sim p(x0) .

Here, p(x0) denotes the prior density on the initial state. The observed variables are v0 and
vT ; the unobserved variables are x0 and xT . Bayesian inference is based on the distribution
of unobserved variables, conditional on observed variables. Hence, using Bayesian notation

p(x0, xT | v0, vT ) \propto p(vT | xT )p(v0 | x0)p(xT | x0)p(x0)
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(note that the third term on the right-hand side is the intractable transition density). In
particular, this implies that

(3.6) p(xT | v0, vT , x0) \propto p(vT | xT )p(xT | x0).

As shown in the appendix of [30], the solution of (3.4) with (3.5) implies that X \star 
T has density

(3.7) \xi \mapsto \rightarrow \eta (\xi ;x0, vT ) :=
p(0, x0;T, \xi )\psi (vT ;LT \xi ,\Sigma ) d\xi \int 
p(0, x0;T, \xi \prime )\psi (vT ;LT \xi \prime ,\Sigma ) d\xi \prime 

,

but this is just the density in (3.6). This reveals that sampling of xT , conditional on
(v0, x0, vT ), can be done by sampling X \star 

T , which in turn is obtained as the endpoint of a
sampled bridge path.

4. Guided proposals.

4.1. Overview of guided proposals. Since the transition densities of a diffusion are only
available in closed form in very special cases, \rho in (3.5) is intractable. This prevents using a
numerical discretization scheme on the SDE for X \star , where the process would be simulated
forward on a fine grid (for example, using Euler's method). The key idea of [38] consists
of instead simulating from a process X\circ that is obtained after replacing p by the transition
densities \widetilde p of an auxiliary diffusion process \widetilde X for which \widetilde p is tractable. This is naturally the
case for linear processes \widetilde X whose dynamics are governed by the SDE

(4.1) d \widetilde Xt = \widetilde b(t, \widetilde Xt) dt+ \widetilde \sigma (t) dWt ,

where \widetilde b is of the form \widetilde b(t, x) = \widetilde \beta (t) + \widetilde B(t)x .(4.2)

Hence, instead of sampling from X \star , one samples from X\circ defined by

(4.3) dX\circ 
t = b(t,X\circ 

t ) dt+ a(t,X\circ 
t )\widetilde r(t,X\circ 

t ) dt+ \sigma (t,X\circ 
t ) dWt, X\circ 

0 = x0 ,

with \widetilde r(t, x) = \nabla x log \widetilde \rho (t, x), where \widetilde \rho is derived from \widetilde p exactly as \rho is in terms of p. We call
t \mapsto \rightarrow a(t,X\circ 

t )\widetilde r(t,X\circ 
t ) the guiding term, as it is a term that is superimposed on the drift of the

original SDE for X to satisfy the imposed conditioning at time T . Draws from this guided
diffusion bridge proposal can subsequently be accepted/rejected in a Metropolis--Hastings sam-
pler, provided that

1. the law of X \star is absolutely continuous with respect to the law of X\circ ;
2. the Radon--Nikodym derivative showing up in the acceptance probability is tractable.

A short introductory account on the Metropolis--Hastings algorithm is given in section A.
An implicit assumption made throughout is that a strong solution to the SDE (4.3) exists,

but, in addition, guided proposals only exist if the auxiliary process is chosen such that \widetilde X
admits transition densities; see section 2.1 in [8] for more details. Furthermore, a key result
from [8] provides sufficient conditions for absolute continuity of \BbbP  \star with respect to \BbbP \circ , denoted
by \BbbP  \star \ll \BbbP \circ , and an expression for the Radon--Nikodym derivative

(4.4)
d\BbbP  \star 

d\BbbP \circ (X
\circ ) =

\widetilde \rho (0+, x0)
\rho (0+, x0)

\Psi (X\circ ) ,
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Table 1
Summary of the notation of various bridges in this work. The rightmost three columns give the drift,

diffusion coefficient, and measure on C([0, T ],\BbbR N ), respectively.

X original, unconditioned diffusion process, defined by (3.1) b \sigma \BbbP 
X \star corresponding bridge, conditioned on v, defined by (3.4) b \star \sigma \BbbP  \star 

X\circ proposal process defined by (4.3) b\circ \sigma \BbbP \circ \widetilde X linear process defined by (4.1) with transition densities \widetilde p \widetilde b \widetilde \sigma \widetilde \BbbP 
appearing in the definition of X\circ 

with \rho defined as in (3.5) and

(4.5) \Psi (X\circ ) = exp

\biggl( \int T

0
\scrG (s,X\circ 

s ) ds

\biggr) 
,

where

\scrG (s, x) = (b(s, x) - \widetilde b(s, x))\prime \widetilde r(s, x)
 - 1

2
tr
\Bigl( 
[a(s, x) - \widetilde a(s)] \Bigl[ \widetilde H(s) - \widetilde r(s, x)\widetilde r(s, x)\prime \Bigr] \Bigr) (4.6)

and \widetilde H(s) is the negative of the Hessian matrix of x \mapsto \rightarrow \nabla x log \widetilde \rho (s, x), which turns out to be a
constant on x.

Forward simulation of the guided proposal X\circ in (4.3) requires evaluation of \~r. It turns
out that in all algorithms of section 5 the intractable term \rho (0+, x0), appearing in (4.4) and
depending on the transition densities of the process X, cancels. Ignoring this term, evaluating
(4.4) requires evaluation of \~r, \~H, and \~\rho (0+, x0). These quantities can be computed efficiently
as they only depend on the tractable process \~X. There exist various expressions for this; full
details are in [30]. For completeness we recap Theorem 2.4 in [30], which for t \in [0, T ] gives

\~r(t, x) = L(t)\prime M(t)(v(t) - \mu (t) - L(t)x) ,

\~\rho (t, x) = \psi (v(t);\mu (t) + L(t)x,M \dagger (t)) ,

H(t) = L(t)\prime M(t)L(t)] .

