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A B S T R A C T

A hybrid material point/finite volume method for the numerical simulation of shallow water waves caused by
large dynamic deformations in the bathymetry is presented. The proposed model consists of coupling the
nonlinear shallow water equations for the water flow and a dynamic elastoplastic system for the seabed
deformation. As a constitutive law, we consider a linear elastic-non-associative plastic model with the Drucker-
Prager yield criterion allowing for large deformations under undrained cases. The transfer conditions between
these models are achieved by using forces sampled from the hydraulic pressure and the friction terms along the
interface between the seabed soil and shallow water. A detailed description regarding the coupled algorithm
for the hybrid material point/finite volume method is presented. Several numerical examples are investigated
to demonstrate the performance of the finite volume method for simulations of shallow water flow and the
material point method for capturing the large deformation process of the solid phase. We also present numerical
simulations of an undrained clay column collapse that induced shallow water waves and a dam-break problem
to demonstrate the excellent performance of the proposed hybrid material point/finite volume method.
1. Introduction

The numerical simulation of shallow water waves induced by large
dynamic deformations in the bathymetry is extremely relevant to a
number of geotechnical problems, such as submarine and/or subaerial
landslides. Water waves generated by the deformation of the seabed
are of general interest to coastal and ocean engineering. The study of
bed deformations is of great complexity since it is a class of natural phe-
nomena that occur under certain conditions such as earthquakes, water
mass movements, storms and heavy rainfalls; see for example Hargarten
and Robl (2019), Kirstetter et al. (2016), and Ramadan et al. (2011). In
such events, bed deformations are capable of generating several types
of long waves due to the energy transfer to the water volume. Free-
surface waves generated by bed deformations include very powerful
and destructive tsunami waves, which propagate and produce catas-
trophic waves causing significant coastal run-up (Fuhrman and Madsen,
2009; Zhang et al., 2019). In recent years, a considerable research effort
has been developed regarding the mathematical modelling and numer-
ical simulation of the interaction between bed deformation and water
waves, as well as the mechanisms of surface gravity wave generation
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and propagation. In general, the modelling of wave run-up by static
deformation is based on two components, these being the description of
the bed deformation and the governing equations of the water motion.
Numerous investigations for the waves induced by the deformations in
seabeds have been carried out since the 1970s, see for example Zhang
et al. (2015), Chen et al. (2010), Koukouselis et al. (2019), and Cre-
monesi et al. (2011). Numerical simulations have also been widely
carried out to examine the problem in recent years. Fuhrman and Mad-
sen (2009) studied a buried pipeline in a region that is surrounded by
two impermeable walls. Magda (1997) considered a similar case with
a wider range of degree of saturation, whereas soil-pipeline contact
effects and inertial forces in a new model were investigated by Luan
et al. (2008). In experimental investigations, the research contributions
can be distinguished into two parts: (i) field measurements and (ii)
laboratory experiments. In the field measurement studies, data for
water pressure at the seabed surface, and for pore water pressure and
vertical and horizontal total stresses in the seabed, have been collected,
analyzed and compared with their theoretical counterparts in Okusa
and Uchilda (1980), Okusa (1985), and Zen and Yamazaki (1991)
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among others. In laboratory experimental studies (Tsui and Helfrich,
1983), the pore pressures in the seabed induced by progressive waves
in wave flumes have been studied and compared with the results
derived from linear wave theory. On the other hand, several numerical
algorithms have been proposed to accommodate complex geometry and
physical conditions. For example, Pudykiewicz and Staniforth (1984)
developed a simplified finite element model for isotropic and saturated
permeable seabeds. In order to improve the computational efficiency, a
radial point interpolation meshless method was implemented in Wang
et al. (2004).

In many cases, traditional mesh-based methods such as the Finite
Element Method (FEM) show significant limitations when simulating
these large deformation problems. For example, the intrinsic defects of
the FEM frequently lead to aborted numerical simulations or misleading
results due to excessive mesh distortions for problems involving large
deformations. To remedy these mesh-distortion issues, several specific
remeshing techniques have been proposed (Nazem et al., 2008; Wang
et al., 2015). As an alternative, some meshfree/meshless methods, such
as the Smoothed Particle Hydrodynamics (SPH) method (Gingold and
Monaghan, 1977; Monaghan, 1994; Pastor et al., 2014, 2018), the
Material Point Method (MPM) (Sulsky et al., 1994, 1995), the element-
free Galerkin method (Belytschko et al., 1995), the Particle Finite
Element Method (PFEM) (Oñate et al., 2004; Monforte et al., 2017;
Della Vecchia et al., 2019; Yuan et al., 2020, 2021b) and other mesh-
free methods (Li et al., 2010, 2014; Navas et al., 2016, 2018), have also
been proposed to solve large deformation geotechnical problems, with
each one featuring a specific mixture of advantages and drawbacks. The
well-developed Material Point Method (MPM) was derived from the
Particle-in-cell (PIC) method that was originally developed for solving
complex fluid mechanics problems. It is known that MPM combines
the advantages of both Eulerian and Lagrangian approaches, and it
effectively avoids the treatment of convection terms in the Eulerian for-
mulation and excessive mesh distortion in the Lagrangian formulation.
For this reason, it has been gaining recognition as a robust approach
for the simulation of large deformation geotechnical problems, such as
landslides (Andersen, 2009; Andersen and Andersen, 2010; Soga et al.,
2015; Wang et al., 2018; Yerro et al., 2019), the bearing capacity of
footings (Kiriyama and Higo, 2020; Bisht et al., 2021; Wang et al.,
2021), anchor pull-out (Coetzee et al., 2005; Ceccato et al., 2020; Liang
et al., 2021), and cone penetration (Beuth, 2012; Ceccato et al., 2016;
Martinelli and Galavi, 2021). It is also the approach that was preferred
in this study.

