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The transfer function is the characteristic function of the
dispersive element of a reconstructive spectrometer. It maps
the transmitted spatial intensity profile to the incident spec-
tral intensity profile of an input. Typically, a widely tunable
and narrowband source is required to determine the trans-
fer function across the entire operating wavelength range,
which increases the developmental cost of these reconstruc-
tive spectrometers. In this Letter, we utilize the parabolic
dispersion relation of a planar one-dimensional photonic
crystal cavity, which acts as the dispersive element, to deter-
mine the entire transfer function of the spectrometer using
measurements made at only two wavelengths. Using this
approach, we demonstrate reliable reconstruction of input
spectra in simulations, even in the presence of noise. The
experimentally reconstructed spectra also follow the spectra
measured using a commercial spectrometer. © 2023 Optica
Publishing Group

https://doi.org/10.1364/OL.494412

Introduction. Reconstructive spectrometers recover an input
frequency spectrum by solving an inverse problem using differ-
ent computational algorithms [1–9]. These compact spectrome-
ters offer high resolution and break the inevitable size-resolution
trade-off of conventional spectrometers. Their operating princi-
ple relies on mapping the spatial information to the spectral
information using the transfer function of the system, which
is the pre-calibrated system response. Different platforms such
as patterned photonic crystals [10–12], disordered photonic
structures [2], photonic crystal cavities [1,13,14], miniaturized
microdonut resonators [15], integrated micro-ring resonator
with diffraction gratings [16], arrayed waveguide gratings [17],
variable material absorption [18], spectral filters [19,20], surface
plasmon polaritons [21], and dielectric metasurfaces [22], have
been used to demonstrate reconstructive spectrometers. Prior
to our recent work [1], most of these demonstrations relied on
complex and expensive fabrication techniques and were sen-
sitive to optical misalignment. Our demonstration utilized a
scalable fabrication technique, a low-cost web camera, and a

computational reconstruction technique to reliably reconstruct
the input spectrum in the presence of noise and optical
misalignment.

A critical issue that remains unaddressed by the state-of-
the-art reconstructive spectrometers, including our recent work
[1], is the requirement of a tunable and narrowband source
to generate the transfer function of the system for use in the
reconstruction algorithm. This requirement increases the cost
of development of the spectrometer and hinders wide deploy-
ment in the field. Here, we propose and demonstrate a technique
that eliminates the need of a tunable and narrowband source to
generate the transfer function of a reconstructive spectrometer
based on a planar one-dimensional photonic crystal cavity. The
technique utilizes the parabolic dispersion relation of the cavity
that can be characterized over the entire operating wavelength
range by measurements made at only two wavelengths. Through
finite-difference time-domain (FDTD) simulations, we show that
the technique reliably reconstructs the input spectra, even in the
presence of noise. We also experimentally reconstruct the input
spectra and compare them with the spectra measured using a
commercial spectrometer.

Theoretical modeling. System description. The reconstruc-
tive spectrometer is comprised of an objective lens, a planar
one-dimensional photonic crystal cavity, a screen, and a web-
camera [1]. When an input beam is focused on the photonic
crystal cavity using the objective lens, the transmitted beam
is comprised of annular beams of different divergence angles
corresponding to different wavelengths present in the input
spectrum (Fig. 1). The transmitted beams have annular spatial
profiles because the photonic crystal cavity acts as a resonant
spatial filter. An incident wavelength needs to be shorter than
the cavity resonance wavelength at normal incidence to generate
an annular beam in transmission [23].

FDTD simulations. We focus a linearly (vertically) polarized
laser source using an objective lens (numerical aperture, NA =
0.9) on the one-dimensional photonic crystal cavity (Fig. 1)
[1,23]. A focused beam has different polarization directions for
different parts of the beam. When the input to the objective lens
is a vertically polarized and collimated beam, the polarization of
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Fig. 1. Schematic of a reconstructive spectrometer based on a
one-dimensional photonic crystal cavity (1D PhC): DBR, distrib-
uted Bragg reflector.

Fig. 2. (a),(b) Simulated intensity as a function of divergence
angle: incident on (black solid curves) and transmitted by (red solid
curves) a photonic crystal cavity. The incident laser wavelengths are
632.9 nm and 656.3 nm. (c),(d) Normalized transmitted intensity
profiles (red dashed curves) for both the laser wavelengths and the
associated Lorentzian fits (blue dashed curves).

the focused beam after the objective lens is transverse magnetic
(TM) in the vertical direction and transverse electric (TE) in the
horizontal direction [23].