Here M(t) = [M \dagger (t)] - 1, with (L(t), \mu (t),M \dagger (t)) being defined as solutions to the (backward)
differential equations

dL(t) =  - L(t) \~B(t) dt , L(T ) = LT ,

dM \dagger (t) =  - L(t)\~a(t)L(t)\prime dt , M \dagger (T ) = \Sigma T ,

d\mu (t) =  - L(t) \~\beta (t) dt , \mu (T ) = 0 ,

(4.7)

and v(t) = vT for t \in (0, T ].
As we assume that V0 \sim N(L0X0,\Sigma 0) (as in (3.2)), it follows again from Theorem 2.4 in

[30] that for t = 0

(4.8) L(0) =

\biggl[ 
L0

L(0+)

\biggr] 
, M \dagger (0) =

\biggl[ 
\Sigma 0 0
0 M \dagger (0+)

\biggr] 
, \mu (0) =

\biggl[ 
0

\mu (0+)

\biggr] 
, v(0) =

\biggl[ 
v0
vT

\biggr] 
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(with 0 denoting a vector or matrix of appropriate dimensions). Note that for fixed x, t \mapsto \rightarrow 
\~\rho (t, x) is left-continuous.

Remark 1. From the discussion in Appendix B on the exact matching case, it is in general
preferable to take \widetilde b and \widetilde \sigma such that

(4.9) LT b(T,X
\circ 
T ) = LT\widetilde b(T,X\circ 

T ) and LTa(T,X
\circ 
T )L

\prime 
T = LTa(T )L

\prime 
T ,

which is possible for both the Lagrangian and Eulerian models, as we show in the next section.

4.2. Guided proposals for landmark models. Guided proposals are specified by choice of
the auxiliary process \widetilde X. Here we detail this choice for the three landmark models considered.
Recall (see also (2.8))

(4.10)
\partial H

\partial pi
=

n\sum 
j=1

pjk(qi  - qj) and
\partial H

\partial qi
=

n\sum 
j=1

\langle pi, pj\rangle \nabla k(qi  - qj) .

4.2.1. Choice of auxiliary process for the Langevin and Lagrangian models. In the
Langevin model we have

dq\alpha i =
\partial H

\partial p\alpha i
dt and dp\alpha i =  - \lambda \partial H

\partial p\alpha i
dt - \partial H

\partial q\alpha i
dt+ \gamma i dW

i
t .

The matching conditions (4.9) suggest to match both the drift on the landmarks positions
and the diffusivity at time T . In view of (4.10), we take the auxiliary process \widetilde X as

d\widetilde q\alpha i =

n\sum 
j=1

\widetilde pjk(qTi  - qTj ) dt and dp\alpha i =  - \lambda 
n\sum 
j=1

\widetilde pjk(qTi  - qTj ) dt+ \gamma i dW
i
t ,

where qTi is the observed ith landmark position at time T . Because the kernels are evaluated

on the final positions, these equations define a linear process, from which \widetilde B, \widetilde \beta , and \widetilde \sigma can be
inferred directly.

4.2.2. Choice of auxiliary process for the Eulerian model. As the matching assumptions
are formulated for an SDE in It\^o form, we first need to transform the Eulerian model equations
from Stratonovich to It\^o form. To compute the additional term in the drift, we specify the
noise kernels to be located at fixed positions. We suppose at location \delta \ell kernel q \mapsto \rightarrow \sigma \ell (q) with
coordinates as specified in (2.11).

Proposition 1. For the Eulerian model, the additional term in the drift when switching
from Stratonovich to It\^o form for q is given by

(4.11)
1

2

\sum 
\ell 

z\ell (q)\=k\tau (q  - \delta \ell )\gamma .

For p this term is given by

(4.12)
1

2

\sum 
\ell 

\langle p, \gamma \rangle 
\bigl( 
z\ell (q)\nabla \=k\tau (q  - \delta \ell ) - \=k\tau (q  - \delta \ell )\nabla z\ell (q)

\bigr) 
.
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Here, in the notation we have omitted dependence of (\tau , \delta , \gamma ) on \ell and have denoted

z\ell (q) = \langle \nabla \=k\tau (q  - \delta \ell ), \gamma \rangle .

This proposition shows that there is a simple way to take the Stratonovich--It\^o correction
into account in the drift of the auxiliary process \widetilde X: for landmark i one superimposes the
terms (4.11) and (4.12) to the drift of the auxiliary process for the Lagrangian model, with
the final positions q = qTi substituted.

5. MCMC algorithms for landmark matching and template estimation. Both the drift
b and the diffusion coefficient \sigma in (3.1) may contain unknown parameters. Suppose the vector
of unknown parameters is \theta and we will write, for example, b\theta and \sigma \theta to highlight the explicit
dependence on these parameters. In this section, we present an MCMC (Markov chain Monte
Carlo) algorithm for landmarks matching (section 5.1) and template estimation (section 5.2),
including estimation of unknown parameters.

5.1. Bridging two landmark configurations. The Bayesian approach to the problem of
landmarks matching boils down to sampling from (X, \theta ) conditional on (v0, vT ) (the observed
two landmarks configurations). It is well known that in the case of unknown parameters
in the diffusion coefficient, a Gibbs sampler that successively updates \theta | (X, v0, vT ) and
X | (\theta , v0, vT ) leads to an invalid (reducible) scheme (see, for example, [36]). To circumvent
this problem, we will update the Wiener increments W instead of the process X itself. Then,
as we have made the assumption that a strong solution to the SDE (4.3) exists, there is a
measurable map \scrG \scrP \theta such that X\circ = \scrG \scrP \theta (x0,W ), where W is the driving Wiener process
in \BbbR N \prime 

(\scrG \scrP being an abbreviation of guided proposal). Note that we could have written
\scrG \scrP \theta (x0,W, vT ) instead of \scrG \scrP \theta (x0,W ) to highlight that the guided proposal always depends
on the state observed with error at time T . To reduce notational overhead we have chosen
not to do so.

