

Delft University of Technology

Guided Malware Sample Analysis Based on Graph Neural Networks

Chen, Yi Hsien; Lin, Si Chen; Huang, Szu Chun; Lei, Chin Laung; Huang, Chun Ying

DOI
10.1109/TIFS.2023.3283913
Publication date
2023
Document Version
Final published version
Published in
IEEE Transactions on Information Forensics and Security

Citation (APA)
Chen, Y. H., Lin, S. C., Huang, S. C., Lei, C. L., & Huang, C. Y. (2023). Guided Malware Sample Analysis
Based on Graph Neural Networks. IEEE Transactions on Information Forensics and Security, 18, 4128-
4143. https://doi.org/10.1109/TIFS.2023.3283913

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TIFS.2023.3283913
https://doi.org/10.1109/TIFS.2023.3283913

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

4128 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Guided Malware Sample Analysis Based
on Graph Neural Networks

Yi-Hsien Chen , Si-Chen Lin, Szu-Chun Huang, Chin-Laung Lei , Member, IEEE,
and Chun-Ying Huang , Senior Member, IEEE

Abstract— Malicious binaries have caused data and monetary
loss to people, and these binaries keep evolving rapidly nowa-
days. With tons of new unknown attack binaries, one essential
daily task for security analysts and researchers is to analyze
and effectively identify malicious parts and report the critical
behaviors within the binaries. While manual analysis is slow and
ineffective, automated malware report generation is a long-term
goal for malware analysts and researchers. This study moves
one step toward the goal by identifying essential functions in
malicious binaries to accelerate and even automate the analyzing
process. We design and implement an expert system based
on our proposed graph neural network called MalwareExpert.
The system pinpoints the essential functions of an analyzed
sample and visualizes the relationships between involved parts.
We evaluate our proposed approach using executable binaries
in the Windows operating system. The evaluation results show
that our approach has a competitive detection performance
(97.3% accuracy and 96.5% recall rate) compared to existing
malware detection models. Moreover, it gives an intuitive and
easy-to-understand explanation of the model predictions by
visualizing and correlating essential functions. We compare the
identified essential functions reported by our system against
several expert-made malware analysis reports from multiple
sources. Our qualitative and quantitative analyses show that the
pinpointed functions indicate accurate directions. In the best case,
the top 2% of functions reported from the system can cover all
expert-annotated functions in three steps. We believe that the
MalwareExpert system has shed light on automated program
behavior analysis.

Index Terms— Graph neural network, machine learning for
security, malware analysis, reverse engineering.

Manuscript received 30 October 2022; revised 11 April 2023 and 22 May
2023; accepted 22 May 2023. Date of publication 7 June 2023; date of
current version 18 July 2023. This work was supported in part by the National
Science and Technology Council (NSTC) of Taiwan under Grant 111-2628-
E-A49-006-MY2, Grant 112-2634-F-A49-001-MBK, and Grant 112-2218-E-
A49-023; and in part by the Taiwan Academic Cybersecurity Center (TACC)
Project at the National Yang Ming Chiao Tung University. The associate editor
coordinating the review of this manuscript and approving it for publication
was Prof. Ghassan Karame. (Corresponding author: Chun-Ying Huang.)

Yi-Hsien Chen and Si-Chen Lin are with the Department of Electrical
Engineering, National Taiwan University, Taipei 106319, Taiwan, and also
with the Department of Computer Science, National Yang Ming Chiao Tung
University, Hsinchu 300093, Taiwan.

Szu-Chun Huang is with the Department of Computer Science, National
Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan, and also with
the Faculty of Technology, Policy and Management, Delft University of
Technology, 2628 BX Delft, The Netherlands.

Chin-Laung Lei is with the Department of Electrical Engineering, National
Taiwan University, Taipei 106319, Taiwan.

Chun-Ying Huang is with the Department of Computer Science, National
Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan (e-mail:
chuang@cs.nycu.edu.tw).

Digital Object Identifier 10.1109/TIFS.2023.3283913

I. INTRODUCTION

MALICIOUS software is one of the most critical threats
people and enterprises face nowadays. It has brought

many data and monetary losses, and the even worse news
is that new malware still grows much faster than humans
can handle. The report shows that millions of new malware
samples were observed monthly, accumulating billions of
malware samples since 2013 [1]. Also, the number of observed
ransomware attacks in the first half of 2021 has surpassed the
total number of records observed in 2020 [2]. It is a foreseen
future that cyberattacks will be more frequent and severe, and
we need to figure out a more effective way to defend against
them.

The vast number of malware samples has incurred much
workload for security analysts. Although detecting malicious
binaries is an age-old problem, malware detection is still
challenging [3], [4], and it still requires a lot of human
resources to analyze identified samples for further clarification.
Even with the help of artificial intelligence models, there
are still difficulties in various areas, including data labeling,
feature selection, model selection, and evaluation. Suppose
a sample can be accurately classified into either benign or
malicious first. Analyzing a sample in-depth and understanding
its behavior is still a time-consuming task. No matter how
accurate a model is, a security analyst needs to know why and
how the model makes a decision — especially when dealing
with an unknown binary in real-world cases.

This study attempts to develop an expert system to analyze
a malware sample and report essential functions identified
in the sample. The system is composed of two components.
One is to detect samples as malicious or benign accurately,
and the other is to identify essential functions in the samples
that lead to the detection. We design our approach based on
static binary analysis techniques. To our knowledge, most
existing machine learning-based detection approaches target
improving detection performance. Although they can achieve
high accuracy and low false-positive rates, it is challenging to
explain why a model determines a malicious binary and how
we can leverage the detection result to simplify the malicious
sample analyzing process.

We tackle this problem by addressing the limitations
and challenges observed in the current research works. The
objective of our approach is to construct an explainable
detection model. In addition to having a competitive detection
accuracy, the retrieved binary semantic representations can

1556-6021 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 10,2023 at 14:11:25 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0888-0984
https://orcid.org/0000-0002-9011-5025
https://orcid.org/0000-0001-5503-9541

CHEN et al.: GUIDED MALWARE SAMPLE ANALYSIS BASED ON GRAPH NEURAL NETWORKS 4129

be further used to explain the detection result and guide
security analysts for better in-depth analysis. Our contribution
is three-fold. First, we propose a graph neural network-based
(GNN-based) malware detector which can achieve competitive
performance in accuracy, precision, recall, and false-positive
rates. Second, the GNN-based model produces explainable
results by indicating the most critical subgraphs that lead to
malicious detections. The identified subgraphs can be easily
mapped to the evaluated samples’ corresponding functions and
function calls. Last, we further use our approach to analyze
real-world samples and compare them against expert-made
analysis reports to show the effectiveness of our approach.
Specifically, we answer the following research questions to
validate our research.

• RQ1: How many samples are required to train a good
detector? (Section V-B)

• RQ2: Does our approach have a competitive performance
to the state-of-the-art static-based detection approaches?
(Section V-C)

• RQ3: Does our approach work well for unknown sam-
ples? (Section V-D)

• RQ4: What are the impacts of having function embed-
dings? (Section V-E)

• RQ5: What is the performance of the explainers?
(Section V-F)

• RQ6: How to quantify the quality of clues provided by
our proposed system? (Section V-G)

• RQ7: What behavior is explained from real-world sam-
ples using our proposed system? (Section V-H)

• RQ8: Does our approach work with customized packers?
(Section V-I)

• RQ9: How the reverse engineering tools are selected for
performance evaluation? (Section V-J).

The rest of this paper is organized as follows. We overview
several research works that employ machine learning and
neural network approaches to detect malware in Section II.
In Section III, we review past research on Graph Neural
Networks, feature representation, and graph-related model
explanation, which are utilized in our proposed methods.
We introduce our approach in Section IV and evaluate its
performance in Section V. Finally, a concluding remark and
future research directions are given in Section VI.

II. RELATED WORK

Many research works have employed machine learning
techniques for malware detection and classification. These
works generally take static, dynamic, or raw binary features as
input and output binary (e.g., benign or malicious) or multi-
class (e.g., malware families) results. This section discusses
machine learning-based malware detection research works
using static analysis features. We classify these works into
three categories: 1) using typical file content-based features, 2)
employing modern embedding-based features, and 3) making
explainable predictions.

A. File Content-Based Feature

Binary analysis techniques can be used to extract
program information and runtime behavior from binary

executable files. Before employing machine learning-based
approaches, extracted program information and runtime behav-
iors must be transformed into features represented in fixed-
length vectors. This section introduces several handcrafted
features and how these features are used in machine learning
models.

Raff et al. [5] propose two approaches to detect mal-
ware based on features extracted from the executable file
header information. Their work focuses on Windows portable
executable (PE) files. In the first approach, they parse the
PE header information into feature vectors based on experts’
domain knowledge and build a random forest model to perform
the detection. In the second approach, PE header bytes are
transformed into features using the N-gram algorithm instead
of relying on domain knowledge. A long short-term mem-
ory (LSTM) model is then used to build a detection model.
The results show that the two models are both effective for pre-
diction. More in-depth experiments [6], [7] are also conducted
to understand better what the model learned from N-gram
features. They conclude that the model learned entropy and
string features from N-gram features.

Researchers [8], [9] also attempt to convert an executable
binary into a corresponding gray-scale image and use the
images to train a CNN-based malware detector. The detection
performance looks good on malware classification compared to
models built from other features. Vasan et al. [10] further use
image-based CNN models to create an ensemble architecture
to improve the overall detection performance. Le et al. [11]
propose deep learning-based malware classification without
feature engineering. They feed raw binary byte sequences
into a convolutional and recurrent neural network to classify
malware families. Training a model with either gray images or
raw binary byte sequences looks interesting and compelling.
No domain knowledge is required in the preprocessing and
training process. However, the rationale behind the models
could be not intuitive and difficult to explain.

Anderson and Roth [12] propose the EMBER dataset, which
defines several feature extraction methods for static malware
analysis models, including header/section information, print-
able strings, entropy, import/export functions, and the N-gram
of the most frequently used instructions. They further leverage
a gradient-boosted decision tree model (LightGBM) to build
a malware detection model, showing that it outperforms sev-
eral featureless deep learning models. Pham et al. [13] use a
gradient-enhanced decision tree algorithm to detect malware
with a high detection rate and low false alarm rate. Also,
they perform feature reduction on the features of the EMBER
dataset to reduce the training time. The results show that
the feature extraction from PE files using static analysis and
domain knowledge would improve the performance.