In the context of MPM, both single-layer and two-layer approaches
have been explored, i.e., the use of one or two sets of material points
o describe the interaction between solid and fluid phases. When using

single-layer of material points, the position of a material point is
pdated following the movement of the solid phase. Even though this
pproach only guarantees mass conservation of the solid phase, the
ower computational costs that are associated with the single-layer
pproach have motivated its frequent use in previous coupled MPM
esearch (Zhang et al., 2009; Zabala and Alonso, 2011; Jassim et al.,
013; Zheng et al., 2013; Ceccato et al., 2016; Lei et al., 2021; Zhao
nd Choo, 2020; Zheng et al., 2021, 2022; Zheng, 2022). Conversely,
wo sets of material points, i.e., a solid layer and a water layer, have
lso been used (Zhang et al., 2007; Abe et al., 2013; Bandara and Soga,
015; Liu et al., 2017; Tran and Sołowski, 2019; Kularathna et al.,
021; Zhao et al., 2022; Du et al., 2021), which can easily guarantee
he mass conservation of both phases and capture the interaction be-
ween them. In the two-layer approach, the two sets of material points
re respectively used for tracking the motion of the solid and water
hases (Soga et al., 2015), which may be more suitable for simulating
he type of problem considered in this study. However, despite its
roven robustness, it is known that the presence of two layers of
aterial points leads to a significant increase in computational costs.
2

oreover, when involving a nearly or fully incompressible free water t
phase, MPM suffers from spurious pore pressure oscillations and free-
surface instabilities (Zheng, 2022), and special treatments are generally
required for detecting the free water surface. Thus, more robust and
efficient methods are required to simulate the coupled shallow water
flows and large deformations in seabeds. With this in mind, it is known
that the Finite Volume Method (FVM) has a key advantage in simulat-
ing the dynamic flow of shallow water owing to its natural conservation
of mass, momentum, and energy. Therefore, the FVM can be viewed
as an ideal replacement for the MPM for simulating the dynamic
motion of the shallow water, and it has been coupled with MPM in the
study of Baumgarten et al. (2021). In the present study, we propose
a hybrid material point/finite volume method for the modelling and
numerical simulation of shallow water waves caused by undrained
large dynamic deformations in the bed topography. This is achieved
by incorporating a depth-averaged robust FVM solver and a novel
interface coupling algorithm between the MPM and FVM techniques.
For the proposed method, MPM is adopted to solve the equations
that govern the undrained large deformation of the seabed soils by
a Lagrangian description, whereas the robust FVM is applied to the
governing equations of the shallow water in an Eulerian context. The
coupled scheme between the MPM and FVM models is achieved using
forces sampled from the hydraulic pressure and the friction terms along
the interface between the seabed soil and shallow water. A detailed
description regarding the coupled algorithm for the hybrid material
point/finite volume method is presented. Several numerical examples
are presented to demonstrate the performance of the proposed hybrid
MPM/FVM and its capability in simulating shallow water waves caused
by large dynamic deformations of the seabed.

The paper is organized as follows. A description of the coupled
model for coupled shallow water flows and large dynamic deformations
in seabeds is presented in Section 2. This section covers the govern-
ing equations for elastoplastic deformations in seabeds and shallow
water flows, along with the coupling conditions between the two
models. Section 3 is devoted to the formulation of the computational
techniques used for the numerical solution procedure. We consider a
two-dimensional MPM for the large dynamic deformations in seabeds,
whereas a well-balanced finite volume method is implemented for the
shallow water flows. In Section 4, we present numerical results for
several examples of coupled shallow water flows and large dynamic
deformations in seabeds. Concluding remarks are drawn in Section 5.

2. Modelling free-surface waves caused by soil deformations

In continuum mechanics, the two basic equations that govern the
dynamic motion of the soil, namely the mass and momentum conser-
vation equations, are written as follows:
d𝜌
d𝑡

+ 𝜌∇ ⋅ 𝒗 = 0,

𝜌d𝒗
d𝑡

− ∇ ⋅ 𝝈 = 𝜌𝒃,
(1)

where 𝜌 is the mass density of the soil, 𝒗 is the soil particle velocity, 𝝈 is
he stress tensor, 𝒃 is the external body force, ∇ is the gradient operator,
nd (⋅) indicates the inner product. It should be stressed that various
onstitutive models can be adopted for computing the stress tensor 𝝈 in
qs. (1), without major conceptual modifications. In this study, the non-
ssociative Drucker–Prager elastoplastic model, which has previously
een chosen in the SPH simulation of large deformation geotechnical
roblems (Bui et al., 2008, 2014; Feng et al., 2021; Nguyen et al.,
017), is implemented in the proposed hybrid material point/finite
olume method. Following this elastoplastic constitutive model, the
tress–strain relationship can be expressed by

̇ = 𝑫𝑒 ∶ (�̇� − �̇�𝑝), (2)

here �̇� is the stress rate tensor, 𝑫𝑒 is the elastic tangent stiffness
ensor, and �̇� is the total strain rate tensor which can be divided into
wo parts, namely, the elastic �̇�𝑒 and plastic �̇�𝑝 strain rates. Note that in
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the considered Drucker–Prager elastoplastic model, the yield function
𝑓 and plastic potential function 𝑔 are defined by

𝑓 = 𝛼𝜙𝐼1 +
√

𝐽2 − 𝑘𝑐 , 𝑔 = 𝛼𝜓𝐼1 +
√

𝐽2, (3)

where 𝐼1 is the first invariant of the stress tensor, 𝐽2 is the second
deviatoric stress invariant, 𝛼𝜙 and 𝑘𝑐 are Drucker–Prager model param-
eters, and 𝛼𝜓 is a dilatancy factor. Thus, the stress–strain relation can
be written as

�̇�𝑖𝑗 = 2𝐺�̇�𝑖𝑗 +𝐾�̇�𝑘𝑘𝛿𝑖𝑗 − �̇�

(

3𝐾𝛼𝜙𝛿𝑖𝑗 +
𝐺

√

𝐽2
𝑠𝑖𝑗

)

, (4)

where �̇�𝑖𝑗 is the stress rate tensor, �̇�𝑖𝑗 is the deviatoric strain rate tensor,
�̇�𝑘𝑘 is the trace of the strain rate tensor, 𝛿𝑖𝑗 is the Kronecker delta, �̇� is
the rate of change of plastic multiplier, 𝑠𝑖𝑗 is the deviatoric stress tensor,
and 𝐺 and 𝐾 are the elastic shear and bulk moduli, respectively.