Let x0 = (q0, p0) and xT = (qT , pT ) denote the latent states. We propose a Gibbs sampler
for updating (W, \theta , p0) and assume that the noise on v0 is negligible so that it can be assumed
that q0 = v0. Then for each sample of (W, \theta , p0) we obtain a sample of the guided proposal
via \scrG \scrP \theta ((q0, p0),W ), which henceforth also yields a sample of xT .

After initialization of (W, \theta , p0) the sampler cycles over the following steps:
1. sample W conditional (x0, \theta , vT ) using guided proposals, with pCN (preconditioned

Crank--Nicolson) updates on the Wiener increments with Algorithm 5.1;
2. sample p0 conditional on (q0, \theta ,W, vT ) using MALA (Metropolis adjusted Langevin

algorithm), with gradients obtained using automatic differentiation with Algorithm
5.2;

3. sample \theta conditional on (x0,W, vT ) with Algorithm 5.3.
In these algorithms, we denote prior densities on \theta , q0, and p0 generically by \pi (Bayesian
notation). In each of the steps, we keep track of the changes to X induced by updating either
W , p0, or \theta . The acceptance probabilities in Algorithms 5.1, 5.2, 5.3, and 5.4 follow from
the computations in section 4.1 of [30]. For readers less familiar with MCMC algorithms, we
refer the reader to section A, where we also derive the acceptance probability for a simplified
version of Algorithm 5.1.
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Algorithm 5.1 Update (W,X), conditional on (x0, \theta , vT ).

1: Choose a persistence parameter \eta \in [0, 1].

2: Compute L\theta (t), M
\dagger 
\theta (t) and \mu \theta (t) for t \in [0, T ] by solving (4.7).

2: Sample a Wiener process Z, independently of W, and set

W \circ = \eta W +
\sqrt{} 
1 - \eta 2Z .

3: Compute X\circ = \scrG \scrP \theta (x0,W \circ ).
4: Compute

A = \Psi \theta (X
\circ )/\Psi \theta (X) .

5: Draw U \sim \scrU (0, 1).
6: If U < A, set X = X\circ and W =W \circ else keep previous X and W .

Algorithm 5.2 Update (p0, X), conditional on (q0, \theta ,W, vT ).

1: Choose a stepsize \delta > 0.
2: Sample Z \sim Ndn(0, I) (with d the dimension of a landmark).
3: Set x0 = (q0, p0) and propose

p\circ 0 = p0 +
\delta 

2
\scrL \theta (x0,W ) +

\surd 
\delta Z ,

where

\scrL \theta (x0,W ) = \nabla p0

\Bigl( 
log\Psi \theta (\scrG \scrP \theta (x0,W )) + log \widetilde \rho \theta (0, x0)\Bigr) .

Here, the gradient is obtained by automatic differentiation.
4: Set x\circ 0 = (q0, p

\circ 
0) and compute X\circ = \scrG \scrP \theta (x\circ 0,W ) and \scrL \theta (x\circ 0,W ).

4: Compute

A =
\Psi \theta (X

\circ )

\Psi \theta (X)

\widetilde \rho \theta (0, x\circ 0)\widetilde \rho \theta (0, x0) \pi (p
\circ 
0)

\pi (p0)

\psi (p0; p
\circ 
0 + \delta \scrL \theta (x\circ 0,W )/2, \delta I)

\psi (p\circ 0; p0 + \delta \scrL \theta (x0,W )/2, \delta I)
.

5: Draw U \sim \scrU (0, 1).
6: If U < A, set X = X\circ and p0 = p\circ 0 else keep previous X and p0.

5.2. Template estimation. In the template estimation problem, we assume I landmark
configurations are observed with error. We assume that each configuration is a stochastic
deformation of a fixed template configuration q0. Fix an initial momentum vector p0 and
denote x0 = (q0, p0). Let \{ W i, i = 1, . . . , I\} be independent Wiener processes on [0, T ]. We
assume that the ith landmark configuration is a sample from viT = LTX

i
T +N(0,\Sigma T ), where
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Algorithm 5.3 Update (\theta ,X), conditional on (x0,W, vT ).

1: Choose an irreducible Markov kernel q on the domain of \theta .
2: Sample \theta \circ from a kernel q(\cdot | \theta ).
3: Compute X\circ = \scrG \scrP \theta \circ (x0,W ).
4: Compute

A =
\Psi \theta \circ (X

\circ )

\Psi \theta (X)

\widetilde \rho \theta \circ (0, x0)\widetilde \rho \theta (0, x0) \pi (\theta 
\circ )

\pi (\theta )

q(\theta | \theta \circ )
q(\theta \circ | \theta )

.

5: Draw U \sim \scrU (0, 1).
6: If U < A, set X = X\circ and \theta = \theta \circ else keep previous X and \theta .

Xi has dynamics governed by the SDE of the Lagrangian, Langevin, or Eulerian model with
initial state x0 and driven by the Wiener process W i.

For simplicity we will assume the initial momentum to be zero, though it would not pose
a problem to relax this assumption using Algorithm 5.2. A Gibbs sampler to sample from the
posterior distribution of (W 1, . . . ,W I , \theta , q0) is obtained by iterating the following steps:

1. sample each W i conditional on (x0, \theta , v
i
T ) independently using Algorithm 5.1;

2. sample \theta conditional on (x0,W
1, . . . ,W I , v1T , . . . , v

I
T ) using a slight adaptation of Al-

gorithm 5.3, where the loglikelihood contributions from different W i's are added;
3. sample q0 conditional on (W 1, . . . ,W I , v1T , . . . , v

I
T ).