B. Embedding-Based Feature

Working with typical file content-based features is straight-
forward. However, it does not provide sufficient insights for
analysts to understand the criteria for detection and the seman-
tics behind the models. One step toward understanding how a
model works is using embeddings as features, which are fre-
quently used in natural language processing. There are several

Authorized licensed use limited to: TU Delft Library. Downloaded on August 10,2023 at 14:11:25 UTC from IEEE Xplore. Restrictions apply.

4130 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

benefits to using embeddings as features. Embeddings can be
used to preserve contextual information. They also preserve
geometric properties so typical distance measurement matrixes
can measure the similarity between embeddings.

Many research works have proposed approaches to gen-
erate embeddings from sequential or structured data [14],
[15], [16], [17], [18], [19], [20]. There are also embeddings
explicitly designed for source codes and program binaries,
such as FCG2vec [21], code2vec [22], and SAFE [23].
With embeddings, security researchers further build machine
learning models to detect and classify malicious samples.
FireEye proposes a model [24] that detects malware from
raw byte sequences. It generates embeddings and feeds them
into a one-dimensional convolutional layer and temporal max-
pooling layers. Then, they use fully connected layers and a
softmax layer to determine whether a sample is malicious.
Hashemi et al. [25] propose a new approach for unknown
malware detection using opcode graph embedding. They trans-
late each opcode into a vertex. The weight of each directed
edge represents the transition probability from one opcode
to another. They use Power Iteration [26] to generate graph
embedding for detecting malware. Hassen et al. [21] propose
a function-call-graph representation vector for malware clas-
sification, and it could combine graph and non-graph fea-
tures within the representation vector. Broder [27] calculate
graph similarity using the MinHash signature of functions and
classify the malware groups. Gascon et al. [28] efficiently
condense structural information of function call graphs by
calculating the neighborhood hash value for each node and
evaluating the graph kernel in linear time for each call graph.
They generate feature space embeddings fed into a linear SVM
for training and detecting malicious functionality in samples
and also attempt to perform interpretation of the model deci-
sions. Xu et al. [29] compute the control flow graph embedding
for each binary function and calculate the distance between
embeddings to decide the similarity of functions. They achieve
faster embedding time and better vulnerable detection ability
than prior works. Fan et al. [30] depict the complex rela-
tionships among various entities (i.e., file, archive, machine,
API, DLL) in PE files by constructing heterogeneous infor-
mation networks (HIN). Based on different views of the HIN
relations, meta-graphs representing the relatedness among files
are generated and embedded into a lower-dimension vector
through metagraph2vec. Moreover, embeddings are combined
via a fusion algorithm and put into a Support Vector Machine
(SVM) for further malware classification. Zhang et al. [31]
extract behavior information of programs into word sequences.
A semantic-captured word embedding model (GloVe) vec-
torized each word and formed a feature map for each file.
Furthermore, a convolutional neural network (CNN) utilizes
these vector maps for analyzing benign and malicious binaries.

C. Explainable Prediction

Well-tuned neural network models can give us high accuracy
rates and good performance. Sometimes, we only need a
little insight and domain knowledge of malware analysis.
However, such a black box could bring uncertainties when
applied to real-world cases. From developers’ perspectives,

they have to figure out how a model works and the critical
points of a sample to make sure everything makes sense, not
just find particular magic rules in the training dataset. We also
expect a model to learn interesting characteristics analysts may
not notice from samples. An explainable model lets developers
and users realize how a prediction is made and thus is essential
for building a trustworthy and accurate model.

Krčál et al. [32] investigate and evaluate the malware
classification model learned from raw sequences of bytes
and labels to figure out what it learned. They find that the
model would take the header’s context, sections of various
types, resources, or relocation tables to classify the malware.
Coull et al. [33] evaluate the raw-bytes model proposed by
FireEye [24] with activation analysis. They conclude that
import-related features occupy an essential place, and the
model could identify ASCII strings and specific behaviors,
such as calling functions from the bytes sequence. Moreover,
it learns complicated features like checksum and Rich header
information [34]. Demetrio et al. [35] use adversarial attack
techniques to find out the critical points of MalConv. They
assume that the DOS header, which is useless in modern
PE binaries, could play an essential role in the decision.
Bose et al. [36] evaluate MalConv and make a different conclu-
sion from Demetrio’s work. They find the header information
important, while other binary pieces could also be accountable
for the final result. Not only analyzing what a model learned,
but some works also focus on building an explainable model.
Korine et al. propose DAEMON [37], which generates a mal-
ware classification model through multi-stage feature mining,
including entropy threshold computation, family representative
N-grams extraction, and pairwise-separating feature selection.
After these stages, a random forest model with high accuracy
and explainability would be generated based on the selected
features.

In summary, researchers have developed multiple ways to
represent the characteristics of a binary, from handcrafted
features to context-preserving embeddings, to boost the detec-
tion performance of the classifiers. Generally, neural network
embedding-based approaches achieve better performance than
classical machine learning-based approaches. Nevertheless,
methods based on classical machine learning approaches are
more likely to be used in the real world than neural network
models because models based on statistics or mathemat-
ics would be easier to understand. Some researchers have
attempted to inspect the content learned by the neural network
models or even tried to build a human-understandable model.
However, the answers to explaining a model’s predictions or
knowledge captured by models still need to be clarified. On the
other hand, we can easily apply a classifier to predict the labels
if the embeddings we used are distinguishable. However, even
if using some attention mechanism to show the highly focused
parts of the embedding, we still cannot understand the relation
between embeddings and prediction labels.

In this study, we proposed a new direction for building
a behavior-explainable malware classification model lever-
aging multiple types of program embeddings. We generate
contextual embeddings from functions and function call
relationships within a program and use the embeddings
to train graph neural networks to perform malicious

Authorized licensed use limited to: TU Delft Library. Downloaded on August 10,2023 at 14:11:25 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: GUIDED MALWARE SAMPLE ANALYSIS BASED ON GRAPH NEURAL NETWORKS 4131

software detection. Using various approaches, we then identify
critical structures in the program and explain its behaviors
recognized by our model. By pointing out crucial components
inside the program, we aim to reduce the security analyst’s
efforts when analyzing an unknown malicious sample.

III. BACKGROUND

A. Representation Vector and Embedding

While developers or attackers generate binary files using
a compiler, security analysts usually have to reverse the
process by reconstructing assembly codes from machine codes.
Furthermore, reconstructed assembly codes can be used to
build control flow graphs, function call graphs, and even an
abstract syntax tree for more in-depth analysis.

However, employing machine learning approaches for pro-
gram analysis requires one further step because most machine
learning models only handle inputs in the form of representa-
tion vectors. A representation vector (also called an embedding
vector or simply embedding) is a form that can be used to
represent complex or high-dimension inputs in a simplified
form. It is usually in the form of low-dimension vectors.
Ideally, an embedding can capture some of the input semantics
and be used for training a machine learning model. Therefore,
before feeding program samples to a model, it is essential to
have a good approach for transforming reconstructed assembly
codes into adequate embeddings.

Several works have been devoted to developing methods
for obtaining embeddings from complex structures. Dai et al.
proposed structure2vec [19], which generates embeddings
of structure data with discriminative information. It extracts
features by graph inference, which is similar to mean-field
and belief propagation. Grohe et al. investigate the vector
embedding theory [20] for structured data. In general, embed-
dings can be retrieved by using various approaches that can
handle the input structures. Examples include DeepWalk [15],
node2vec [16], the Weisfeiler-Leman algorithm [17], and
Homomorphism vectors [18]. Creating embeddings using a
graph neural network is one of the most generic and straight-
forward approaches for graph-based input structures.

There are also embedding approaches explicitly developed
for program analysis. Program structures required for creating
embeddings can be obtained from static analysis or dynamic
analysis results. Choosing between static analysis or dynamic
analysis approaches is a trade-off between program analysis
time and the realness of the obtained information. Working
with a static analysis approach would be more efficient, and
it can analyze a program thoroughly. However, it may not be
able to get the most precise program information if a processed
program is protected. Several approaches can obtain embed-
dings from program analysis results. Asm2vec [38] attempts to
generate embeddings from low-level assembly codes and basic
blocks. It leverages natural language processing techniques
like word2vec [14] to handle each assembly instruction as a
word and pieces of assembly codes as a sentence to learn
the embeddings. Moreover, structured data such as function
call graphs and abstract syntax trees contain the relationships
between components in a program. To get more semantic
information, we can take instructions to construct a control

flow graph and generate function embeddings by using algo-
rithms such as FCG2vec [21], code2vec [22], and SAFE [23].

B. Graph Neural Network and Model Explanation

A graph neural network (GNN) is a neural network that
processes graph structure data. While neural networks pro-
cess inputs in the form of vectors and matrices, the most
important part of a graph neural network is obtaining the
most appropriate form to represent a graph in vectors, often
called embeddings. Most models deal with graph structure
data based on message-passing schemes, which are considered
the generalization versions of the convolution operator. Using
the message passing scheme, we can pass messages such as
some features or hidden vectors to our neighbors and aggregate
the information of the messages to produce embeddings. Graph
Convolutional Network [39] (GCN) applies convolutions on
graph structure data and encodes both local graph structures
and features of nodes to generate embedding. Graph Attention
Network [40] (GAT) leverages masked self-attentional layers
that let the model knows the importance and focuses on the
relevant features of neighbor nodes to learn the representation
vector. Gated Graph Sequence Neural Network [41] (GGNN)
uses gated recurrent units (GRUs) to memorize the sequential
relationship of the node features at each update and generate
graph semantic vectors.

In recent years, extensive research works have applied
GNN techniques to antagonize various malicious activities.
Researchers [42], [43], [44] have explored different graph
extraction and context embedding techniques to classify PE
malware with GNN models. From extracting control flow
graph or function call graph to retain the structural infor-
mation of a program, using multiple semantic embedding
methods, such as word2vec, to capture semantic features,
to applying GNN model structures, like Graph Isomorphism
Network (GIN) or Graph Attention Network (GAT), for gen-
erating graph embedding from a program, they aim to provide
input with as much information as possible to their final
classifiers. Zhang et al. [45] propose adversarial attacks to
evade the detections from GNN malware detection models.
Interestingly, many GNN-based detectors are designed specif-
ically for Android binaries [46], [47], [48]. The Android
decompilers can precisely decompile bytecodes into (minified)
source codes.