We calculate the transmitted intensity profile as a function of
the divergence angle (θ) for a fixed azimuthal angle (ϕ = 90◦ rep-
resenting TM polarization) using the FDTD method (Lumerical
Inc) (Fig. 2). While both TM and TE polarizations are present
in the transmitted beam, we work with only TM polarization
because the transmitted annular beam has higher intensity for
the TM polarization (vertical direction) than the TE polarization
(horizontal direction) due to the polarization-dependent trans-
mission coefficient [1,23]. The positive and negative angles (+θ
and −θ) correspond to azimuthal angles differing by 180◦. The
planar symmetry of the photonic crystal cavity translates into
symmetry in the transmitted intensity profile in the transverse
plane. The black solid curves in Figs. 2(a) and 2(b) show the
intensity profiles of linearly polarized laser beams (at wave-
lengths 632.9 nm and 656.3 nm) incident on the photonic crystal
cavity as a function of divergence angle for TM polarization [23].
The incident intensity profiles follow a Gaussian distribution
with width decided by the NA of the objective lens. Both the laser
wavelengths are shorter than the cavity resonance wavelength
(670 nm), and therefore, the cavity transmits a narrow band
of angles at the incident wavelengths [red curves in Figs. 2(a)
and 2(b)], resulting in annular spatial profiles of the transmitted
beam.

We observe the amplitude and the angular location of the
peak of the transmitted intensity depend on the incident laser
wavelength. The closer the incident wavelength is to the cav-
ity resonance wavelength at normal incidence, the smaller the
divergence angle of the transmitted annular beam is. Since the

divergence angle is imparted by the objective lens, the peak
amplitude of the transmitted beam is decided by the NA of
the objective lens. We normalize the transmitted profiles to the
incident intensity profiles [red dotted curves in Figs. 2(c) and
2(d)]. This normalization removes the wavelength-dependent
amplitude variation in the transmitted intensity profiles which
is introduced by the objective lens. These normalized transmit-
ted profiles are essentially the transfer function of the photonic
crystal cavity at the specific incident wavelengths. We fit both of
these normalized transmitted intensity profiles to a Lorentzian
function [Figs. 2(c) and 2(d), blue dotted curves], and find that
the Lorentzian function is indeed a good fit. These transmitted
intensity profiles peak at a resonance angle (θi) that is a function
of the difference in the incident wavelength (λi) and the cavity
resonance wavelength (λc) and have a full width at half maxi-
mum (FWHM) of δθi. Therefore, we model the transfer function
of the photonic crystal cavity, T(θi, λi), at incident wavelength
λi as a Lorentzian function centered at resonance angle θi with
a FWHM of δθi and the peak amplitude set to unity.

Next, we calculate the transfer function matrix across the
entire operating wavelength range of the spectrometer by deter-
mining the resonance angle and the FWHM of the resonance as a
function of the incident wavelength using only two laser sources.
We calculate the resonance angle of the one-dimensional planar
photonic crystal cavity as a function of the incident wavelength
by the following analytical expression [1]:

ωi = Ak2
o sin2 θi + ωc, (1)

where ωc=2πc/λc, ωi=2πc/λi, k0=2π/λi, and A is a constant
which depends on the design parameters of the system. We
determine resonance angles for two available laser wavelengths
by capturing their transmitted annular intensity profiles at two
positions separated by 33 mm along the direction normal to
the photonic crystal structure (Supplementary figure S1). Using
these two resonance angles, we determine the two unknown
parameters, A and λc, of Eq. (1) and fully characterize the λi − θi

relation. This calculated λi − θi relation matches well with the
results calculated using FDTD method by varying the incident
wavelength (Supplementary figure S2a). Similarly, we deter-
mine the FWHM of the resonances of the two laser wavelengths
from the widths of the transmitted annular intensity profiles [1]
and fully characterize the λi − δθi relation (details in the Sup-
plement 1). Using the resonance angles, we also calculate the
location of the waist of the beam focused by the objective lens
(Supplementary figure S1). Figure 3(a) shows the transfer func-
tion [T(θ, λ)] of the photonic crystal cavity calculated using only
two laser sources (wavelengths 632.9 nm and 656.3 nm) that are
TM polarized. Our calculated transfer function matches well
with the transfer function calculated using the FDTD method by
varying the incident wavelength [Supplementary figures S2(b)
and S2(c)].