For updating q0, with a large number of landmarks simple random-walk updates will perform
terribly as these do not respect the geometry of the landmark configuration. For that rea-
son we propose to use the RMMALA (Riemannian Manifold Metropolis Adjusted Langevin
Algorithm) as introduced in section 5 of [13]. Details are given in Algorithm 5.4.

5.3. Computational aspects. The computational cost of the proposed algorithms mani-
fests itself in two ways. First, if parameter estimation is included (Algorithm 5.3), then the
backward ODEs in (4.7) have to be recomputed if the parameters of the proposal change.
Note, however, that in state-of-the-art competing methods the parameter is fixed, and if we
choose to do likewise, then the ODEs need to be computed only once. Once solved on a fine
temporal grid, at each gridpoint the Cholesky decomposition of M \dagger 

t needs to be computed,
which scales cubically in the number of landmarks. With a large number of landmarks the
computational costs can be drastically decreased by either applying an ensemble backward
filter or enforcing sparsity. For details of these approaches we refer the reader to sections 6
and 7.3 in [30].

Second, both Algorithms 5.2 and 5.4 rely on gradients obtained by automatic differentia-
tion. The runtime of the algorithms therefore depends on the computational efficiency of the
automatic differentiation algorithm used. With large numbers of landmarks we expect reverse-
mode automatic differentiation to be more efficient. Note that this is an implementational
issue and not a deficit of the proposed methods. Finally, we remark that the Eulerian model is
computationally more demanding than the Langevin model, as its diffusivity is nonconstant.
This incurs some extra cost in simulating the guided proposal but, more importantly, also
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Algorithm 5.4 Update q0, conditional on (\theta ,W 1, . . . ,W I , v1T , . . . , v
I
T ).

1: Choose a stepsize \delta > 0.
2: Sample Z \sim Ndn(0,K(q0)), where K(q) is the matrix with blocks K(q)ij = K(qi, qj),

1 \leq i \leq n.
3: Propose

q\circ 0 = q0 +
\=\delta 

2
K(q0)\scrL (q0) +

\surd 
\delta Z ,

where

\scrL (q0) := \nabla q

\biggl( 
log \widetilde \rho \theta (0, (q0, p0)) + I\sum 

i=1

log\Psi \theta (g((q0, p0),W
i))

\biggr) 
.

Here, the gradient is obtained by automatic differentiation. Set x\circ 0 = (q\circ 0, p0).
4: For i = 1, . . . , I, compute X\circ ,i = \scrG \scrP \theta (x\circ 0,W i) and \scrL \theta (q\circ 0).
5: Compute

A =
\widetilde \rho \theta (0, x\circ 0)\widetilde \rho \theta (0, x0) \pi (q

\circ 
0)

\pi (q0)

\psi (q0; q
\circ 
0 + \delta K(q\circ 0)\scrL (q\circ 0)/2, \delta K(q\circ 0))

\psi (q\circ 0; q0 + \delta K(q0)\scrL (q0)/2, \delta K(q0))

I\prod 
i=1

\Psi \theta (X
\circ ,i)

\Psi \theta (Xi)
.

6: Draw U \sim \scrU (0, 1).
7: If U < A, set Xi = X\circ ,i for i = 1, . . . , I and q0 = q\circ 0 else keep previous X and q0.

increased computational cost in computing \Psi (X\circ ) (cf. (4.5)). Contrary to the Lagrangian
model, for the Eulerian model also the second term on the right-hand side of (4.6) needs to
be evaluated.

From a practical point of view, we have noticed that tuning of stepsizes in the algorithm
can be delicate. This can potentially be resolved by adaptive tuning at early iterations and
fixing the stepsizes at subsequent iterations.

6. Numerical examples.

6.1. Settings. Before presenting examples, we discuss precise settings in the numerical
experiments.

6.1.1. Specification of Hamiltonian kernel. We take a Gaussian kernel K of the form
K(x) = k(x)Idd with

ka(x) = c exp
\bigl( 
 - \| x\| 2/(2a2)

\bigr) 
.(6.1)

Note that \nabla ka(x) =  - c a - 2 k(x)x. Without loss of generality we take c = 1.

Remark 2. For the Lagrangian model specified in (2.9), we have, by writing \~H = cH,

dq\alpha i = c
\partial \~H

\partial p\alpha i
dt and dp\alpha i =  - c \partial 

\~H

\partial q\alpha i
dt+ \gamma i dW

i
t ,(6.2)
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which, upon rescaling \gamma i \rightarrow \gamma i
\surd 
c and t \rightarrow t/c (and T \rightarrow T/c), has the form of (2.9) with

c = 1. This implies that the parameters \gamma and c are not mutually independent. A similar
consideration applies to the Eulerian model.

6.1.2. Specification of intrinsic noise. For the Lagrangian model, we take the noise on
all landmarks the same, scaled by

\surd 
n. That is, \gamma i = \gamma /

\surd 
n for all i \in \{ 1, . . . , n\} . In the

experiments we take \gamma = 0.1.
For the Eulerian model, let \tau > 0. We take the noise fields centered at points that are both

horizontally and vertically separated by a distance that is an integer multiple of 2\tau . Denote
the locations of the noise fields by \{ \delta j\} . At each location \delta j we take noise fields to be

2

\pi 
\gamma k\tau (x - \delta j)

\biggl[ 
1
0

\biggr] 
and

2

\pi 
\gamma k\tau (x - \delta j)

\biggl[ 
0
1

\biggr] 
.

This kernel is the same as the Hamiltonian kernel, but does not have to be so in general. The
scaling by 2/\pi is chosen so that if \gamma = 1, the noise on the landmark positions is close to 1
uniformly in space (close to a decomposition of unity).