The nature of graph-based models is that they are easier
to be explained. There are several ways to explain a graph
model’s prediction. A straightforward way is to mutate the
input and calculate the loss gradient to see what graph
structure or features affect it. Furthermore, if a model lever-
ages the attention mechanism to generate embeddings, it can
calculate attention scores and see the highest attention part
of the graph and features. Ying et al. [49] propose GNN
explainer, a model-agnostic approach, to identify impactful
subgraphs and node features that influence the model predic-
tion. The explainer focuses on maximizing mutual information
between the GNN’s prediction probability and the prediction
distribution of possible crucial subgraphs. It supports expla-
nations for various machine learning tasks, including node
classification, graph classification, and link prediction.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 10,2023 at 14:11:25 UTC from IEEE Xplore. Restrictions apply.

4132 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Researchers also leverage GNN-based detection models
to recognize relevant activities in malicious samples.
He et al. [48] propose MsDroid, which extracts sub-graphs
from a program based on the neighboring nodes of selected
sensitive APIs. They then train a GNN-based detection model
to classify whether a sub-graph (code snippets) is malicious or
benign. Besides showing sensitive APIs correlated with mali-
cious behaviors in the input call graph snippets and retrieving
similarly implemented snippets from known malware, they
try to maximize the mutual information between predic-
tion and distribution of crucial edge dependencies, as GNN
explainer, to identify the importance of edges in API call
graphs.

Our approach differs from previous works as follows. First,
we do not depend on any predefined API list, allowing for
greater flexibility and adaptability to changing threat land-
scapes. Second, we consider the whole graph structure instead
of API-segmented sub-graphs, allowing for a more com-
prehensive understanding of its behavior. Last, we examine
the influence of various embedding methods on classifica-
tion performance, explore different explaining possibilities,
and further validate the effectiveness of our explanations in
improving the malware analysis process. Readers can refer
to Section V for more details.

IV. APPROACH

A. Problem Statement

The proposed expert system aims to build an explainable
malware classification model that detects malicious samples
and explains further the critical part that leads to the detection.
We give a formal statement of the problem, clarify the scope
of this study, and list assumptions of the proposed approach
in this section. Suppose we have a set of binary programs X
containing |X | programs. Each program xi ∈ X (1 ≤ i ≤ |X |)
is analyzed first to generate its call graph gxi . Suppose there
are nxi functions in xi . The call graph gxi is built based on each
recognized function f j

xi (1 ≤ j ≤ nxi) in xi and their calling
relationships. The graph gxi can be transformed to its corre-
sponding embedding g⃗xi , where each node f j

xi in the graph
can be represented as either a null embedding, e.g., [0 . . . 0],

or a preferred function embedding ⃗f j
xi . By collecting the graph

embeddings of all programs in X and form G X , our system
trains the graph neural network model 8X to perform the
recognition of malicious samples. Given an arbitrary program
sample x ′ (known or unknown), our system first detects x ′ as
either benign or malicious. Furthermore, a model explanation
is performed by feeding gx ′ and 8X to our proposed model
explainer to identify essential parts in program x ′. Table I
summarizes the notations used in this study.

The usage scenario of our proposed approach is as follows.
A security analyst may use a pre-trained model from others
to perform guided sample analysis. However, to build a self-
trained model, a security analyst collects a bunch of samples
from known sources and has total control of these samples.
To capture the essence of binaries, the analyst may conduct
preprocessing procedures for these samples, such as removing
packer-related parts, to avoid noise information. Based on this
scenario, this study follows three assumptions.

TABLE I
NOTATIONS USED IN THIS STUDY

• Most samples are deobfuscated or unpacked. Mali-
cious programs often adopt polymorphic or meta-
morphic techniques to evade the malware detection
systems using packer or obfuscated code. Several stud-
ies [50], [51], [52], [53] have discussed packer detection,
unpacking, and deobfuscation and aimed to solve these
problems systematically. Because training a model for
recognizing crucial behaviors in a malicious program
interests us the most, we ignore samples packed in
well-known packers or obfuscators. There still exist some
programs packed by customized or unknown packers
or obfuscators in our dataset. Nevertheless, our exper-
iment results show that our system can capture these
routines when handling packed or obfuscated samples
since identifying function parts that perform unpacking
and deobfuscating is also a crucial process in reverse
engineering.

• Use only static analysis features. We consider only
features that can be retrieved from static analysis for
the following reasons. First, the cost of retrieving static
analysis is manageable. We do not have to set up a
runtime environment, and the analysis time is usually
proportional to the size and complexity of a sample
program. Second, static features are deterministic. It is
not affected by runtime conditions and exceptions. The
results depend only on the algorithm we used to extract
features. Third, static features are scalable. Due to its
simplicity and deterministic property, it is also easier to
scale out and scale up the feature extraction process to
accelerate the analyzing process.

• Do not consider adversarial samples. As using
GNN-based models on malware detection become more
popular, researchers have explored the possibilities of
adversarial attacks [45] on these detection models. How-
ever, we ignore adversarial attacks in this work because
we focus more on training a model that can recognize
interesting parts in a (malicious) program, not proposing
a strong detector. In our proposed scenario, a user can
choose to filter out possibly adversarial samples to pre-
vent his model from being polluted. Adversarial samples
mainly mislead a detector into classifying the samples
into benign samples. In order to mitigate the possible
impacts caused by adversarial samples, benign samples
can be collected only from trusted sources. For malicious
samples, we can only use samples that are considered
malicious by most of the detectors.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 10,2023 at 14:11:25 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: GUIDED MALWARE SAMPLE ANALYSIS BASED ON GRAPH NEURAL NETWORKS 4133

Fig. 1. The workflow of the proposed MalwareExpert system.

B. Workflow Overview

The workflow of our proposed detection and explanation
system is depicted in Figure 1. There are three phases:
the sample preprocessing phase, the training/classification
phase, and the explanation phase. The sample preprocessing is
mandatory for the rest of the phases. In the sample processing
phase, each program executable is reverse-engineered and
statically analyzed for identifying functions and caller-callee
relationships in the executable. A corresponding call graph
is then built based on the analyzed information. Note that
we need additional models to perform embedding extractions,
which are used in the preprocessing phase in Figure 1.
The models can be publicly available pre-trained or self-
trained models. The selected embeddings are introduced later
in Section IV-C

The training and classification phase is similar to typical
machine learning applications. They share the same path in
the workflow. With a well-trained model, an unknown program
executable can follow the same procedures used in the training
phase to obtain the embeddings of the program and then feed
the embeddings to perform the classification.

The most challenging phase in our workflow is the expla-
nation phase. This phase aims to report critical parts identified
in a classified program executable. The program can be either
a known (available in the training set) or an unknown sample.
Since the input to the classification model contains function
embeddings and graph structure, the reported critical parts
that impact a sample as malicious or benign can be shown
as functions and function calls. We expect those reported
functions and function calls to be clues for security analysts
to analyze the input program’s behaviors better. The details
of the involved phases are discussed in Sections IV-C, IV-D,
and IV-E, respectively.

C. The Sample Preprocessing Phase

Procedures involved in the sample preprocessing phase
include reverse engineering, static analysis, and embedding
extraction. The preprocessing phase is required in both the
training phase and the detection phase. There are a lot of
reverse engineering tools and static analysis tools available,
including IDA Pro [54], Ghidra [55], Radare2 [56], and many
other alternatives. Our study uses the open-sourced Radare2
as the default reverse engineering tool. It is used to identify
functions and build the corresponding function call graph.

A function call graph is a directed graph containing nodes
and edges, where each node represents a function, and each
directed edge represents a function call relationship. If function
fa (caller) calls function fb (callee), two nodes, a and b, are
added to the graph with a directed edge eab linked from node A
to node B.

Embedding for each function is extracted and placed
in the generated call graph, serving as the node feature.
Although node information, i.e., function embeddings in this
study, is not a must in graph-based classification, working
with embeddings would be better for the classification. The
structure of call graphs is relatively monotonic compared
to other graph-based applications such as social networks.
Therefore, considering both the node information and the
graph structure simultaneously to obtain the graph embed-
dings can enrich the information in the output. To vali-
date our assumption, we consider three different function
embeddings: the null embedding, the Asm2Vec [38] embed-
ding, and the self-attentive function embeddings (SAFE) [23].
We use a vector containing only zero values as the null
embedding for each node. The sizes of SAFE and Asm2Vec
embeddings follow the settings recommended by the authors,
which are 100 and 200 dimensions, respectively. The size
of the null embedding follows the smaller one, which
is 100 dimensions.

The Asm2Vec model handles assembly codes of a function
as a document and learns the representation vector based on
the operand and operator tokens inside a function. Asm2Vec
updates the prediction of current instruction each time based
on the predicted function representation at the moment and the
neighboring context to generate the final function representa-
tion. With only assembly codes, Asm2Vec can capture seman-
tic relationships between tokens in the assembly code. The
architecture of the SAFE model is depicted in Figure 3. The
model generates a function embedding from a disassembled
function. Similar to word2vec [20], it first uses an instruction-
to-vector (i2v) block to convert each instruction to a corre-
sponding vector. It then leverages a self-attentive network [57]
to generate function embeddings from the instruction vectors.
The SAFE model should be trained with sufficiently diverse
programs to ensure that it can produce different embeddings
for various executables.

D. The Training/Classification Phase

Once the graph embeddings are ready, the next step is
to train a model that classifies a program as malicious or
benign. We propose a MalwareExpert model to perform
graph-based malware classification, as shown in Figure 2.
The model is designed by extending the graph convolutional
network [39] (GCN). The model takes the call graph and func-
tion embeddings as input and generates the binary semantic
embedding for prediction based on the graph structure. While
typical graph neural networks have few layers (usually 2–4),
it is still challenging to effectively handle a massive number of
inputs retrieved from a program. Three typical issues are over-
fitting, over-squashing [58], and over-smoothing [59], [60]
issues. Although adding dropout layers can mitigate the prob-
lem of over-fitting, the performance in terms of accuracy could

Authorized licensed use limited to: TU Delft Library. Downloaded on August 10,2023 at 14:11:25 UTC from IEEE Xplore. Restrictions apply.