It should be noted that, for considering large deformation problems,
the Jaumann rate, which gives an objective measure of the stress
rate with respect to rigid-body rotation, is employed in the current
study. Thus, the final form of the stress–strain relationship for the
non-associative Drucker–Prager elastoplastic model is written as

�̇�𝑖𝑗 = 𝜎𝑖𝑘�̇�𝑗𝑘 + 𝜎𝑘𝑗 �̇�𝑖𝑘 + 2𝐺�̇�𝑖𝑗 +𝐾�̇�𝑘𝑘𝛿𝑖𝑗 − �̇�

(

3𝐾𝛼𝜙𝛿𝑖𝑗 +
𝐺

√

𝐽2
𝑠𝑖𝑗

)

, (5)

where �̇�𝑖𝑗 and �̇�𝑖𝑗 , respectively, define the strain rate and spin rate
tensors given by

�̇�𝑖𝑗 =
1
2

(

𝜕𝑣𝑖
𝜕𝑥𝑗

+
𝜕𝑣𝑗
𝜕𝑥𝑖

)

, �̇�𝑖𝑗 =
1
2

(

𝜕𝑣𝑖
𝜕𝑥𝑗

−
𝜕𝑣𝑗
𝜕𝑥𝑖

)

. (6)

As a consequence of the large deformation of the soil, perturbations
with different structures are expected to be generated on the water free-
surface. In the present study, we consider a one-dimensional nonlinear
shallow water system for modelling these free-surface flows. In general,
the governing equations for shallow water flows are formulated in
terms of the surface elevation 𝜂 and the discharge 𝑞 as (Pudjaprasetya
and Ribal, 2009)
𝜕𝜂
𝜕𝑡

+
𝜕𝑞
𝜕𝑥

= 0,

𝜕𝑞
𝜕𝑡

+ 𝜕
𝜕𝑥

(

𝑞2

𝜂 − 𝐵
+
𝑔
2
(

𝜂2 − 2𝜂𝐵
)

)

= −𝑔𝜂 𝜕𝐵
𝜕𝑥

− 𝜏𝑓 ,
(7)

where 𝐵(𝑡, 𝑥) is the deformed bed, and ℎ (𝑡, 𝑥) is the water depth
with 𝜂 = ℎ + 𝐵. In (7), the discharge 𝑞 = ℎ𝑣, where 𝑣 (𝑡, 𝑥) is the water
velocity and 𝜏𝑓 is the bed friction force defined by

𝜏𝑓 = 𝑔𝑀2
𝑏
𝑣 |𝑣|

ℎ
1
3

, (8)

where 𝑔 is the gravitational acceleration and 𝑀𝑏 is the Manning co-
efficient, see Fig. 1 for an illustration. Indeed, under the influence of
gravity, many free-surface water flows can be accurately modelled by
the shallow water equations with the assumption that the vertical scale
is much smaller than any typical horizontal scale in the flow domain.
These models are derived by depth-averaging the three-dimensional
incompressible Navier–Stokes equations using appropriate free-surface
and bed boundary conditions, along with the assumption that the
pressure is purely hydrostatic. The shallow water Eqs. (7) have been
successfully applied to many engineering problems and their fields of
application include a wide spectrum of phenomena other than water
waves. For example, the shallow water equations have been used for
applications in hydraulics and environmental engineering, such as tidal
flows in estuaries or coastal regions, rivers, reservoirs and open channel
flows among others. Note that the first and second equations in the
shallow water system Eqs. (7) represent, respectively, the continuity
and momentum equations, and that they can be reformulated using the
conservative variables ℎ and ℎ𝑣 as
𝜕ℎ
𝜕𝑡

+
𝜕 (ℎ𝑣)
𝜕𝑥

= 0,

𝜕 (ℎ𝑣)
+ 𝜕 (

ℎ𝑣2 + 1 𝑔ℎ2
)

= −𝑔ℎ𝜕𝐵 − 𝑔𝑀2
𝑏
𝑣 |𝑣|

1
.

(9)
3

𝜕𝑡 𝜕𝑥 2 𝜕𝑥 ℎ 3
Fig. 1. Shallow water domain and notations.

For the numerical implementation, a splitting approach is used for the
coupled models, for which large deformations in the bed and free-
surface perturbations in the water are computed separately using the
two-dimensional governing Eqs. (1) and the one-dimensional nonlinear
shallow water Eqs. (9). The coupling between the two models is ac-
counted for at the interface between the bed and the water by updating
the bed topography 𝐵 (𝑡, 𝑥) at each deformation stage. Notice that, for
simplicity in the formulation, no sediment transport is considered in
the current study. It should also be noted that the main limitations of
the considered shallow water system Eqs. (9) are related to its failure
to capture the vertical velocity in the water flow and it also cannot
be used to model breaking waves in free-surface flows. For these types
of applications, the full three-dimensional Navier–Stokes equations or
multilayer shallow water models are required.

In our analysis, the responses of the water free-surface to large
deformations in the seabed generated by Eqs. (1) are assessed using
the shallow water system Eqs. (9), subject to the movable topography
𝐵 which depends on space and time. On the other hand, the effects of
water on the seabed are included on the interface using the vertical and
horizontal forces respectively generated by the hydrostatic pressure and
the friction term:

𝑝 = −𝜌𝑤𝑔
(

ℎ − 𝜂0
)

, 𝜏𝑓 = −𝑔𝑀2
𝑏
𝑣 |𝑣|

ℎ
1
3

, (10)

where 𝜌𝑤 is the water density, and 𝜂0 = ℎ0 + 𝐵 with ℎ0 being the initial
water depth. Note that responses of the water free-surface to deforma-
tions in the bed topography depend on the properties of the seabed
soil, the magnitude of the applied force, and the initial water depth
among others. It should also be noted that, in many applications in
geotechnics, the impact of free-surface flows on the seabed is assumed
to be negligible compared to the impact of bed deformations on the
water free-surface, see for example Pudykiewicz and Staniforth (1984).

3. Hybrid material point/finite volume method

In the current work, to solve the coupled model for shallow water
waves and large dynamic deformations in the seabed, MPM is adopted
to capture the undrained elasto-plastic deformation process of the
seabed and FVM is implemented for solving the shallow water system.
In this preliminary study, a single seabed soil with a total stress analysis
is considered. For the purpose of completeness, the fundamentals of
MPM, and the numerical formulation and implementation of both
MPM and FVM, are briefly summarized in this section. Notice that the
emphasis is on a detailed description of the coupled solution algorithm
between MPM and FVM for solving the coupled system Eqs. (1) and
Eqs. (9).