6.1.3. Specification of extrinsic noise. In each example we choose \Sigma T = \epsilon 2I with \epsilon = 0.01
(cf. (3.5)), except in the examples of sections 6.2.1 and 6.3.2, where we took \varepsilon = 0.001. From a
practical point of view, as landmarks are often annotated manually, it is a realistic assumption
that \epsilon is strictly positive.

6.1.4. Specification of parameter \bfittheta . In the simulations, we fix the scaling parameter \tau 
of the noise-kernels, as well as their positions. We estimate the Hamiltonian kernel a, but fix
the size (amplitude) of the noise (\gamma ). Hence, \theta = a.

6.1.5. Prior on the landmark positions and momenta. In the problem of bridging two
landmark configurations we use a prior on the landmark momenta, similarly to the prior
suggested in section 3 of [29]. More specifically, we take, for \kappa \mathrm{m}\mathrm{o}\mathrm{m}, \kappa \mathrm{p}\mathrm{o}\mathrm{s} > 0,

\pi (q1, . . . , qn, p1, . . . , pn) = \pi (p1, . . . , pn | q1, . . . , qn)\pi (q1, . . . , qn)

= \psi 
\bigl( 
p1, . . . , pn; 0, \kappa \mathrm{m}\mathrm{o}\mathrm{m}K(q) - 1

\bigr) n\prod 
i=1

\psi (qi; 0, \kappa \mathrm{p}\mathrm{o}\mathrm{s}) .

As we assumed that the landmark positions are observed, we make the shortcut where we
assume (p1, . . . , pn) \sim N(0, \kappa \mathrm{m}\mathrm{o}\mathrm{m}K(q0)

 - 1), Here, \kappa \mathrm{m}\mathrm{o}\mathrm{m} is a parameter that we fix to a large
value. In the experiments we take \kappa \mathrm{m}\mathrm{o}\mathrm{m} = 100.

6.1.6. Tuning parameters for the MCMC sampler. As can be seen from Algorithms 5.1,
5.2, and 5.3, the proposed MCMC algorithm requires specification of

\bullet the persistence parameter \eta \in [0, 1] (Algorithm 5.1);
\bullet the stepsize \delta > 0 (Algorithm 5.2);
\bullet the Markov kernel q for updating \theta (Algorithm 5.3).

Naturally, these choices affect the efficiency of the algorithm to explore the support of the
target distribution. We target acceptance rates of about 50\%. For the Markov kernel q as \theta 
we use updates of the form log \theta \circ i | \theta i \sim N(log \theta i, \sigma 

2
\theta ) to ensure \theta \circ i > 0.
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6.1.7. Time discretization. We discretize guided proposals in time by taking a regular
grid on [0, 1] with mesh-width 0.01, followed by applying the map s \mapsto \rightarrow s(2  - s) to this grid.
The latter ensures the discretization is finer near the endpoint T , where the guiding term can
become large (see also section 5 on [43] for discretization of guided proposals, where the choice
of maps s \mapsto \rightarrow s(2 - s) is motivated).

For computing the guiding term and the right-hand side of (4.4), we solve the system
in (4.7), where the differential equation for L(t) was solved with an implicit Euler scheme
and both M \dagger and \mu were approximated using the trapezoid rule (all on a regular grid with
mesh-width 0.01).

6.1.8. Software, hardware. The source code of the numerical examples is available to-
gether with a Julia package BridgeLandmarks for shape analysis with stochastic landmark
dynamics, [44]. Automatic differentiation was implemented via [35]. All computations were
done on a MacBook Pro, with a 2 GHz Quad-Core Intel Core i5 with 16 GB RAM.

6.2. Examples for landmark matching.

6.2.1. One-dimensional landmarks. We start with an example that is meant to illustrate
the developed methodology in a one-dimensional setup. We consider a problem with just 3
landmarks. Here, the initial locations of the points are given by  - 0.5, 0.0, and 0.1 and we
condition on  - 0.5, 0.2, and 1.0 respectively. We consider both the Lagrangian and Eulerian
models and fixed the Hamiltonian kernel parameter to be 1.0. For the Eulerian model, 6 noise
sources were positioned on the domain [ - 2.5, 2.5] with \tau = 0.5. For the Lagrangian model
we fixed \gamma = 1/

\surd 
n \approx 0.58, and for the Eulerian model we took \gamma = 0.1. Hence, we assume

all parameters are known, except for the initial momenta and bridges. We consider landmark
matching without noise, which is forced by assuming that the final position is observed with
additive N(0, 10 - 6)-noise (\varepsilon = 0.001; cf. section 6.1.3).

We ran an algorithm composed of alternating one step of Algorithm 5.1 (bridge updating)
and one step of Algorithm 5.2 (initial momenta updating) for 20,000 iterations. We computed
the guided proposal on a grid with mesh-width 0.001, subsequently mapped to a nonequidis-
tant grid as explained in subsection 6.1.7. We initialized with zero momentum for all of the
three points at time 0.

Sampled bridges for the Lagrangian and Eulerian models are shown in Figures 1 and 2,
respectively. Clearly, upon initialization the bridges do not match the conditionings at time
t = 1. This is resolved, however, within a couple of thousand iterations. In Figures 3 and 4
we show for both models traceplots of the momenta, both at the initial time and final time
(note that we have matched the colors in the four figures). This foremost serves as a way to
detect whether or not the chain has reached its stationary regime. Second, it is interesting to
observe that for the Lagrangian model, the initial momenta are quite high and that for the
upper two curves (blue and orange) the initial momenta are a posteriori in opposite directions.
This can be explained by the value of the Hamiltonian kernel parameter (taken equal to 1),
which is deliberately chosen relatively large, forcing the orange and blue paths to remain
close. However, as we condition the paths at distant locations (0.2 and 1.0), the opposite
initial momenta ensure the conditionings at time 1 are satisfied.
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Figure 1. Bridges for the one-dimensional landmarks example, Lagrangian model. The sampler ran for
20,000 iterations. Every 1,000th iteration is shown. ``Early"" iterations are depicted less thick. Note that the
initial trajectory does not satisfy the conditioning.
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0.00 0.25 0.50 0.75 1.00

time

po
si

tio
n

Figure 2. Bridges for the one-dimensional landmarks example, Eulerian model. The sampler ran for 20,000
iterations. Every 1,000th iteration is shown. ``Early"" iterations are depicted less thick. Note that the initial
trajectory does not satisfy the conditioning.