4134 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Fig. 2. The architecture of the MalwareExpert model.

Fig. 3. The architecture of the SAFE model.

be better due to limited model capacity, which leads to over-
squashing and over-smoothing. Therefore, we integrate the
DeeperGCN [59] concept in our design to further solve the
over-squashing problem by increasing the number of layers in
the network.

Our MalwareExpert model first takes the node feature vec-
tors as input and uses a Linear layer to embed them into hidden
vectors to ensure the inputs can fit the memory limitation of the
hardware. For performing exact n times of graph convolutions,
the hidden vectors and the corresponding edge relations are fed
to a GraphConv layer and the following n − 1 DeeperGCN
layers. The output is the convoluted node embeddings. After
passing through the normalization and the activation layer, the
convoluted node embeddings are forwarded to the global mean
polling layer to produce the graph embedding for each sample
in the batch. Our current model design predicts scores for
the corresponding classes (benign and malicious) instead of
predicting a single malicious probability. Passing the graph
embedding to the following dropout, linear, and softmax
layers, the model finally makes the prediction based on the
class having the highest score. The primary benefit of having
prediction scores for each class is that we do not need to
define a threshold for malicious probability, which is not a
trivial task.

Existing research works mitigate the over-smoothing
problem mainly by designing specific GCN-based models or
adjusting the convolution process and normalization function
to preserve the diversity of features [59], [61]. Figure 4 shows
the architecture of each DeeperGCN layer. It uses the skip
connection operation, the pre-activation residual connection,
to keep meaningful information not fading out and prevent
gradient vanishing. The implementation setup of our Malwa-
reExpert model is as follows. We set n to 8, use GENeral-
ized Graph Convolution [59] to implement GraphConv, use
LayerNorm [62] to perform normalization, and use the ReLu
function for activation.

The process of the classification phase has the same pre-
processing steps as the training phase. Instead of training
a detection model, the classification phase uses the trained

Fig. 4. The architecture of each DeeperGCN layer.

model to perform sample classification. With only the trained
model and the input data required for the explanation phase,
which aims to explain the reason behind the prediction result,
the stages of classification and explanation are essentially
independent.

E. The Explanation Phase

When a malicious sample is reported, a security analyst
needs to understand why the sample is classified as malicious
and what is the underlying behavior behind the classification.
We believe that if a graph-based model can report which part
of the graph leads to the detection, it would benefit security
analysts and accelerate analyzing malicious programs.

We propose two approaches to identify the graph’s critical
parts that lead to a corresponding detection. A straightfor-
ward approach is designed based on graph pruning, and the
other leverages the GNN explainer [49]. The rationale behind
the graph pruning approach is straightforward. When the
graph-based model could not recognize the critical structure
pruned from a graph, it would decrease the prediction score of
the involved class. Therefore, we use two pruning strategies
for edges derived from a target sample’s function call graph.
One is edge-pruning, which removes only a selected edge from
a graph. The other is node-pruning, which removes an edge’s
two endpoint nodes and edges connecting to the two nodes
from a graph. We apply the selected pruning strategy for each
edge from the original graph, perform the detection against
the pruned graph using our proposed model, and measure the
predicted benign score for the pruned edge. The impact of
pruning a single edge is determined by measuring the benign
score difference between the pruned and the original graph.
After measuring the impacts for an edge, we roll back the
graph to its original state. The rank of each edge is sorted
based on their impact on the prediction.

Alternatively, the GNN explainer attempts to identify critical
subgraph structures that impact the GNN model’s decision.
It can apply to various GNN architectures, including Graph
Networks, Graph Convolutional Networks, and many other
GNN-based models.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 10,2023 at 14:11:25 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: GUIDED MALWARE SAMPLE ANALYSIS BASED ON GRAPH NEURAL NETWORKS 4135

Each GNN prediction is evaluated based on a computation
subgraph containing the critical information for a sample’s
classification result. The hidden computation subgraph must
have enough GNN’s neural messages to flow through and
arrive at the related nodes to generate a proper prediction.
Thus, the GNN explainer trains another neural network to
maximize the mutual information between approximate com-
putation subgraphs and the model prediction, which aims to
find the core graph structure that affects the model’s behavior.

The output model from the GNN explainer takes the trained
GNN model and its prediction as input and assigns weight
to each edge in the corresponding input graph as the edge’s
importance score. We can use these GNN model explanations
as clues to examine the caller-callee relationships in the
original function call graph and infer which subgraph parts
are crucial to this sample. Based on these clues, experts can
then mine the call chain of these crucial functions.

V. EVALUATION

This section answers the following research questions (RQs)
by designing experiments to evaluate our proposed approach
and discuss several interesting findings.

We implement our proposed approach using PyTorch
and run the codes on a server with an NVIDIA Quadro
RTX 6000 GPU. We follow the TESSERACT [63] practice to
perform the evaluations to reduce the potential bias in malware
detection experiments. The TESSERACT practice suggests
that the spatial and temporal distribution of samples selected
for evaluations should be well-controlled. In the case of spatial
distributions, the proportion of benign and malicious samples
should be fair in most test cases. Furthermore, the number of
programs developed in different periods should be balanced
when dealing with temporal distributions. Otherwise, it may
mislead a model to classify samples based on timing-relevant
features instead of the nature of the samples. In short, the
samples used for evaluations should be sufficiently diverse,
or it could lead to biased models and results.

A. Dataset

We perform the evaluations with three different datasets:
benign samples, viruses, and APT samples. While Windows
is still the primary operating system that dominates the desktop
OS market [64], we mainly use samples available on the
Windows platform in our evaluations.

The datasets are collected from various sources. For benign
samples, we collect 44,953 benign samples from Windows
10 system binaries and libraries, popular packages from the
Chocolatey1 repository, and the Cygwin2 utilities. For viruses,
we collect 75,257 portable executable (PE) files from the
VirusShare3 dataset. For APT samples, we collect them from
publicly available sources4 and use 2,865 real-world samples
from 12 state-sponsored APT groups. All of them are also
executables in the PE format.

1https://chocolatey.org/
2https://www.cygwin.com/
3https://virusshare.com/
4https://github.com/cyber-research/APTMalware

TABLE II
SUMMARY OF THE DATASETS COLLECTED IN THIS STUDY

Table II shows the summary of the datasets collected
in this study. Before we use the samples to evaluate our
proposed model, we perform simple preprocessing against
the samples and drop samples that could mislead our model.
We first drop all the binaries packed by well-known packers to
reduce the possible dataset pollution from well-known packers,
as suggested by Aghakhani et al. [65]. The identified packers
from the virus dataset are shown in Figure 6. The detection
is performed by Detect-It-Easy [66] tool. Although we do
not train our model with binaries packed with well-known
packers, our virus dataset contains more than 100 unique types
of customized packed samples reported from virus scanners.
We also notice that the numbers of 32-bit binaries are generally
more than that of 64-bit binaries. When sampling binaries from
the datasets, we maintain the ratio of samples selected from
the pools equivalent to the ratio we observed in the field.

We plot the number of nodes and edges retrieved from
samples of each dataset in Figure 5. Each point in the
figures indicates the number of nodes and edges obtained
from a sample. The figures show some interesting observations
in the samples. First, we can see that some samples are
plotted on the bottom line of the figures. These samples
are exceptional because they are composed of only nodes
(functions) without edges (function calls inside the sample).
We remove them from our datasets because no call graph
can be constructed from these exceptional samples. After the
removal, the benign, virus, and APT datasets left 16,847,
55,886, and 2,665 samples, respectively. Note that many files
were removed from benign samples because they were library
files. Second, we observe that some samples have a vast
number of nodes. These samples are large-scale applications
such as browsers and office software components. It is also
interesting that some malicious samples also have many nodes.
Most cases are because a malicious code snippet is injected
into a benign target with many nodes.

B. RQ1: Is the Model Well-Trained?

This section evaluates how many samples are required to
train a good detector and what is the impact of multiple
GCN layers. We control the number of samples used to train
the model for training time and space considerations. First,
extracting the call graphs and embeddings from the sample
executables costs a lot of time. Second, the obtained call
graphs and the function embeddings from the samples also
consume many spaces. For example, given 30,000 samples
from our dataset, the total size of the raw features in JSON
format is about 40GB. Finally, the time required for training
a model is highly relevant to the number of samples fed to a
model. While the performance of the model and the number

Authorized licensed use limited to: TU Delft Library. Downloaded on August 10,2023 at 14:11:25 UTC from IEEE Xplore. Restrictions apply.

4136 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Fig. 5. The number of nodes and edges observed in the collected datasets.

Fig. 6. Identified packers from the virus dataset.

TABLE III
EVALUATION WITH DIFFERENT NUMBERS OF SAMPLES

of used samples is often a trade-off, we have to ensure that
we use a sufficient number of samples in the evaluations to
have good quality evaluations.

To answer this research question, we use different numbers
of samples ranging from 3,000 to 30,000 to train our pro-
posed model and evaluate its performance. Note that the ratio
between benign and virus samples is 1:1 in all settings. The
evaluation settings and the results are presented in Table III.
To determine if the performance change is caused by a change
in quantity and not by some of the newly added samples,
we perform experiments ten times to obtain the average results.
In each experiment, we randomly select samples from a
fixed dataset, train the model, and conduct the experiments
multiple times to eliminate distribution bias.

The results show that more training samples would improve
detection performance. However, the improvement increases
more slowly. It becomes relatively stable when more than
15,000 samples are in the training dataset. We use a total of
30,000 samples from our benign and virus datasets, if not
otherwise mentioned, based on the evaluation results.

We further validate the GNN’s sample classification capa-
bility by visualizing the graph embeddings produced in our
model. We train the model with 30,000 samples from the
benign and virus datasets and plot the graph embeddings
using the t-SNE [67] dimension reduction approach, which
projects high-dimension embeddings to two-dimension spaces.
The results are depicted in Figure 7. The figure shows that the
malicious samples can be separated from benign ones in the
projected space in most cases. It also concludes that the model
is well-trained to perform the detection.

Fig. 7. Graph embeddings of samples in the benign and the virus datasets
produced by our proposed model.

Fig. 8. Performance results for different layers of GCN implemented in our
proposed approach.