3.1. Material point method for bed deformations

As a variant of conventional FEM, MPM inherits advantages of both
Eulerian and Lagrangian approaches by adopting two different dis-
cretizations: a fixed Eulerian background grid and moving Lagrangian
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Fig. 2. Illustration of a computational cycle for the MPM: (a) MPM integration phase, (b) MPM solution phase, and (c) MPM convection phase.
particles (i.e., material points). As a simple illustration, Fig. 2 displays
a typical MPM computational cycle for a representative problem with
a reference configuration domain 𝛺0 at time 𝑡 (see Fig. 2(a)) and a
current configuration domain 𝛺 at time 𝑡 + 𝛥𝑡 (see Fig. 2(c)). In the
tandard MPM, the material points directly contribute to the internal
orce calculation at the nodes of the grid cell in which material points
re located. As 𝐶0 continuous linear shape functions are used, the
iscontinuity in the shape function gradient can cause the so-called

‘cell crossing issue’’ when material points move from one grid cell to
nother. As a consequence, the cell crossing issue can lead to huge
scillations in both the nodal internal forces and stresses, which can
herefore influence the accuracy and numerical stability of MPM, see
or example González Acosta et al. (2020) and Zheng (2022). To rem-
dy this cell crossing issue, we consider the Generalized Interpolation
aterial Point (GIMP) method (Bardenhagen and Kober, 2004), in
hich the shape functions are constructed by integrating linear FEM

hape functions over the MP support domain 𝛺𝑚𝑝 (with its length being
𝑙𝑚𝑝 in the one-dimensional case). As an extension of the linear shape
unctions, the GIMP shape functions 𝑆𝑖,𝑚𝑝 are 𝐶1 continuous, which can
e written for the 1D case as

𝑖,𝑚𝑝
(

𝑥𝑚𝑝
)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

ℎ + 𝑙𝑚𝑝 + 𝑥𝑚𝑝 − 𝑥𝑖
)2

4ℎ𝑙𝑚𝑝
, −ℎ − 𝑙𝑚𝑝 < 𝑥𝑚𝑝 − 𝑥𝑖 ≤ −ℎ + 𝑙𝑚𝑝,

1 +
𝑥𝑚𝑝 − 𝑥𝑖

ℎ
, −ℎ + 𝑙𝑚𝑝 < 𝑥𝑚𝑝 − 𝑥𝑖 ≤ −𝑙𝑚𝑝,

1 −

(

𝑥𝑚𝑝 − 𝑥𝑖
)2 + 𝑙2𝑚𝑝

2ℎ𝑙𝑚𝑝
, −𝑙𝑚𝑝 < 𝑥𝑚𝑝 − 𝑥𝑖 ≤ 𝑙𝑚𝑝,

1 −
𝑥𝑚𝑝 − 𝑥𝑖

ℎ
, 𝑙𝑚𝑝 < 𝑥𝑚𝑝 − 𝑥𝑖 ≤ ℎ − 𝑙𝑚𝑝,

(

ℎ + 𝑙𝑚𝑝 − 𝑥𝑚𝑝 + 𝑥𝑖
)2

4ℎ𝑙𝑚𝑝
, ℎ − 𝑙𝑚𝑝 < 𝑥𝑚𝑝 − 𝑥𝑖 ≤ ℎ + 𝑙𝑚𝑝,

(11)

where 𝑥𝑚𝑝 and 𝑥𝑖 are the positions of material points and nodes of the
grid cell, subscripts 𝑚𝑝 and 𝑖 respectively denote the 𝑚𝑝𝑡ℎ material point
and the 𝑖th grid cell node, ℎ is the grid cell size, and 𝑙𝑚𝑝 is the half length
of the support domain of the material point. More details regarding
the GIMP method are given in Bardenhagen and Kober (2004) and are
therefore not included in this study.

By applying the principle of virtual work, the weak version of the
momentum balance equation is obtained by standard manipulation of
the governing equations and boundary conditions as

∫𝛺
𝛿𝒗T𝜌𝒂d𝛺 = ∫𝛺

𝛿𝒗T ⋅ (∇ ⋅ 𝝈)d𝛺 + ∫𝛺
𝛿𝒗T ⋅ 𝜌𝒃d𝛺 + ∫𝛤𝜏

𝛿𝒗T ⋅ �̃�d𝛤𝜏 ,

(12)
4

where 𝛿𝒗 is a vector of suitable test functions, 𝒂 is the soil particle
acceleration, 𝛺 is the current problem domain, 𝛤𝜏 is the boundary
surface, and �̃� is the surface traction force vector, which is obtained by
interpolation from finite volume cells to material points and calculated
using Eq. (10).

After performing spatial approximation using the GIMP shape func-
tions Eq. (11), the weak formulation of the momentum balance Eq. (12)
can be further expressed using the discrete version:

𝐦�̂� = 𝒇 𝑡𝑟𝑎𝑐 + 𝒇 𝑏𝑜𝑑𝑦 − 𝒇 𝑖𝑛𝑡, (13)

where 𝐦 is the global mass matrix which is diagonalized through ‘‘mass
lumping’’ (more details can be found in Zheng et al. (2021)), �̂� is the
nodal acceleration of the soil, and 𝒇 𝑡𝑟𝑎𝑐 , 𝒇 𝑏𝑜𝑑𝑦, and 𝒇 𝑖𝑛𝑡 are nodal force
vectors related to the surface traction, body force and internal force,
respectively. Note that, in the framework of GIMP, the mass matrix
and force vectors in the discrete version of the governing equation
(Eq. (13)) for a specific grid cell node 𝑖 are defined as

𝐦𝑖 =
𝑁𝑚𝑝
∑

𝑚𝑝=1
𝑺T
𝑖𝑝
(

𝒙𝑚𝑝
)

𝜌𝑉𝑚𝑝𝑺 𝑖𝑝
(

𝒙𝑚𝑝
)

, (14)

𝒇 𝑡𝑟𝑎𝑐𝑖 =
𝑁𝑏𝑚𝑝
∑

𝑚𝑝=1
𝑺T
𝑖𝑝
(

𝒙𝑚𝑝
)

�̃� , (15)

𝒇 𝑏𝑜𝑑𝑦𝑖 =
𝑁𝑚𝑝
∑

𝑚𝑝=1
𝑺T
𝑖𝑝
(

𝒙𝑚𝑝
)

𝜌𝑉𝑚𝑝𝒃, (16)

𝒇 𝑖𝑛𝑡𝑖 =
𝑁𝑚𝑝
∑

𝑚𝑝=1
𝑩T
𝑖𝑝
(

𝒙𝑚𝑝
)

𝑉𝑚𝑝𝝈, (17)

where 𝑁𝑚𝑝 is the total number of material points, 𝒙𝑚𝑝 and 𝑉𝑚𝑝 are
respectively the coordinates and volume of the 𝑚𝑝𝑡ℎ material point,
𝑁𝑏𝑚𝑝 is the total number of nodes on which the external force is applied,
and the strain–displacement matrices 𝑩𝑖𝑝 contain derivatives of the
shape functions 𝑺 𝑖𝑝. It is worth noting that, since undrained seabed
deformations are considered in this study, a total stress analysis is
performed to simulate large dynamic deformations in the topography.