Finally, we use the calculated transfer function to reconstruct
spectra of two different inputs (Table 1). First, we capture the
transmitted spatial intensity profiles of the two inputs after pass-
ing through the photonic crystal cavity [Figs. 3(b) and 3(c)].
Since the location of the beam waist is already known, we cap-
ture the transmitted intensity profiles for both the input spectra
at only one position and calculate the transmitted intensity pro-
files as a function of divergence angle for both the input spectra
(Supplementary figure S1). We assume that all input beams fill
the aperture of the objective lens so that the angle-dependent
intensity variation is decided by only the NA of the objective
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Fig. 3. (a) Theoretically calculated transfer function, T(θ, λ), as
a function of angle and input wavelength for TM polarization direc-
tion using only two laser sources. (b),(c) Transmitted intensity
profiles of the two inputs. (d),(e) Normalized transmitted inten-
sity profiles [I(θ)] as a function of angle of the two inputs. (f),(g)
Incident (black curves) and reconstructed spectra (red curves) of
the two inputs.

Table 1. Parameters of Input Spectra

Input Profile Peak
Wavelength

FWHM Amplitude

1 One Lorentzian 628 nm 15 nm 1

2 Two Lorentzian 628 nm 15 nm 1
656.3 nm 2 nm 0.5

lens and the wavelength of the input source. We model the
angle-dependent intensity profile of any input beam after the
objective lens as a Gaussian distribution with its FWHM equal
to an average of the FWHMs measured for the two calibrat-
ing laser sources (632.9 nm and 656.3 nm). This approximation
eliminates the need of removing the photonic crystal cavity to
measure the angle-dependent intensity profile of each input after
the objective lens for normalization purposes. Figures 3(d) and
3(e) show the transmitted spatial intensity profiles [I(θ)] of the
two inputs as a function of the divergence angle, normalized
with respect to the Gaussian distribution that represents the
angle-dependent intensity profile after the objective lens. The
transfer function of the photonic crystal cavity [T(θ, λ)] relates
the transmitted spatial intensity profile [I(θ)] to the incident
spectral intensity profile [I(λ)] using the following expression
[1]:

I(θ) =
N∑︂

i=1

T(θ, λn)I(λi). (2)

Using Eq. (2), we reconstruct both the spectra [Figs. 3(f) and
3(g)] that follow the input spectra (black curve) set in the sim-
ulation well. Our technique measures the peak wavelengths of
the input spectra as 627.88 ± 0.09 nm and 656.33 ± 0.06 nm.

Generally, the solution of an inverse problem is sensitive to
inevitable measurement errors and instrument noise. Therefore,
to check the robustness of our reconstruction technique in sim-
ulations, we reconstruct the spectrum in the presence of noise.
We deliberately add Poisson noise in I(θ) using the following
expression:

I(θ) = Poisson

(︄
I(θ)

Nph

I(θ)

)︄
, (3)

where Poisson generates random numbers from the Poisson dis-
tribution and Nph is the average number of photons per pixel
incident on the detector. We use the mean gradient descent
(MGD) method with an L2-norm squared error as a data fit-
ting term and the Huber penalty as a regularizer to find the

Fig. 4. Simulated incident (black curves) and reconstructed spec-
tra (red curves) for the two inputs in presence of three noise levels.
Noise-1, Noise-2, and Noise-3 represent 1000, 500, and 100 photons
per pixel, respectively.

optimized reconstructed spectrum [24]. As an initial guess, we
use truncated singular value decomposition to eliminate some
part of the transmitted intensity I(θ)which is most easily affected
by the noise. We reconstruct spectra of both the inputs for three
different values of noise levels: 1000; 500; and 100 photons per
pixel (Fig. 4). Our method is able to reconstruct the spectrum
for 100 photons per pixels, which is an acceptable noise level
for practical situations. We observe a slightly lower amplitude
of the narrower peak (at 656.3 nm) in Input-2 after reconstruc-
tion in comparison with the input spectrum. We attribute this
amplitude difference to the regularization process used in our
reconstruction algorithm, which is required to minimize grainy
artefacts in the reconstructed spectrum.

Experiment. We fabricate a photonic crystal cavity by intro-
ducing a silicon dioxide (SiO2) defect between two distributed
Bragg reflectors, each composed of six alternate thin films of
SiO2 and titanium dioxide (TiO2) [1,23]. We focus a vertically
polarized and collimated laser beam (details in the Supplement
1) on the photonic crystal cavity using an objective (NA: 0.9)
lens (Supplementary figure S1). We measure the intensity pro-
files, incident on the cavity and transmitted by the cavity, at two
positions separated by 33 mm along the normal direction of the
photonic crystal structure for laser wavelengths 632.9 nm and
656.3 nm (Supplementary figure S3).