TABLE IV
EVALUATION RESULTS FOR THE BENIGN AND VIRUS DATASETS

Readers may notice that a few red and blue points are mixed
in Figure 7. It does not indicate that our proposed model
cannot distinguish them well. While the t-SNE algorithm
reduces high-dimension points to a 2D plane, it is unavoid-
able that separable points in the original space could collide
in the 2D space. Therefore, the linear layer is employed in
our model to help find the correct boundary to classify high-
dimensional data.

To verify that our proposed approach does not have
over-squashing and over-smoothing issues, we conduct per-
formance evaluations using different layers of GCNs and
observe whether the performance is stable. In the experiments,
we set the number of GCN layers to 1, 4, and 8 and plot the
measured loss and accuracy for the training and validation
phases in Figure 8. The results show that the losses and
accuracy numbers get stabler and better as the number of
layers increases.

C. RQ2: Detection Performance

This section evaluates whether our proposed approach has
a competitive performance to the state-of-the-art static mal-
ware detection approach. We compare our proposed approach

Authorized licensed use limited to: TU Delft Library. Downloaded on August 10,2023 at 14:11:25 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: GUIDED MALWARE SAMPLE ANALYSIS BASED ON GRAPH NEURAL NETWORKS 4137

against two different flavors of detection approaches. One is
based on typical machine learning algorithms, and the other
is based on neural networks. For the case of typical machine
learning algorithms, we use the LightGBM model to evaluate
the EMBER dataset [12] but train it with our datasets. For the
case of neural networks, we consider the MalConv model [68],
which constructed a neural network model trained by raw
bytes from samples. The MalConv model is trained using the
same datasets. Because the two models output a probability
of being malicious, we use a threshold of 0.5 as the decision
boundary for the models to predict benign or malicious.

We train the two selected approaches and our proposed
approach using samples half from the benign dataset and
half from the virus dataset. The model is evaluated with
30,000 samples splitting into a ratio of 8:2 for training and
validation. The evaluation result is presented in Table IV. Our
proposed GNN-based model has a competitive performance
close to the LightGBM model and outperforms the MalConv
model. Furthermore, our proposed approach is much better
than the LightGBM model in explainability. The LightGBM
model is a tree-based model containing decision boundaries
for selected feature vectors. Although a user can inspect
and verify how a decision is made, two challenges make it
difficult to explain the classification. First, the meanings of
these decision boundaries could be magic numbers to a user.
Second, a decision often depends on several diverse inputs
before making it. However, the involved inputs may not have
any relationships, making it difficult to explain. Our approach
tackles these challenges by identifying the critical structures
in call graphs, which have direct mappings to functions and
function calls. More details on the explainability are further
discussed in Section V-G.

D. RQ3: Handling Unknown Samples

We further evaluate whether the proposed approach can
detect unknown types of samples that the model has never
seen. We train our model and then compare models with only
benign and virus dataset samples to perform the evaluation.
In addition to training all three approaches used in RQ2 with
our evaluation dataset, we also use the pre-trained models
available to the public to perform the evaluations. We perform
the detection against samples from the APT dataset and the
same amount of model-unknown samples from the benign
dataset, using the self-trained and the pre-trained models for
the evaluation.

The specifications of the pre-trained models are as fol-
lows. The LightGBM model is pre-trained with the EMBER
dataset containing 1.1 million binaries. The features include
PE structure, byte entropy, strings, and many static analysis
features. The pre-trained LightGBM model is publicly avail-
able under the GitHub repository of the Elastic project [69].
Researchers [12] also provide the pre-trained MalConv model
to compare the performance of the LightGBM and MalConv
models. The pre-trained MalConv model is also available
under the GitHub repository of the Elastic project [69]. Note
that we can not train our approach with EMBER dataset
because the dataset does not contain the original executables
to produce the features required by our model.

TABLE V
EVALUATION RESULTS FOR THE APT DATASET

AND UNKNOWN BENIGN SAMPLES

The evaluation result is presented in Table V. We observe
that the models trained with our prepared datasets (labeled
as self-trained) have better detection performance than the
pre-trained models in the LightGBM and MalConv models.
The result shows that all the self-trained LightGBM, MalConv,
and our GNN-based model can effectively recognize unknown
samples. Nevertheless, our model outperforms the other two,
indicating that, with the same training dataset, our model has
better detection ability when facing unknown samples.

E. RQ4: Impacts of Function Embeddings
This section discusses the impacts of having function

embeddings in our design. We believe that simultaneously
considering both the node information and the graph structure
to derive graph embeddings can enrich the information in the
output and benefit the prediction model. Therefore, we val-
idate our assumption by considering three different function
embeddings: the null embedding, the Asm2Vec embedding,
and the SAFE embedding. We train our model using the same
samples selected from the benign and virus datasets. We use
15,000 samples from benign and virus datasets, respectively,
and split the collected samples with an 8:2 ratio for training
and testing purposes.

The evaluated function embedding models are derived as
follows. We consider the pre-trained SAFE5 model and the
self-trained Asm2Vec and SAFE embedding models in the
evaluation. The Asm2Vec embedding model is trained using
the same training data to train the SAFE embedding model
for the fair performance comparison of the two embeddings.
The i2v blocks used in the pre-trained and self-trained SAFE
model are the same. It is derived from about 1.3 million
functions from UNIX executables and libraries compiled for
different CPU architectures, including ARM and AMD64. The
self-attentive network pre-trained by the authors is then trained
with 548 thousand of functions from UNIX libraries compiled
for ARM and AMD64 CPU architectures. All the binaries
are compiled using three compilers and four optimization
levels. For our self-trained Asm2Vec and SAFE embeddings,
we compile 209 thousand functions from three open-source
UNIX tools (binutils, curl, and openssl) using GCC with four
optimization levels.

Table VI shows the model performance of using differ-
ent function embeddings. With null embeddings, the average
accuracy, precision, recall, and F1 score are 67%, 77%, 59%,
and 63%, respectively. Compared to the results against graphs
with modern function embeddings, the null embeddings lead to
a worse result than the model trained with Asm2Vec and SAFE
embeddings under the same setting. The monotonic structure
of function call graphs leads to the dropped performance,

5https://github.com/gadiluna/SAFE

Authorized licensed use limited to: TU Delft Library. Downloaded on August 10,2023 at 14:11:25 UTC from IEEE Xplore. Restrictions apply.

4138 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

TABLE VI
EVALUATION RESULTS FOR DIFFERENT FUNCTION EMBEDDINGS

but having embeddings from nodes (functions) would help
compensate for the weakness.

F. RQ5: Performance of Explainers
We evaluate the performance of the proposed model explain-

ers (node pruning, edge pruning, and GNN explainer) from
two aspects in this section: efficiency and stability. We measure
the required time for different model explanation approaches.
Moreover, we confirm that the last method’s explanation result
can obtain stable results.

For this experiment, we randomly select different numbers
(ranging from 100 to 600) of samples from the sample pool
and redo the experiment several times for each sample set.
All of the experiments get consistent results. The node and
edge pruning always take predictable and identical running
times, and the GNN explainer consumes varying calculation
times for each run. The difference between the former two
methods and the last method is that node and edge pruning
use step-by-step commands to rebuild the new graph, and the
GNN explainer trains a new neural network every time to
approximate the critical subgraph structure in a sample and
thus receives various and unpredictable running time. Due to
the giant time difference between node/edge pruning and GNN
explaining, we select a small scale of 100 random samples for
plotting. Also, this is to avoid the result dots of the previous
two methods condensing in an unrecognizable cluster.

Figure 9(a) shows the scatter plot of how the scale of
samples impacts the required time to perform an explanation.
The Y-axis indicates the scale of the samples in terms of
the number of edges. The X-axis shows the required time to
process a sample. The figure shows that the more edges in a
sample, the longer the time required to perform the explana-
tion. The edge pruning approach is generally faster than the
node pruning approach. Nevertheless, the two approaches are
way faster than the GNN explainer-based approach.

Since the GNN explainer trains a new neural network
model each time to explain a sample, we further investigate
the explanation stability of the GNN explainer. We use the
AZORult malware, which contains 1645 edges, to perform the
evaluation. We use the GNN explainer to explain the model
prediction 100 times for the same malware and observe the
weights of edges assigned by the explainer to the sample. For
each edge in the sample, we present the scatter plot of its
average weight and the variance in Figure 9(b). The cumula-
tive distribution function (CDF) of the variances is plotted
in Figure 9(c). The two figures show that the explanation
results from the GNN explainer are stable. Most edges are
assigned with the same or similar weights, indicating that the
explanations are consistent and stable between different runs.

G. RQ6: Quantitative Analysis of Explainability
In this section, we attempt to quantify the quality of our

generated explanations. We use the functions annotated in

Lumina as expert-annotated explanations and measure the
distance from the top explainer-ranked edges toward these
targets. Lumina is a service hosted by IDA Pro (available since
version 7.2 was released in 2018) to collect and share metadata
from reverse engineers. It holds metadata (function names,
prototypes, comments, operand types, and other info) about
investigated functions. Any IDA users can send or receive
metadata from the Lumina service if they are willing to share.
For the annotated functions retrieved from Lumina, we remove
the standard library APIs and drop functions that have no rela-
tionship with other functions in a sample. A reverse engineer
would prefer to annotate functions they think are engaging in
the reversing process. Therefore, to validate the explanation
quality of our proposed explainers, we are interested in how
many steps are required to trace from the explainer-ranked
edges to the expert-annotated functions.

We use the three ransomware samples, Lockbit, Phobos, and
WannaCry, for evaluation due to the samples and annotations
in the Lumina server. We only use a limited number of
samples for the following reasons. First, having quantitative
measurement means we need ground truth from experts. The
Lumina service is a good source of ground truth based on the
assumption that users would annotate their interested function
in a reverse engineering process. Second, although there are
many samples, only a limited number of them have been
annotated in the Lumina service. Since the Lumina service
has been available since 2018 (IDA Pro 7.2), we choose
samples available near 2018 or after 2018. Third, we choose
ransomware because they are popular, and its availability in the
Lumina database would be better than other types of samples
in the Lumina service.