An explicit time stepping scheme is adopted for the integration of
the discrete version of the governing equation (Eq. (13)). For compu-
tational convenience, a lumped mass matrix using a row summation
technique is used. Considering a representative step at a generic time
𝑡𝑛, the acceleration at node 𝑖 can be calculated as

�̂�𝑡𝑛𝑖 = 𝐦−1 (𝒇 𝑡𝑟𝑎𝑐 + 𝒇 𝑏𝑜𝑑𝑦 − 𝒇 𝑖𝑛𝑡
)

, (18)

�̂�𝑡𝑛+𝛥𝑡𝑛𝑖 = 𝐦−1

( 𝑛𝑚𝑝
∑

𝑺T
𝑖𝑝

(

𝒙𝑚𝑝
)

𝜌𝑉𝑚𝑝𝒗
𝑡𝑛
𝑚𝑝 + 𝛥𝑡𝑛

(

𝒇 𝑡𝑟𝑎𝑐 + 𝒇 𝑏𝑜𝑑𝑦 − 𝒇 𝑖𝑛𝑡
)

)

, (19)

𝑚𝑝=1
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and the state variables for a material point 𝑚𝑝 are updated as follows:

𝒗𝑡𝑛+𝛥𝑡𝑛𝑚𝑝 = 𝒗𝑡𝑛𝑚𝑝 + 𝛥𝑡𝑛
𝑁𝑛
∑

𝑖=1
𝑆𝑖𝑝

(

𝒙𝑚𝑝
)

�̂�𝑡𝑛𝑖 , (20)

𝑡𝑛+𝛥𝑡𝑛
𝑚𝑝 = 𝒙𝑡𝑛𝑚𝑝 + 𝛥𝑡𝑛

𝑁𝑛
∑

𝑖=1
𝑆𝑖𝑝

(

𝒙𝑚𝑝
)

�̂�𝑡𝑛+𝛥𝑡𝑛𝑖 , (21)

here 𝑁𝑛 is the total number of nodes in the problem domain, and 𝛥𝑡𝑛
s the time step increment for the 𝑛th computational step. Using the
pdated nodal velocity at grid cell nodes in Eq. (19), the strain and
tress rates at material point positions are updated using Eqs. (5) and
6). After calculating all the state variables at the material point posi-
ions, the computational cycle is completed and a new cycle following
he same procedure starts.

Notice that, since an explicit time integration scheme has been
dopted for the MPM, the time step size 𝛥𝑡 is required to be smaller
han the critical value defined by the well-known Courant–Friedrichs–
ewy (CFL) condition for achieving a stabilized numerical solution. In
he MPM framework, the critical time step size 𝛥𝑡𝑐𝑟𝑖𝑡 is given by

𝑡𝑐𝑟𝑖𝑡 = ℎ
√

(𝐾 + 4𝐺∕3) ∕𝜌
, (22)

where ℎ is the background grid cell size, and 𝐾 and 𝐺 are the bulk
and shear moduli, respectively. In this study, following ideas reported
in de Vaucorbeil et al. (2020) and Wyser et al. (2020), an adaptive time
step 𝛥𝑡1𝑛 that takes the velocities of material points into consideration
is employed:

𝛥𝑡𝑠𝑛 = 𝛼 ℎ
√

(𝐾 + 4𝐺∕3) ∕𝜌 + max(|𝑣𝑥|, |𝑣𝑦|)
, (23)

where 𝛼 is the time step multiplier, 𝑣𝑥 and 𝑣𝑦 are the velocity compo-
nents of material points in the horizontal and vertical directions, and
max(|𝑣𝑥|, |𝑣𝑦|) is the maximum value of the velocity components of all
material points. More details can be found in de Vaucorbeil et al. (2020)
and Wyser et al. (2020).

In a similar manner to low-order FEMs, the accuracy of the GIMP
may also be negatively impacted by volumetric locking when the soil
deforms at (nearly) constant volume (e.g., during plastic deformation)
and a full strain integration is adopted in the stress analysis (Coombs
et al., 2018). Different numerical algorithms, such as mixed varia-
tional principles (Mast et al., 2012; Iaconeta et al., 2019), fractional
time stepping (Kularathna and Soga, 2017; Zhang et al., 2017), and
F and B methods (Coombs et al., 2018; Bisht et al., 2021; Yuan
t al., 2021a), have already proven successful against locking in large-
eformation problems. The B method within the framework of GIMP,
hich was recently adopted by Zheng et al. (2022), is therefore im-
lemented in the proposed hybrid material point/finite volume method
or the simulation of large dynamic elastoplastic deformation of the soil
eabed.

.2. Finite volume method for shallow water flows

To solve the nonlinear shallow water equations for the free-surface
lows, we implement a finite volume method of the Roe type using
on-uniform grids to avoid interpolation procedures at the interface.
imilar techniques have been studied in Arvanitis and Delis (2006)
nd Al-Ghosoun (2021) for shallow water equations. Thus, Eqs. (9) are
ewritten in a conservative form as
𝜕𝑼
𝜕𝑡

+
𝜕𝐅(𝑼 )
𝜕𝑥

= 𝐐(𝑼 ) + 𝐒(𝑼 ), (24)

where

𝑼 =

(

ℎ
)

, 𝐅(𝑼 ) =

(

ℎ𝑣
2 1 2

)

,

5

ℎ𝑣 ℎ𝑣 + 2 𝑔ℎ a
𝐐(𝑼 ) =
⎛

⎜

⎜

⎝

0

−𝑔ℎ𝜕𝐵
𝜕𝑥

⎞

⎟

⎟

⎠

, 𝐒(𝑼 ) =

⎛

⎜

⎜

⎜

⎝

0

−𝑔𝑀2
𝑏 ℎ
𝑣 |𝑣|

ℎ
4
3

⎞

⎟

⎟

⎟

⎠

.