6.2.2. Two-dimensional example from [21]. Here we consider an example with 12 two-
dimensional landmarks from [21]. In this case we also include the Hamiltonian kernel pa-
rameter a in the sampler, which is endowed with the Pareto distribution. More precisely, we
assume p(a) = 0.1a - 21[0.1,\infty )(a) (hence the shape and scale parameters are taken 1 and 0.1,
respectively). Having a bounded away from zero is beneficial for numerical stability. Just
like the previous example, for the Lagrangian model we fixed \gamma = 1/

\surd 
n \approx 0.29, and for the

Eulerian model we fixed \gamma = 0.1.
We ran an MCMC sampler with 20,000 iterations, where one iterate consists of applying

one step of Algorithms 5.1, 5.2, and 5.3. We include figures for the Lagrangian model. In
Figures 5 and 6 we visualize bridges and shape-evolution. Figure 7 shows traceplots for both
coordinates of the momentum at the initial time and final time. From these figures one can
deduce, for example, that for landmark number 5 the initial momentum is quickly increased
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initial time final time
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Figure 3. Lagrangian model, one-dimensional landmarks example. Traceplots showing iterates of momenta
at times 0 and 1. Every 10th iteration is shown.
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Figure 4. Eulerian model, one-dimensional landmarks example. Traceplots showing iterates of momenta
at times 0 and 1. Every 10th iterations is shown.

after the initial iterations, to ensure that the bridge path indeed moves in a northward di-
rection. Figure 8 gives a traceplot of the Hamiltonian kernel parameter a. One can see that
it takes about 10,000 iterations for the sampler to stabilize, and the corresponding change in
sampled bridges is quite apparent in Figure 5 (switch from grayish to purple-colored paths).

6.2.3. Corpus callosum. Here, we consider an example with many more landmarks where
we start from an ellipse and transform to landmarks representing points on the outline of a
human corpus callosum. In total there are 77 landmarks. Here we used the Lagrangian
model with a = 0.2 (Hamiltonian kernel parameter), the average distance between adjacent
landmarks on the shape and \gamma = 1/

\surd 
n \approx 0.12. In Figure 9 we show sampled bridges over

2,500 iterations, and in Figure 10 correspondingly the deformed shapes at 4 time instances
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iterate

Figure 5. Bridges for the Joshi--Miller example, Lagrangian model. The sampler ran for 20,000 iterations.
Every 1,000th iteration is shown.
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Figure 6. Shape evolution for the Joshi--Miller example, Lagrangian model. The sampler ran for 20,000
iterations. Every 1,000th iteration is shown.

in [0, 1]. Traceplots of the momenta at times 0 and 1 are shown in Figure 11. This example
illustrates that the proposed algorithms can also be used in settings with a large number of
landmarks. Note that after about 200 iterations the bridges visually look very similar, whereas
the early (light-gray) paths look different.

6.3. Examples for template estimation.

6.3.1. Simulated shapes on an ellipse. Here, we simulated forward 10 trajectories n = 15
landmarks where the initial configuration is an ellipse. In the MCMC estimation, we took the
Lagrangian model and fixed the initial momenta to be equal to zero but include parameter
estimation. Hence, each MCMC iteration consists of executing one step of Algorithms 5.1, 5.3,
and 5.4. The parameter a is endowed with the Pareto distribution. More precisely, we assume

D
ow

nl
oa

de
d 

08
/0

8/
23

 to
 1

31
.1

80
.1

31
.2

18
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

314 A. ARNAUDON, F. VAN DER MEULEN, M. SCHAUER, AND S. SOMMER
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Figure 7. Joshi--Miller example, Lagrangian model. Traceplots showing iterates of momenta at times 0 and
1. Every 10th iteration is shown.

0.1
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0.4

0 5000 10000 15000 20000

iterate

a

Figure 8. Joshi--Miller example, Lagrangian model. Traceplots showing iterates of the Hamiltonian kernel
parameter a.

p(a) = 0.1a - 21[0.1,\infty )(a) (hence the shape and scale parameters are taken to be 1 and 0.1,
respectively). We ran the sampler for 2,500 iterations, saving every 50th configuration. We
deliberately initialized the template configuration incorrectly by taking one of the observed
configurations and rotating and stretching the shape. This is done to illustrate that the
RMMALA steps perform satisfactory. In any practical application one could initialize the
template shape by one of the observed shapes.

Iterators of the template and parameter a are shown in Figures 12 and 13, respectively.
Clearly, the initial configuration can be recovered quite well, despite there being only 10
observed shapes. From the traceplots of the parameter a it appears there is mild posterior
uncertainty about its value.

6.3.2. Cardiac data. In Figure 14 we show the results when applying the algorithm to
landmarks on 14 cardiac images of human left ventricles [41]. The manually annotated land-
marks are consistently placed over the set of shapes. Based on 22 landmarks for each shape
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Figure 9. Shape evolution for the Corpus callosum data. The sampler ran for 500 iterations. Every 10th
iteration is shown.
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Figure 10. Corpus callosum data. Initial shape (black) and final shape (orange) with 77 landmarks. Every
10th iteration from 500 iterations is shown.

we estimate the template shape and Hamiltonian kernel parameter. This experiment extends
the template estimation with Brownian motion performed in [40] to the models in focus in this
paper. We used parameter updating (assuming a priori p(a) = 0.01a - 21[0.01,\infty )(a)), bridge
updating, and initial state updating (using RMMALA), while fixing the initial momenta to
zero. Hence, just as in the previous subsection, each MCMC iteration consists of executing
one step of Algorithms 5.1, 5.3, and 5.4. We used 2,500 iterations. From Figure 14 it appears
that the chain reaches its stationary region within 500 iterations.