Note that the GNN model used to perform the detection is
trained without any ransomware samples. Lockbit, Phobos, and
WannaCry have 468, 291, and 132 nodes and 783, 807, and
174 edges, respectively. We retrieved 43, 30, and 16 annotated
functions for the three samples, respectively, from the Lumina
server as of the time of conducting the experiments. Since
the explainers output the rank of essential edges, we expect
the explainer-selected top-ranked edges would “cover” all
expert-annotated functions. The definition of coverage is that
tracing from either one of the two nodes associated with a
selected edge can reach the expert-selected function within
t steps (forward or backward). Figure 10 shows the expla-
nation quality evaluation results based on annotations from
Lumina. The X-axis is the trace step limit t , and the Y-axis
indicates the ratio of top-ranked edges required (lower is
better) to cover all expert-annotated functions. The experiment
results show that all the explainers perform well with a trace
step limit of three. The GNN explainer is generally better
than the edge-pruning and node-pruning explainers. In the
best case, we only need 2% of selected edges to cover all
expert-annotated functions in Phobos.

Readers may notice that the explainers perform poorly
for the WannaCry sample presented in Figure 10(c). This
is because the model may have learned some malicious
features from typical malicious software and then recognizes
ransomware samples based on these features. However, due to
the limited amount of ransomware samples in the training data,
the model could only partially discover some features held by

Authorized licensed use limited to: TU Delft Library. Downloaded on August 10,2023 at 14:11:25 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: GUIDED MALWARE SAMPLE ANALYSIS BASED ON GRAPH NEURAL NETWORKS 4139

Fig. 9. Performance evaluations for explainer efficiency and stability.

Fig. 10. Quantitative analysis results for explanation quality based on the
annotated metadata from Lumina.

them, thus creating unsatisfied explanations for unknown or
unique ransomware.

Training a “good detector” and a “good explainer” are
two different stories. We use a simple example to illustrate
the difference. Typical ransomware often contains several
features, including (1) compromising a user, (2) making itself
persistent, (3) scanning for interesting files, and (4) performing
encryption. While features relevant to (1) and (2) can be
observed in regular malicious software, they are not unique
to ransomware and are not interesting to a reverse engineer.
Since the unique behavior of ransomware (such as (3) and (4)
in the example) are not learned in the model, the model may
still detect that the sample is malicious based on features
learned from (1) and (2). However, we would require features
like (3) and (4) to explain the sample well. To validate our
assumption, we add a small number of ransomware samples
(200 samples) from VirusTotal and retrain the GNN detection
model using the sample settings in RQ V-C. We then evaluate
the explanation quality between the models trained with and
without ransomware samples.

With the updated model, Phobos and Lockbit achieve simi-
lar explanation performance compared to previous results, but
the explanation output quality of WannaCry encounters mas-
sive growth, especially on the GNN explainer. The improve-
ments in the explanation quality can be clearly observed
by comparing Figures 10(c) and 10(d). Though the two
detection models obtain similar detection performance, the
GNN explainer receives a significant drop in the ratio of
required top-ranked edges (from 90% down to 15%) when the
trace step limit is three. To conclude, the evaluation results

Fig. 11. Case studies for selected sample predictions explained by discussed
model explainer.

show that all three explanation approaches can capture essen-
tial subgraph structures in the call graphs of unknown samples.
Moreover, training models with target-similar samples may
boost the explanation quality for targeted samples.

H. RQ7: Explainable Behavior

This section performs qualitative analyses of the explained
results by discussing the clues reported from the model.
We select four real-world samples, Phobos, AZORult,
Equation (APT), and WannaCry, and compare the essen-
tial parts recognized by our model against our reversing
engineering analysis results and external experts’ analysis
reports [70], [71], [72], [73]. In conclusion, the explainer pro-
vides highly relevant hints for program behavior analysis. Note
that the recognized edges and subgraphs can be connected
or disconnected, depending on the implementation of critical
functions and the selection ratio for critical edges. We briefly
summarize the results of the GNN explainer as follows.

1) The Phobos Sample: Figure 11(a) shows the recognized
edges for Phobos ransomware. The explainer approach reports
the functions used for file enumeration and data encryption,
which is closely relevant to the major functionalities reported
for the sample.

2) The AZORult Sample: Figure 11(b) shows the recog-
nized edges for AZORult info stealer. The explainer success-
fully finds the entry functions that collect Internet Explorer’s

Authorized licensed use limited to: TU Delft Library. Downloaded on August 10,2023 at 14:11:25 UTC from IEEE Xplore. Restrictions apply.

4140 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Fig. 12. GNN explainer result for WastedLocker (stage 1).

sensitive data. By tracing two steps from the entry functions,
it reaches info-stealing functions, including collecting cookies
and passwords from browsers and stealing crypto wallet data.

3) The Equation Sample: Figure 11(c) shows the recog-
nized edges for Equation APT. The explainer identifies the
DLL installer functions, which are highly relevant to the
dropper implementation. The observations align with multiple
security vendors reported on the VirusTotal website, which
indicates the sample is a dropper for APT installation.

4) The WannaCry Sample: Figure 11(d) shows the recog-
nized edges for WannaCry ransomware. We can see that the
explainer identifies several critical edges highly relevant to the
attacks presented in CVE-2017-0143. It indicates the function
used to scan internal networks, recognize SMB services, and
create socket connections to victims.

I. RQ8: Deal With Packed Samples

Although we removed samples packed by well-known pack-
ers from the training set, we want to know if our model
can still find critical parts from packed binaries. There are
indeed samples packed by customized or unknown packers
or obfuscators. Nevertheless, it works well with our proposed
solution because reverse engineering is a progressive process,
and identifying essential parts that perform unpacking and
deobfuscating is also one important process to realize the
implementation of a malicious sample.

In the case of analyzing a packed sample, the objective
of our approach is to identify the routines used to per-
form unpacking. This section uses real-world ransomware
called WastedLocker to perform the evaluation. We choose
it because it is two-stage ransomware, where the first stage is
a customized self-made encryption-based packer. We explain
the prediction using the GNN explainer and plot the results
in Figure 12. The figure marks the top 10 essential edges,
including the decryption and payload loading functions. More-
over, it also discovers the function to check the runtime
environment and points out the APIs that the function uses.
The result indicates that our proposed approach works well on
packed binaries.

J. RQ9: Observation of Reverse Engineering Tools

Readers may wonder why we choose the open-sourced
Radare2 (r2) to perform the experiments. We choose Radare2
for the following reasons. First, a tool must support automated
analysis. Although IDA supports Python script integration, it is
not available in the free version but only in the Pro version.
Second, a tool must be efficient. Our experiment results show

Fig. 13. Automated analysis script for Radare2.

Fig. 14. Automated analysis script for IDA Pro.

that Radare2 is about one point five to two times faster than
IDA Pro in most cases. Third, it would benefit the community
if the experiments were easier to reproduce, and working with
an open-sourced tool would make it easier for the community.

We conduct performance measurements against our choice
(Radare2) against the well-known commercial reverse engi-
neering tool IDA Pro to validate our choice. We use samples
from our collected datasets containing 45,611 benign samples
and 75,276 malicious samples to measure the performance of
the two tools. For Windows portable executable (PE) files,
we skip files implemented in .Net frameworks because they
are bytecode-based executables and cannot be completely
decoded by the selected tools. The final datasets contain
20,778 benign samples and 72,894 malicious samples, which
are 45.55% and 96.94% of the benign and malicious samples,
respectively. We sort the files in the benign and malicious
datasets independently in ascendant order based on the file
sizes and group every 2000 files into subgroups based on
the sorted result. As a result, there are 11 groups (from G0
to G10) for benign samples and 37 groups (from G0 to G36)
for malicious samples. We finally randomly select 10% of
samples from each group for performance evaluation.

We use Radare2 version 5.4 and IDA Pro version 8.2 to con-
duct the experiments. We implement scripts to automate the
analysis process with default settings and record the required
processing time and the functions they discovered. The
scripts implemented for the compared two tools are illustrated
in Figures 13 and 14, respectively. For Radare2, the Python
script iterates through all sample files. For each sample file,
it invokes Radare2 through the pipeline interface and then uses
the “aaa” command and the “aflj” command to analyze the files
and store analyzed information in JSON format. For IDA Pro,
we use a batch script to iteratively command the IDA Pro to
analyze a sample and invoke a given Python script. The script
waits until IDA Pro finishes analyzing a sample and retrieves
the required function information, including offsets, names,

Authorized licensed use limited to: TU Delft Library. Downloaded on August 10,2023 at 14:11:25 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: GUIDED MALWARE SAMPLE ANALYSIS BASED ON GRAPH NEURAL NETWORKS 4141

Fig. 15. Sample processing time for Radare2 and IDA Pro.

Fig. 16. Percentage of recognized functions for Radare2 and IDA Pro.

and sizes. The results are also stored in a JSON-compatible
format.

We use box plots to present the measured processing time
in Figure 15. The following observations can be made in the
presented result. First, both Radare2 and IDA Pro have several
outliers having much longer analysis time than others. Because
of these outliers, we set a Y-axis limit at 20s to avoid squashed
plots. Second, we see that both Radare2 and IDA Pro have
similar processing time trends in analyzing the samples. The
observation is based on the median values presented in the
figures. Third, based on the measured running time, Radare2
runs one point five to two times faster than IDA Pro.

We further evaluate the identified functions reported from
the two compared tools. We only compare the functions
reported from the tools because once we have recognized the
functions, we can use the same disassembly tools to recognize
call instructions and build the call graphs. Figure 16 shows
the percentage of functions discovered by Radare2 and IDA
Pro. The percentage is measured by the equation

p =
of functions recognized by Radare2 (or IDA Pro)
of all distinct functions recognized by both tools

.

IDA Pro generally reports much more functions than Radare2.
However, if we take a closer look at the differences, we find

that the heuristics employed by the tools cause the dif-
ferences. We summarize several findings as follows. First,
we notice that the two tools interpret exception handlers
differently. If a program invokes an exception handler using
the call instruction, Radare2 considers the exception han-
dler as a function, but IDA Pro does not. Second, IDA
Pro sometimes considers a jumping target as a function,
but Radare2 does not. However, it is interesting that this
phenomenon is only visible in the automation script invoked
within IDA Pro but is invisible in the GUI. Third, IDA Pro
employs an intelligent heuristic to guess possible indirect call
targets in a program. The heuristic detects whether addresses
within the text segment are stored in the data segment.
Although there could be false positives, i.e., incorrectly con-
sidering a constant value as a text segment address, detected
addresses are reported as functions.