We observe that the incident intensity profiles follow a
Gaussian distribution centered at 0◦ angle and the transmit-
ted intensity profiles follow a Lorentzian distribution centered
at the resonance angle (Supplementary figure S3), both for TM
polarization. By normalizing the transmitted intensity profiles
with the incident intensity profiles, we calculate the resonance
angles (resonance widths) for laser wavelengths λ1 = 632.9 nm
and λ2 = 656.3 nm as 29.77◦(2.49◦) and 17.68◦(3.40◦) for TM
polarization. Following the same procedure as in simulation,
we calculate the transfer function [Fig. 5(a)] using Eq. (1), and
resonance angles and resonance widths of the two laser sources.

Finally, we test our technique to experimentally reconstruct
two different input spectra (Table 1). We capture the transmitted
intensity profiles for both the input spectra at a single position
only [Figs. 5(b) and 5(c)]. We follow the same procedure as dis-
cussed in the simulations section and normalize the transmitted
intensity to the incident intensity profiles. Figures 5(d) and 5(e)
show the normalized transmitted intensity profiles as a function
of divergence angle obtained by removing the angle-dependent
variation introduced by the objective lens. Using these nor-
malized transmitted intensity profiles [Figs. 5(d) and 5(e)], the
calculated transfer function [Fig. 5(a)], Eq. (2), and the mean
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Fig. 5. (a) Experimentally calculated transfer function T(θ, λ) as
a function of angle and input wavelength for the fabricated sam-
ple using the two laser sources. (b),(c) Experimentally measured
transmitted intensity profiles of the two inputs. (d),(e) Normalized
transmitted intensity profiles [I(θ)] as a function of angle for the
two inputs. (f),(g) Incident (black curves) and reconstructed spectra
(red curves) of the two inputs. The incident spectra are measured
using a fiber-based spectrometer (HR4000 Ocean Optics). All scale
bars are 10 mm. All images of the transmitted beam are adjusted to
the same maximum brightness and the same contrast enhancement.

gradient descent method, we reconstruct the input spectra [red
curves in Figs. 5(f) and 5(g)] which follow the spectra meas-
ured using a commercial spectrometer with a resolution of 1
nm [black curves in Figs. 5(f) and 5(g)]. The absolute relative
error in the peak wavelengths of the reconstructed spectra is less
than 1 nm. We observe little bumps in the reconstructed spectra
due to background noise, which can be suppressed by increas-
ing the noise tolerance in the reconstruction algorithm. We also
observe the width of the narrower peak in Input-2 in the recon-
structed spectrum is broader than in the spectrum measured
using the commercial spectrometer. We attribute this difference
in the reconstructed and the input spectra to the cavity linewidth
(≈ 5 nm at normal incidence; Supplementary figure S4) of our
structure. To confirm this, we reconstruct a narrowband laser
spectrum (Supplementary figure S5) and observe that the mini-
mum linewidth of the reconstructed spectrum is limited by the
cavity linewidth of the structure. The cavity linewidth of the
structure can be reduced by increasing the number of periodic
layers [25–27], which will aid in an accurate reconstruction of
the input spectrum.

Conclusion and discussion. In conclusion, we have proposed
and experimentally demonstrated a technique to determine the
transfer function of a reconstructive spectrometer, across the
entire operating wavelength range, by making measurements
at only two wavelengths. Our technique utilizes the parabolic
dispersion relation of a planar one-dimensional photonic crys-
tal cavity. The transfer function calculated using only two laser
sources matches well with the transfer function calculated using
finite difference time domain simulations. This technique elimi-
nates the requirement of a widely tunable and narrowband light
source for calibration of the spectrometer. We have experimen-
tally compared the spectrum reconstructed using our technique
with the spectrum measured using a commercial spectrometer.
The spectral resolution of the spectrometer depends on the cav-
ity linewidth and can be improved by increasing the number
of periodic layers in the distributed Bragg reflectors. While the
initial calibration of the spectrometer requires measurements at
two positions along the optics axis of the system, reconstruction
of an unknown input requires measurement at only one posi-
tion, eliminating movement of any component and adding to
the stability of the system. Our proposed technique can be eas-
ily applied to any reconstructive spectrometer whose dispersive

element exhibits a parabolic dispersion relation, irrespective of
the fabrication method or material choice.
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