To integrate the system (24) in time we divide the time interval into
sub-intervals

[

𝑡𝑛, 𝑡𝑛+1
]

with variable size 𝛥𝑡𝑛, such that 𝑡𝑛 = 𝑡𝑛−1 + 𝛥𝑡𝑛,
𝑛 = 1, 2,… and 𝑡0 = 0. For simplicity in the presentation, we use the
notation 𝑼 𝑛(𝑥) to denote the discrete solution 𝑼 (𝑡𝑛, 𝑥) at time 𝑡 = 𝑡𝑛.

o deal with the differential source term 𝐐(𝑼 ) and the non-differential
ource term 𝐒(𝑼 ) in (24), we consider the splitting operator introduced
n Strang (1968), which consists of two consecutive steps as follows:

Step 1: Solve for �̃�

�̃� − 𝑼 𝑛

𝛥𝑡𝑛
+
𝜕𝐅(𝑼 𝑛)
𝜕𝑥

= 𝐐 (𝑼 𝑛) . (25)

Step 2: Solve for 𝑼 𝑛+1

𝑼 𝑛+1 − �̃�
𝛥𝑡𝑛

= 𝐒
(

�̃�
)

. (26)

For the space discretization of systems (Eqs. (25) and (26)), we dis-
cretize the space domain into non-uniform control volumes

[

𝑥𝑖− 1
2
, 𝑥𝑖+ 1

2

]

of length 𝛥𝑥𝑖, and we also use the notation 𝑼 𝑛
𝑖 to denote the space-

averaged approximation of 𝑼 = 𝑼 (𝑡, 𝑥) in the cell
[

𝑥𝑖− 1
2
, 𝑥𝑖+ 1

2

]

at time
𝑡𝑛 and 𝑼 𝑛

𝑖+ 1
2

to denote the intermediate solution at 𝑥𝑖+ 1
2

at time 𝑡𝑛:

𝑼 𝑛
𝑖 =

1
𝛥𝑥𝑖 ∫

𝑥
𝑖+ 1

2

𝑥
𝑖− 1

2

𝑼 (𝑡𝑛, 𝑥) 𝑑𝑥, 𝑼 𝑛
𝑖+ 1

2
= 𝑼

(

𝑡𝑛, 𝑥𝑖+ 1
2

)

. (27)

Hence, integrating the system Eq. (25) over the space–time control do-
main

[

𝑥𝑖− 1
2
, 𝑥𝑖+ 1

2

]

×
[

𝑡𝑛, 𝑡𝑛+1
]

, yields the following fully-discrete system:

𝑼 𝑛+1
𝑖 = 𝑼 𝑖 −

𝛥𝑡𝑛
𝛥𝑥𝑖

(

𝐅𝑛
𝑖+ 1

2
− 𝐅𝑛

𝑖− 1
2

)

+ 𝛥𝑡𝑛𝐐𝑛
𝑖 , (28)

here 𝐅𝑛
𝑖± 1

2

= 𝐅
(

𝑼 𝑛
𝑖± 1

2

)

are the numerical fluxes at 𝑥 = 𝑥𝑖± 1
2

and time
𝑡 = 𝑡𝑛, and 𝐐𝑛

𝑖 is the space-averaged source term defined as

𝐐𝑛
𝑖 =

1
𝛥𝑥𝑖 ∫

𝑥𝑖+
1
2

𝑥𝑖−
1
2

𝐐(𝑼 ) 𝑑𝒙. (29)

or the reconstruction of numerical fluxes 𝐅𝑛𝑖±1∕2 in Eq. (28) in the cur-
ent work, we consider the well-established Roe reconstruction defined
s (Roe, 1981)

𝑛
𝑖+ 1

2
= 1

2

(

𝐅(�̂�
𝑛
𝑖+1) + 𝐅(�̂�

𝑛
𝑖 )
)

+ 1
2
𝐀
(

�̂�
𝑛
𝑖+ 1

2

)(

�̂�
𝑛
𝑖 − �̂�

𝑛
𝑖+1

)

, (30)

here the averaged states �̂�
𝑛
𝑖+ 1

2
are evaluated as

�̂�
𝑛
𝑖+ 1

2
=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

ℎ𝑛𝑖 + ℎ
𝑛
𝑖+1

2
√

ℎ𝑛𝑖 𝑣
𝑛
𝑖 +

√

ℎ𝑛𝑖+1𝑣
𝑛
𝑖+1

√

ℎ𝑛𝑖 + ℎ
𝑛
𝑖+1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (31)

and the Roe matrix in Eq. (30) is given by 𝐀 = 𝐑𝜦𝐑−1, with

𝐑 =
⎛

⎜

⎜

⎝

1 1

𝜆1 𝜆2

⎞

⎟

⎟

⎠

, 𝜦 =
⎛

⎜

⎜

⎝

𝜆1 0

0 𝜆2

⎞

⎟

⎟

⎠

, (32)

where 𝜆1 = 𝑣 −
√

𝑔ℎ̂ and 𝜆2 = 𝑣 +
√

𝑔ℎ̂ are the two eigenvalues asso-
iated with the system calculated at the averaged state Eq. (31). Note
hat other finite volume methods developed in the literature for solving
yperbolic systems of conservation laws can also be implemented in our
pproach without any major conceptual modifications.
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Algorithm 1: Coupled solution algorithm for the proposed hybrid material point/finite volume method
1 Initialize all variables
2 while 𝑡𝑛 ≤ 𝑇 do

/* ========================MPM solution cycle============================= */
/* ------------------------MPM integration phase---------------------------- */

3 for Each material point mp do
4 Mapping state variables from material points to grid cell nodes;
5 Calculate nodal mass matrix 𝐦 and force vectors 𝑓𝑓𝑓 𝑡𝑟𝑎𝑐 , 𝑓𝑓𝑓 𝑏𝑜𝑑𝑦, and 𝑓𝑓𝑓 𝑖𝑛𝑡 using Eqs. (14) - (17)
6 end

/* -----------------------------MPM solution phase------------------------------ */
7 for Each grid cell node i do
8 Evaluate nodal acceleration �̂�𝑎𝑎𝑡𝑛𝑖 using Eq. (18);
9 Update nodal velocity �̂�𝑣𝑣𝑡𝑛+𝛥𝑡𝑛𝑖 of grid cell using Eq. (19)
10 end