Based on our experiment results presented in this section,
we see that the compared tools have their strengths and
weaknesses. Reverse engineering tools could have different
interpretations for the same sample. However, it might be
challenging to tell which one is better than the other due to
the design choices employed by the tools. Although different
interpretations may lead to different results, the differences
are not because of inaccurate but inconsistent interpretations
of different tools. The more important thing is that we should
use the same tool to perform the interpretation and generate
the datasets instead of mixing the usage of tools to ensure that
the system has a consistent view of program structures.

VI. CONCLUSION AND FUTURE WORK

In this study, we develop the MalwareExpert system, which
is composed of our proposed graph neural network-based
malware classification model (the MalwareExpert model)
and several model explainers. The system converts input
samples into graph embeddings for detection and model
explanation. In addition to achieving a high detection per-
formance (97.3% accuracy and 96.5% recall rate), the model
explainers recognize critical graph structures for classified
samples. Our qualitative and quantitative analyses have shown
that the identified functions provide accurate directions for
accelerating malware binary analyses. In the best case, the
top 2% of functions reported from the system can cover all
expert-annotated functions in three steps. We believe that the
MalwareExpert system has shed light on automated program
behavior analysis. Our proposed architecture that combines
a high-performance graph-based model and well-designed
explainers is sufficiently generic to perform various automated
program analysis purposes.

REFERENCES

[1] Malware Statistics & Trends Report. Accessed: Oct. 22, 2022. [Online].
Available: https://www.av-test.org/en/statistics/malware/

[2] SCT Report. (2021). Cyber Threat Intelligence for Navigating Today’s
Business Reality. [Online]. Available: https://www.cerdant.com/wp-
content/uploads/2021/09/2-2021-threat-report-midyear-summary.pdf

[3] D. Gibert, C. Mateu, and J. Planes, “The rise of machine learning
for detection and classification of malware: Research developments,
trends and challenges,” J. Netw. Comput. Appl., vol. 153, Mar. 2020,
Art. no. 102526.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 10,2023 at 14:11:25 UTC from IEEE Xplore. Restrictions apply.

4142 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

[4] E. Raff and C. Nicholas, “A survey of machine learning meth-
ods and challenges for windows malware classification,” 2020,
arXiv:2006.09271.

[5] E. Raff, J. Sylvester, and C. Nicholas, “Learning the pe header, mal-
ware detection with minimal domain knowledge,” in Proc. 10th ACM
Workshop Artif. Intell. Secur., Nov. 2017, pp. 121–132.

[6] E. Raff et al., “An investigation of byte n-gram features for malware clas-
sification,” J. Comput. Virol. Hacking Techn., vol. 14, no. 1, pp. 1–20,
Feb. 2018.

[7] R. Zak, E. Raff, and C. Nicholas, “What can N-grams learn for
malware detection?” in Proc. 12th Int. Conf. Malicious Unwanted Softw.
(MALWARE), Oct. 2017, pp. 109–118.

[8] M. Kalash, M. Rochan, N. Mohammed, N. D. B. Bruce, Y. Wang,
and F. Iqbal, “Malware classification with deep convolutional neural
networks,” in Proc. 9th IFIP Int. Conf. New Technol., Mobility Secur.
(NTMS), Feb. 2018, pp. 1–5.

[9] D. Gibert, C. Mateu, J. Planes, and R. Vicens, “Using convolu-
tional neural networks for classification of malware represented as
images,” J. Comput. Virol. Hacking Techn., vol. 15, no. 1, pp. 15–28,
Mar. 2019.

[10] D. Vasan, M. Alazab, S. Wassan, B. Safaei, and Q. Zheng, “Image-based
malware classification using ensemble of CNN architectures (IMCEC),”
Comput., Secur., vol. 92, May 2020, Art. no. 101748.

[11] Q. Le, O. Boydell, B. M. Namee, and M. Scanlon, “Deep learning at
the shallow end: Malware classification for non-domain experts,” Digit.
Invest., vol. 26, pp. S118–S126, Jul. 2018.

[12] H. S. Anderson and P. Roth, “EMBER: An open dataset for training
static PE malware machine learning models,” 2018, arXiv:1804.04637.

[13] H.-D. Pham, T. D. Le, and T. N. Vu, “Static PE malware detection using
gradient boosting decision trees algorithm,” in Proc. Int. Conf. Future
Data Secur. Eng., 2018, pp. 228–236.

[14] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” 2013, arXiv:1301.3781.

[15] B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online learning of
social representations,” in Proc. 20th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, Aug. 2014, pp. 701–710.

[16] A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for
networks,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, Aug. 2016, pp. 855–864.

[17] N. Shervashidze, P. Schweitzer, E. J. Van Leeuwen, K. Mehlhorn, and
K. M. Borgwardt, “Weisfeiler-Lehman graph kernels,” J. Mach. Learn.
Res., vol. 12, no. 9, pp. 2539–2561, Nov. 2011.

[18] P. Hell and J. Nesetril, Graphs and Homomorphisms, vol. 28. London,
U.K.: Oxford Univ. Press, 2004.

[19] H. Dai, B. Dai, and L. Song, “Discriminative embeddings of latent
variable models for structured data,” in Proc. 33rd Int. Conf. Mach.
Learn., vol. 48, 2016, pp. 2702–2711.

[20] M. Grohe, “Word2vec, node2vec, graph2vec, X2vec: Towards a theory
of vector embeddings of structured data,” in Proc. 39th ACM SIGMOD-
SIGACT-SIGAI Symp. Princ. Database Syst., Jun. 2020, pp. 1–16.

[21] M. Hassen and P. K. Chan, “Scalable function call graph-based malware
classification,” in Proc. 7th ACM Conf. Data Appl. Secur. Privacy,
Mar. 2017, pp. 239–248.

[22] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “Code2vec: Learning
distributed representations of code,” Proc. Program. Lang. (ACM),
vol. 3, pp. 1–29, Jan. 2019.

[23] L. Massarelli, G. A. Di Luna, F. Petroni, R. Baldoni, and L. Querzoni,
“SAFE: Self-attentive function embeddings for binary similarity,” in
Proc. Int. Conf. Detection Intrusions Malware, Vulnerability Assessment,
2019, pp. 309–329.

[24] J. Johns. (2017). Representation Learning for Malware Classifica-
tion. [Online]. Available: https://www.fireeye.com/content/dam/fireeye-
www/blog/pdfs/malware-classification-slides.pdf

[25] H. Hashemi, A. Azmoodeh, A. Hamzeh, and S. Hashemi, “Graph
embedding as a new approach for unknown malware detection,” J. Com-
put. Virol. Hacking Techn., vol. 13, no. 3, pp. 153–166, Aug. 2017.

[26] R. V. Mises and H. Pollaczek-Geiringe, “Praktische Verfahren der Gle-
ichungsauflösung,” ZAMM-J. Appl. Math. Mech. Zeitschrift Für Angew.
Mathematik und Mech., vol. 9, no. 1, pp. 58–77, 1929.

[27] A. Z. Broder, “On the resemblance and containment of documents,” in
Proc. Compress. Complex. SEQUENCES, 1997, pp. 21–29.

[28] H. Gascon, F. Yamaguchi, D. Arp, and K. Rieck, “Structural detection of
Android malware using embedded call graphs,” in Proc. ACM Workshop
Artif. Intell. Secur., Nov. 2013, pp. 45–54.

[29] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural network-
based graph embedding for cross-platform binary code similarity detec-
tion,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2017,
pp. 363–376.

[30] Y. Fan, S. Hou, Y. Zhang, Y. Ye, and M. Abdulhayoglu, “Gotcha–Sly
malware: Scorpion a metagraph2vec based malware detection system,”
in Proc. 24th ACM SIGKDD Int. Conf. Knowl. Discovery, Data Mining,
Jul. 2018, pp. 253–262.

[31] J. Zhang, L. Yan, R. Wang, C. Tian, and Z. Duan, “Malware detection
using CNN via word embedding,” in Proc. Int. Conf. Dependable Syst.
Their Appl. (DSA), 2021, pp. 600–607.

[32] M. Krčál, O. Švec, M. Bálek, and O. Jašek, “Deep convolutional
malware classifiers can learn from raw executables and labels only,”
in Proc. 6th Int. Conf. Learn. Represent., 2018, pp. 1–4.

[33] S. E. Coull and C. Gardner, “Activation analysis of a byte-based deep
neural network for malware classification,” in Proc. IEEE Secur. Privacy
Workshops (SPW), May 2019, pp. 21–27.

[34] (2017). The Undocumented Microsoft ‘Rich’ Header. [Online]. Avail-
able: http://bytepointer.com/articles/the_microsoft_rich_header.htm

[35] L. Demetrio, B. Biggio, G. Lagorio, F. Roli, and A. Armando, “Explain-
ing vulnerabilities of deep learning to adversarial malware binaries,”
2019, arXiv:1901.03583.

[36] S. Bose, T. Barao, and X. Liu, “Explaining AI for malware detection:
Analysis of mechanisms of MalConv,” in Proc. Int. Joint Conf. Neural
Netw. (IJCNN), Jul. 2020, pp. 1–8.

[37] R. Korine and D. Hendler, “DAEMON: Dataset/platform-agnostic
explainable malware classification using multi-stage feature mining,”
IEEE Access, vol. 9, pp. 78382–78399, 2021.

[38] S. H. H. Ding, B. C. M. Fung, and P. Charland, “Asm2Vec: Boosting
static representation robustness for binary clone search against code
obfuscation and compiler optimization,” in Proc. IEEE Symp. Secur.
Privacy (SP), May 2019, pp. 472–489.

[39] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2016, arXiv:1609.02907.

[40] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” 2017, arXiv:1710.10903.

[41] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph
sequence neural networks,” 2015, arXiv:1511.05493.

[42] Y. Gao, H. Hasegawa, Y. Yamaguchi, and H. Shimada, “Malware
detection using attributed CFG generated by pre-trained language model
with graph isomorphism network,” in Proc. IEEE 46th Annu. Comput.,
Softw., Appl. Conf. (COMPSAC), Jun. 2022, pp. 1495–1501.