7. Discussion and future work. We have extended the framework of [38, 8] for sam-
pling diffusion bridges to nonlinear high-dimensional stochastic Hamiltonian systems. For
this work, problems in computational anatomy [46] revolving around systems of particles
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Figure 11. Corpus callosum data. Traceplots showing iterates of momenta at times 0 and 1.
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Figure 12. Initial shape configuration for the example in section 6.3.1 using the Lagrangian model. The
dashed gray curves are the 10 observed configurations. Every 20th MCMC iterate is shown. Note that RMMALA
quickly ``discovers"" the deliberately wrong initialization.

to describe images have been our main motivation. We used these models throughout to
illustrate the application of diffusion bridges, specifically in stochastic landmark dynamics.
We left open many possible improvements of this method, such as allowing for multiple ob-
servations over time, resolving unknown landmark correspondence, including a step towards
infinite-dimensional shape matching, and solving the problem of the parametrization of these
shapes [6].

This work opens the door to not only a wider use in statistical inference in computational
anatomy, but also other related fields, where high-dimensional stochastic Hamiltonian systems
are involved in the modeling, such as in biology, data assimilation, swarming, etc. From a
more theoretical point of view, various extensions of this work could be considered. The
driving Brownian motion in the SDE could, for example, be generalized to a L\'evy process or
even rough paths.
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Figure 13. Traceplot for Hamiltonian kernel parameter for the example in section 6.3.1 using the La-
grangian model.

From a numerical perspective, we used classical methods for simplicity, but the pre-
sented algorithms could be extended to include more modern numerical integration schemes
or MCMC methods, such as geometric integrators [31, 14, 32, 19, 10], to preserve the geomet-
rical structure of the problem, or some more advanced geometrical Hamiltonian Monte Carlo
methods [3, 4]. In addition, the use of automatic differentiation, similar to those in [25, 26],
has turned out to be beneficial for the implementation of efficient methods, and surely deserves
to be more exploited for future works.

Appendix A. Markov chain Monte Carlo. AMarkov chain Monte Carlo (MCMC) method
for sampling from a distribution \pi is any method producing an ergodic Markov chain whose
stationary distribution is \pi . Virtually all such algorithms can be seen as specific instances of
the Metropolis--Hastings algorithm. For this paper it suffices to assume that \pi has a density
with respect to Lebesgue measure on \BbbR d. We will denote this density by \=\pi . Suppose Q is
a Markov kernel on \BbbR d with density q. That is, for measurable sets B, x \mapsto \rightarrow Q(x,B) is a
measurable mapping, and for fixed x, B \mapsto \rightarrow Q(x,B) =

\int 
B q(x, y) dy is a probability measure.

Definition 2. The Metropolis--Hastings algorithm is the algorithm by which a Markov chain
is constructed which evolves xn = x to xn+1 by the following steps:

1. Propose y from the proposal kernel Q(x, \cdot ).
2. Compute

\alpha (x, y) = min

\biggl( 
1,

\=\pi (y)

\=\pi (x)

q(y, x)

q(x, y)

\biggr) 
.

3. Set

xn+1 =

\Biggl\{ 
y with probability \alpha (x, y),

x with probability 1 - \alpha (x, y).

Under weak assumptions, this algorithm indeed produces an ergodic Markov chain with
stationary distribution \pi . For computing \alpha (x, y) it suffices to know \pi up to a proportionality
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Figure 14. Cardiac data example from section 6.3.2. Top: iterates for template shape (locations of land-
marks at time zero). The first 1,250 iterates are shown in the left panel, ``initial""; the final 1,250 iterates
are shown in the right panel, ``final."" Middle: evolution over time of one chosen (fixed) shape (the iterates
are shown at times 0.4375, 0.75, 0.9375, and 1.0). In both the top and middle figures the observed landmark
locations are depicted by black dots, connected by orange line segments. Bottom: traceplot for the Hamiltonian
kernel parameter.D
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constant. Within Bayesian statistics, this is a very attractive property of the algorithm, as
the posterior is typically only known up to an integration constant.

The specification of the algorithm leaves open the choice of the proposal kernel Q. A
symmetric random walk proposal q(x, y) = \varphi (y - x), with \varphi a symmetric density around zero,
is a simple choice that may work if the dimension d is small. Otherwise, a more sophisticated
proposal kernel that takes gradient information into account may be computationally more
efficient. The Metropolis Adjusted Langevin Algorithm (MALA) is based on the fact that the
solution to the stochastic differential equation

dXt = A\nabla log \=\pi (Xt) dt+
\surd 
2AdWt,

with W denoting Brownian motion, has invariant distribution \pi . Here, A is a strictly positive
definite preconditioning matrix and

\surd 
A is the matrix-square root of A. Upon discretizing

this equation with stepsize \tau (Euler forward discretization) we obtain the proposal density
q(x, y) = \psi (y;x + A\nabla log \=\pi (x), 2A) with (as before) \psi (x;\mu ,\Sigma ) denoting the density of the
N(\mu ,\Sigma )-distribution, evaluated at x. Both \tau and A are tuning parameters; \tau acts as a stepsize.
In general, the choice of A is dictated by the geometrical properties of the density \=\pi . This
is the basic idea of the Riemannian MALA algorithm. If the dimension d is large, one often
uses a proposal where only parts for the current iterate xn = x are stochastically perturbed.
This is sometimes called ``one-at-a-time"" sampling, ``substitution sampling,"" or simply ``Gibbs
sampling."" Clearly, this is just a special case of the Metropolis--Hastings algorithm.