/* ----------------------------MPM convection phase----------------------------- */
11 for Each material point mp do
12 Map state variables from grid cell nodes to material points;
13 Update velocities 𝑣𝑣𝑣𝑡𝑛+𝛥𝑡𝑛𝑚𝑝 and positions 𝑥𝑥𝑥𝑡𝑛+𝛥𝑡𝑛𝑚𝑝 of material points using Eqs. (20) - (21);
14 Calculate strain �̇̇��̇�𝜀 (Eq. (5)) and stress �̇̇��̇�𝜎 (Eq. (6)) rates with the updated nodal velocities �̂�𝑣𝑣𝑡𝑛+𝛥𝑡𝑛𝑖
15 end

/* ============================FVM solution cycle=============================== */
16 Reconstruct the bed 𝐵

(

𝑡𝑛, 𝑥
)

using a cubic interpolation from the material point positions 𝑥𝑥𝑥𝑡𝑛+𝛥𝑡𝑛𝑚𝑝 to finite volume cells
/* --------------------Solving the shallow water equations---------------------- */

17 for Each finite control volume
[

𝑥𝑖− 1
2
, 𝑥𝑖+ 1

2

]

do

18 Compute the numerical fluxes
19 end
20 Compute the vertical force 𝑝 using hydrostatic pressure and horizontal force 𝜏𝑓 using bed friction;
21 Interpolate forces 𝑝 and 𝜏𝑓 from finite volume cells to material points at the interface and determine surface traction force vector 𝜏𝜏𝜏;
22 Determine the time step size 𝛥𝑡𝑛 for hybrid material point/finite volume method using Eq. (38) and update total computational time by

𝑡𝑛 = 𝑡𝑛 + 𝛥𝑡𝑛
23 end
w
f
s

(

a

𝛥

ℎ̂

For the discretization of the source term 𝐐𝑛
𝑖 , we use a well-balanced

econstruction investigated in Arvanitis and Delis (2006) and
l-Ghosoun (2021). This property is achieved in our implementation
y splitting the integral in Eq. (29) over the two sub-cells

[

𝑥𝑖− 1
2
, 𝑥𝑖

]

and
[

𝑥𝑖, 𝑥𝑖+ 1
2

]

of the control volume
[

𝑥𝑖− 1
2
, 𝑥𝑖+ 1

2

]

as

𝐐𝑛
𝑖 =

1
𝛥𝑥𝑖

(

(𝑥𝑖 − 𝑥𝑖−1)
2

𝐐𝐿
𝑖− 1

2
+

(𝑥𝑖+1 − 𝑥𝑖)
2

𝐐𝑅
𝑖+ 1

2

)

, (33)

where 𝐐𝐿
𝑖− 1

2

and 𝐐𝑅
𝑖+ 1

2

are the space-averaged approximations of 𝐐 in

the sub-cells
[

𝑥𝑖− 1
2
, 𝑥𝑖

]

and
[

𝑥𝑖, 𝑥𝑖+ 1
2

]

, defined by

𝐐𝐿
𝑖− 1

2
=
⎛

⎜

⎜

⎝

0

−𝑔
ℎ𝑖 + ℎ𝑖−1

2
(

𝐵𝑖 − 𝐵𝑖−1
)

⎞

⎟

⎟

⎠

,

𝑅
𝑖− 1

2
=
⎛

⎜

⎜

⎝

0

−𝑔
ℎ𝑖+1 + ℎ𝑖

2
(

𝐵𝑖+1 − 𝐵𝑖
)

⎞

⎟

⎟

⎠

.

(34)

t is expected that, for small values of the water depth ℎ, the bed friction
erm dominates other terms in the momentum equation. This is due
o the presence of the term ℎ

4
3 in the denominator of 𝜏𝑓 in Eq. (8).

o resolve this challenge in our method we implement a semi-implicit
6

scheme for the time integration of the source term 𝐒 in Eq. (26) as

ℎ𝑛+1 − ℎ̃
𝛥𝑡𝑛

= 0,

(ℎ𝑣)𝑛+1 −
(

ℎ̃𝑣
)

𝛥𝑡𝑛
= −𝑔𝑀2

𝑏
(ℎ𝑣)𝑛+1 |

|

𝑣|
|

(

ℎ̃
)

4
3

,
(35)

here ℎ̃ and 𝑣 are the water height and velocity obtained from the
irst step Eq. (25) of the splitting procedure. It is easy to verify that by
olving the second equation in Eq. (35) for (ℎ𝑣)𝑛+1 we obtain

ℎ𝑣)𝑛+1 =

(

ℎ̃𝑣
)

1 + 𝛥𝑡𝑛𝑔𝑀2
𝑏
|

|

𝑣|
|

∕
(

ℎ̃
)

4
3

. (36)

Since the above time integration scheme is explicit, the considered
finite volume method is conditionally stable, with the selection of time
steps being subject to the Courant–Friedrichs–Lewy (CFL) condition.
Here, the Courant number 𝐶𝑟 is fixed to a given value and 𝛥𝑡𝑤𝑛 is chosen
t each time step according to the CFL condition

𝑡𝑤𝑛 = 𝐶𝑟
min

(

𝛥𝑥𝑖
)

max
(

|

|

|

𝜆+1
|

|

|

, ||
|

𝜆−1
|

|

|

, ||
|

𝜆+2
|

|

|

, ||
|

𝜆−2
|

|

|

) , (37)

where 𝜆±1 = 𝑣±1 −
√

𝑔ℎ̂±1 and 𝜆±2 = 𝑣±2 +
√

𝑔ℎ̂±2 , in which ℎ̂±1,2 and 𝑣±1,2
are computed using the space-averaged solutions in the control volume
[

𝑥𝑖− 1
2
, 𝑥𝑖+ 1

2

]

and its two neighbouring cells as

+
1 =

ℎ𝑖+1 + ℎ𝑖 , ℎ̂−1 =
ℎ𝑖 + ℎ𝑖−1 , 𝑣+1 =

√

ℎ𝑖+1𝑣𝑖+1 +
√

ℎ𝑖𝑣𝑖
√ √

,

2 2 ℎ𝑖+1 + ℎ𝑖
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√

ℎ𝑖𝑣𝑖 +
√

ℎ𝑖−1𝑣𝑖−1
√

ℎ𝑖 +
√

ℎ𝑖−1
.