[43] B. Wu, Y. Xu, and F. Zou, “Malware classification by learning semantic
and structural features of control flow graphs,” in Proc. IEEE 20th Int.
Conf. Trust, Secur. Privacy Comput. Commun. (TrustCom), Oct. 2021,
pp. 540–547.

[44] M. Someya, Y. Otsubo, and A. Otsuka, “FCGAT: Interpretable malware
classification method using function call graph and attention mecha-
nism,” in Proc. Netw. Distrib. Syst. Secur. (NDSS) Symp., 2023, pp. 1–10.

[45] L. Zhang, P. Liu, Y. Choi, and P. Chen, “Semantics-preserving rein-
forcement learning attack against graph neural networks for malware
detection,” IEEE Trans. Dependable Secure Comput., vol. 20, no. 2,
pp. 1390–1402, Mar. 2023.

[46] W. W. Lo, S. Layeghy, M. Sarhan, M. Gallagher, and M. Portmann,
“Graph neural network-based Android malware classification with jump-
ing knowledge,” in Proc. IEEE Conf. Dependable Secure Comput.
(DSC), Jun. 2022, pp. 1–9.

[47] C. Li et al., “DMalNet: Dynamic malware analysis based on API feature
engineering and graph learning,” Comput., Secur., vol. 122, Nov. 2022,
Art. no. 102872.

[48] Y. He, Y. Liu, L. Wu, Z. Yang, K. Ren, and Z. Qin, “MsDroid:
Identifying malicious snippets for Android malware detection,”
IEEE Trans. Dependable Secure Comput., vol. 20, no. 3, pp. 2025–2039,
May/Jun. 2023.

[49] R. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “GNNEx-
plainer: Generating explanations for graph neural networks,” in Proc.
Adv. Neural Inf. Process. Syst., vol. 32, 2019, p. 9240–9251.

[50] R. Isawa, M. Morii, and D. Inoue, “Comparing malware samples for
unpacking: A feasibility study,” in Proc. 11th Asia Joint Conf. Inf. Secur.
(AsiaJCIS), Aug. 2016, pp. 155–160.

[51] A. Kalysch, J. Götzfried, and T. Müller, “VMAttack: Deobfuscating
virtualization-based packed binaries,” in Proc. 12th Int. Conf. Availabil-
ity, Rel. Secur., Aug. 2017, pp. 1–10.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 10,2023 at 14:11:25 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: GUIDED MALWARE SAMPLE ANALYSIS BASED ON GRAPH NEURAL NETWORKS 4143

[52] B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray, “A generic
approach to automatic deobfuscation of executable code,” in Proc. IEEE
Symp. Secur. Privacy, May 2015, pp. 674–691.

[53] S. Choi, T. Chang, C. Kim, and Y. Park, “X64Unpack: Hybrid emulation
unpacker for 64-bit windows environments and detailed analysis results
on VMProtect 3.4,” IEEE Access, vol. 8, pp. 127939–127953, 2020.

[54] Hex Rays. IDA Pro. Accessed: Oct. 22, 2022. [Online]. Available:
https://hex-rays.com/ida-pro/

[55] NSA’s Research Directorate. Ghidra. Accessed: Oct. 22, 2022. [Online].
Available: https://ghidra-sre.org/

[56] Radare. Accessed: Oct. 22, 2022. [Online]. Available: https://rada.re/n/
[57] Z. Lin et al., “A structured self-attentive sentence embedding,” 2017,

arXiv:1703.03130.
[58] U. Alon and E. Yahav, “On the bottleneck of graph neural networks and

its practical implications,” 2020, arXiv:2006.05205.
[59] G. Li, C. Xiong, A. Thabet, and B. Ghanem, “DeeperGCN: All you

need to train deeper GCNs,” 2020, arXiv:2006.07739.
[60] D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun, “Measuring and

relieving the over-smoothing problem for graph neural networks from
the topological view,” in Proc. AAAI Conf. Artif. Intell., vol. 34, no. 4,
2020, pp. 3438–3445.

[61] W. Lu et al., “SkipNode: On alleviating performance degradation for
deep graph convolutional networks,” 2021, arXiv:2112.11628.

[62] J. Lei Ba, J. Ryan Kiros, and G. E. Hinton, “Layer normalization,” 2016,
arXiv:1607.06450.

[63] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Cavallaro,
“TESSERACT: Eliminating experimental bias in malware classification
across space and time,” in Proc. 28th USENIX Secur. Symp., 2019,
pp. 729–746.

[64] Desktop Operating System Market Share World.
Accessed: Oct. 22, 2022. [Online]. Available: https://gs.statcounter.com/
os-market-share/desktop/world

[65] H. Aghakhani et al., “When malware is Packin’ heat; limits of machine
learning classifiers based on static analysis features,” in Proc. Netw.
Distrib. Syst. Secur. Symp., 2020, pp. 1–20.

[66] Horsicq. Detect-it-Easy. Accessed: Oct. 22, 2022. [Online]. Available:
https://github.com/horsicq/Detect-It-Easy

[67] L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE,”
J. Mach. Learn. Res., vol. 9, no. 11, Nov. 2008, pp. 2579–2605.

[68] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and
C. Nicholas, “Malware detection by eating a whole EXE,” 2017,
arXiv:1710.09435.

[69] H. Anderson and P. Roth. Elastic Malware Benchmark for Empowering
Researchers. Accessed: Oct. 22, 2022. [Online]. Available: https://
github.com/elastic/ember

[70] A. Berry, J. Homan, and R. Eitzman. (2017). Wannacry Mal-
ware Profile. [Online]. Available: https://www.fireeye.com/blog/threat-
research/2017/05/wannacry-malware-profile.html

[71] X. Zhang. (2020). Deep Analysis—The Eking Variant of Phobos
Ransomware. [Online]. Available: https://www.fortinet.com/blog/threat-
research/deep-analysis-the-eking-variant-of-phobos-ransomware

[72] Hasherezade. (2019). A Deep Dive Into Phobos Ransomware. [Online].
Available: https://www.malwarebytes.com/blog/news/2019/07/a-deep-
dive-into-phobos-ransomware

[73] Cyble. A Deep-Dive Analysis of Azorult Stealer.
Accessed: Oct. 22, 2022. [Online]. Available: https://blog.cyble.com/
2021/10/26/a-deep-dive-analysis-of-azorult-stealer

Yi-Hsien Chen received the B.S. degree in computer
science from the National Chiao Tung University
(NCTU). He is currently pursuing the Ph.D. degree
with the Department of Electrical Engineering,
National Taiwan University. He is a Research Assis-
tant with the Department of Computer Science,
National Yang Ming Chiao Tung University, and a
Security Researcher of the CyCraft Research Team.
His work has published in IEEE DSC and ACM
ASIACCS. He has also spoken at HITB CyberWeek,
AVTokyo, HIT CON, SECCON, and CODE BLUE.

Additionally, he was a member of the BambooFox CTF Team, NYCU,
and has participated in several CTFs. His research focuses on automatic
malware analysis techniques and various cybersecurity topics. He has utilized
symbolic execution, machine learning, and other techniques to improve
malware analysis speed. He has won 12th and second place in DEFCON 26
and DEFCON 27, respectively, with BFS and BFKinesiS CTF teams.

Si-Chen Lin received the B.S. degree in computer
science from the National Chiao Tung University
and the master’s degree in cybersecurity from the
National Taiwan University. He received the presti-
gious Master’s Thesis Award. He is a cybersecurity
professional specializing in the intersection of cyber-
security and machine learning. His research exper-
tise lies in developing innovative approaches that
leverage machine-learning algorithms to identify and
mitigate security threats. His research findings have
been recognized at renowned conferences, including

HITCON and CYBERSEC, where he has engaged in intellectual discourse and
fostered knowledge exchange within the cybersecurity community. His excep-
tional achievements underscore his dedication and profound contributions to
the field. He advances the discipline by integrating cutting-edge machine
learning techniques into cybersecurity practices and enhancing security mea-
sures. His work exemplifies the potential synergies between cybersecurity
and machine learning, improving the digital landscape’s threat detection and
mitigation strategies. He is a member of BambooFox, BFS, and TSJ CTF
teams and focuses on binary exploitation and reverse engineering. In CTF
competitions, he has achieved top rankings in several world-class CTFs, such
as DEFCON and HITCON CTF.

Szu-Chun Huang received the B.S. degree from
the National Taiwan University and the M.S. degree
from the National Yang Ming Chiao Tung Uni-
versity. She is currently pursuing the Ph.D. degree
in computer science with the Faculty of Technol-
ogy, Policy and Management, Delft University of
Technology. Her research focuses on scanning and
benchmarking internet-wide vulnerabilities and aims
to investigate the hidden factors influencing security
patching behaviors.

Chin-Laung Lei (Member, IEEE) received the B.S.
degree in electrical engineering from the National
Taiwan University in 1980 and the Ph.D. degree
in computer science from The University of Texas
at Austin in 1986. From 1986 to 1988, he was an
Assistant Professor with the Computer and Informa-
tion Science Department, The Ohio State University,
Columbus, OH, USA. In 1988, he joined the Depart-
ment of Electrical Engineering Faculty, National
Taiwan University, where he is currently a Professor.
His current research interests include computer and

network security, cryptography, parallel and distributed processing, the design
and analysis of algorithms, and operating system design. He is a member of
the Association for Computing Machinery.

Chun-Ying Huang (Senior Member, IEEE) received
the Ph.D. degree from the Electrical Engineering
Department, National Taiwan University, in 2007.
He is a Professor with the Department of Com-
puter Science, National Yang Ming Chiao Tung
University (formerly known as National Chiao Tung
University), where he leads the Security and Systems
Laboratory. He is also the Director of the Institute
of Network Engineering, National Yang Ming Chiao
Tung University. His research interests include sys-
tem security, multimedia networking, and mobile

computing. He served as a PI or Co-PI for several teaching, research, and
industrial projects in network and system security, including the Information
Security Incubation Program (ISIP and AIS3), Ministry of Education (MoE);
and the Taiwan Information Security Center Program (TWISC), NYCU,
National Science and Technology Council (NSTC).

Authorized licensed use limited to: TU Delft Library. Downloaded on August 10,2023 at 14:11:25 UTC from IEEE Xplore. Restrictions apply.