For illustration purposes, we give a finite-dimensional version corresponding to Algorithm
5.1 (updating of bridges for fixed parameter and initial state). Hence assume a data-generating
model of the form w \sim N(0, I), x = F (w) leading to the observation y = h(x)+\epsilon , \epsilon being a ran-
dom quantity independent of w. Assume the likelihood for the parameter x is given by L(x) =
L(F (w)). Suppose L(F (w)) = c\Psi (G(w)) for fixed maps G and \Psi , the constant being indepen-
dent of w. Using the proposal density q(w\circ | w), the acceptance probability for the Metropolis--

Hastings algorithm is given by A \wedge 1, where A = q(w| w\circ )
q(w\circ | w)

\psi (w\circ ;0,I)
\psi (w;0,I)

\Psi (G(w\circ ))
\Psi (G(w)) . If q is chosen ac-

cording to the Crank--Nicolson rule, i.e., w\circ | w \sim N(\eta w, (1 - \eta 2)I), then the first two terms in
the expression for A cancel and we end up with A = \Psi (x\circ )/\Psi (x), where x\circ = G(w\circ ) and x =
G(w). This expression remains valid if w is a Wiener process and G = \scrG \scrP is a guided proposal.

Appendix B. Matching conditions on the auxiliary process for exact landmark matching.
For exact matching, absolute continuity will only hold if the parameters of the auxiliary process\widetilde X satisfy certain matching conditions. In case the diffusion is uniformly elliptic, LT = IN\times N ,
it was shown in [38] that \widetilde a = \sigma \sigma \prime must satisfy \widetilde a(T ) = a(T, xT ) for absolute continuity. In
the more general case considered here, the matching conditions look somewhat more difficult;
a precise statement is given in section 2 of [8]. Especially for the Eulerian model, these
conditions are hard to verify (mainly due to the fact that the diffusivity is state dependent
and not all components of XT are observed). However, the results in this paper suggest that
\BbbP  \star is absolutely continuous with respect to \BbbP \circ if (i) condition (4.9) is satisfied, and (ii) the
number of noise sources J satisfies J \geq Nd (N and d denoting the number of landmarks and
their dimension, respectively). This conjecture is numerically confirmed by experiments in
section 4.1 of [8]. The second condition that requires sufficiently many noise sources has also
been discussed in Remark 4.1 in [2].
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Appendix C. Proof of Proposition 1 on Stratonovich to It\^o correction for Eulerian
model. In coordinates, the stochastic equations for the Eulerian model are

dq\alpha i =
\partial h

\partial p\alpha i
dt+

J\sum 
l=1

\sigma \alpha l (qi) \circ dW l
t ,

dp\alpha i =  - \partial h

\partial q\alpha i
dt - 

J\sum 
l=1

\sum 
\beta 

\partial \sigma \beta l (qi)

\partial q\alpha i
p\beta i \circ dW

l
t .

(C.1)

The same process with It\^o's integrals has the additional term

(C.2) dq\alpha i + =
1

2

\partial \sigma \alpha l (qi)

\partial q\beta i
\sigma \beta l (qi)

in the q equation, and for the p equation

(C.3) dp\alpha i + =
1

2
p\gamma i
\partial \sigma \gamma l (qi)

\partial q\beta i

\partial \sigma \beta l (qi)

\partial q\alpha i
 - 1

2
p\beta i
\partial 2\sigma \beta l (qi)

\partial q\alpha i \partial q
\gamma 
i

\sigma \gamma l (qi) .

The extra term for q\alpha given in (C.2) equals

1

2

\sum 
\ell 

\sum 
\beta 

\partial \sigma \alpha \ell (q)

\partial q\beta 
\sigma \beta \ell (q) =

1

2

\sum 
\ell 

\sum 
\beta 

\gamma \alpha \nabla \beta 
\=k\tau (q  - \delta )\gamma \beta \=k\tau (q  - \delta )

=
1

2

\sum 
\ell 

\langle \nabla \=k\tau (q  - \delta ), \gamma \rangle \=k\tau (q  - \delta )\gamma \alpha ,

which gives (4.11). Notice that we write \nabla \beta to denote (\partial )/(\partial q\beta ).
For p\alpha the first term on the right-hand side of (C.3) is given by

1

2

\sum 
\ell 

\sum 
u

\sum 
\beta 

pu
\partial \sigma ul (q)

\partial q\beta 
\partial \sigma \beta l (q)

\partial q\alpha 
=

1

2

\sum 
\ell 

\sum 
u

\sum 
\beta 

\gamma u\gamma \beta \nabla \beta 
\=k\tau (q  - \delta )\nabla \alpha 

\=k\tau (q  - \delta )pu

=
1

2

\sum 
\ell 

\nabla \alpha 
\=k\tau (q  - \delta )\langle \gamma , p\rangle \langle \gamma ,\nabla \=k\tau (q  - \delta )\rangle .

This gives the first term in (4.12). The second term on the right-hand side of (C.3) is given
by

 - 1

2

\sum 
\ell 

\sum 
u

\sum 
\beta 

p\beta 
\partial 2\sigma \beta l (q)

\partial q\alpha \partial qu
\sigma ul (q) =  - 1

2

\sum 
\ell 

\sum 
u

\sum 
\beta 

p\beta \gamma \beta 
\bigl[ 
\nabla \alpha 

\bigl( 
\nabla u

\=k\tau (q  - \delta )
\bigr) \bigr] 
\gamma u\=k(q  - \delta )

=  - 1

2

\sum 
\ell 

\langle (p, \gamma )\rangle \=k\tau (q  - \delta )\nabla \alpha 

\bigl( 
\langle \nabla \=k(q  - \delta ), \gamma \rangle 

\bigr) 
.

This gives the second term in (4.12).
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