t is evident that the finite volume reconstruction given in Eq. (28) is
nly first-order accurate, but in the current study we adapt flux limiters
o reconstruct a second-order accurate finite volume method for solving
q. (24). Details on the implementation of this method for solving the
hallow water Eqs. (9) can be found in Benkhaldoun et al. (2012) and
hey are omitted here. It should also be pointed out that, as explicit
ime integration schemes are used in both MPM and FVM, the adopted
ime step size 𝛥𝑡𝑛 at the 𝑛th computational step for the hybrid material

point/finite volume method is adjusted as

𝛥𝑡𝑛 = min
(

𝛥𝑡𝑠𝑛, 𝛥𝑡
𝑤
𝑛
)

, (38)

where 𝛥𝑡𝑠𝑛 and 𝛥𝑡𝑤𝑛 are the time steps given by Eqs. (23) and (37),
respectively. Finally, details regarding the coupled solution algorithm
for the hybrid material point/finite volume method are summarized in
Algorithm 1.

4. Numerical results and examples

This section presents the results of several verification examples to
support the numerical performance of the MPM for reproducing the
elastoplastic large deformations and the FVM for capturing the shallow
water flows. We also consider two numerical examples to separately
validate the suitability of the MPM and FVM for solving large deforma-
tions and shallow water waves, respectively. The excellent numerical
capability of the proposed hybrid material point/finite volume method,
for the numerical simulation of shallow waves caused by large dynamic
deformations of seabeds, is demonstrated through two typical applica-
tions. We consider the problem of an undrained clay column collapse
in a water body at rest and the problem of a clay column collapse
in a dam-break flow. In all our simulations, unless stated otherwise,
the water density 𝜌 = 1000 kg∕m3, the gravitational acceleration 𝑔 =
9.81m∕s2, and the Manning coefficient 𝑀𝑏 = 0.0015 s∕m1∕3. In addition,
in the computations reported in this section, the Courant number is set
to 𝐶𝑟 = 0.75 and the time step size 𝛥𝑡𝑛 is adjusted at each time step
according to the CFL stability condition as Eqs. (23), (37), and (38). It
should be emphasized that, at each time step, the large deformation in
the bed yields changes in the water depth and flow velocity, which
consequently affects the calculation of the eigenvalues in Eq. (37).
Hence, the effect of bed deformation is also implicitly accounted for
in updating the time step, which involves the variation of water depth
and the flow velocity in the horizontal direction resulting from the
deformation.

4.1. Accuracy of MPM for the dynamic collapse of a tunnel face

As a preliminary verification of the excellent performance of the
GIMP for large dynamic deformation problems, the two-dimensional
elastoplastic collapse of a tunnel face is first studied. Such a benchmark
problem has previously been investigated by experimental study (Mat-
suo et al., 2016) and the well-established SPH method (Matsuo et al.,
2016; Feng et al., 2021). Fig. 3 shows the plane strain numerical model
for the tunnel face, including the associated geometry and boundary
conditions. To enable a fair comparison, the problem geometries and
material properties of the tunnel face collapse model are chosen to be
exactly the same as those adopted by Matsuo et al. (2016) and are
listed in Table 1. The lining structure constructed at the tunnel roof
is considered to be rigid, while an open-face condition is assumed with
zero face pressure. The boundaries are assumed to be non-slip for the
base and tunnel roof (lining structure), while free-slip conditions are
enforced at the two lateral boundaries. Within the framework of MPM,
the problem domain is discretized by 4-node quadrilateral grid cells of
7

size 0.01m × 0.01m.
Fig. 3. Geometry and boundary conditions used for the problem of elastoplastic tunnel
face collapse.

Table 1
Problem geometries and material properties for analyzing the problem of elasto-plastic
tunnel face collapse.

Problem geometries Material properties

Total length 𝐿 42 cm Young’s modulus 𝐸 5.84MPa
Tunnel length 𝐿𝑡 12 cm Poisson’s ratio 𝜈 0.3
Tunnel overburden 𝐻 8 cm Soil unit weight 𝛾 21.7 kN∕m3

Tunnel height 𝐷 8 cm Friction angle 𝜙 21.9 °

Overburden ratio 𝐻∕𝐷 1.0 Cohesion 𝑐 0 kPa

Fig. 4 shows a comparison of the final configuration of the collapsed
tunnel face between the GIMP simulation and experiment data. The
coloured MPs respectively indicate the final total displacement and
vertical stress, and the solid lines with open squares indicate the final
experimental free-surface from Matsuo et al. (2016). It can be clearly
observed that the experimental post-failure patterns of the tunnel face,
including the free-surface profile, ground settlement and large soil run-
out distance, are well captured by the GIMP. Meanwhile, the numerical
solutions obtained using the GIMP also compare quite well with the
solutions obtained using the SPH method in Feng et al. (2021), which
are not included here for reasons of brevity. It should be mentioned
that slight stress oscillations are visible in the vertical stress solutions,
which are directly attributed to the substantial relocation of MPs oc-
curring during the large deformations. This relocation, along with the
simple MP support domain updating algorithm adopted in this study,
would lead to discontinuous or overlapping support domains of MPs
(as discussed in Charlton, 2018), which yield visible stress oscillations
(which are not caused by cell crossing). More advanced support domain
updating algorithms proposed in recent studies (Sadeghirad et al.,
2011; Charlton, 2018; Coombs et al., 2020) are expected to positively
impact stress recovery calculations and will be investigated in a future
study.

To clearly show the dynamic collapse process of the tunnel face,
Fig. 5 provides the evolution of the total velocity field 𝑣𝑡𝑜𝑡 =

√

𝑣2𝑥 + 𝑣2𝑦
for MPs at four different time instants, namely 𝑡 = 0 s, 0.1 s, 0.2 s and
1.0 s, where 𝑣𝑥 and 𝑣𝑦 are respectively the velocities of MPs in the
horizontal and vertical directions. It can be seen that the dynamic col-
lapse starts from the bottom part of the tunnel face and then gradually
propagates to the ground surface, which leads to an overall failure
mechanism and thereby to significant surface settlements. In addition,
the collapse of the tunnel face is found to mainly concentrate in a local
area in the vicinity of the tunnel face. Note that the performance of the
considered MPM is very attractive, since the computed solutions remain
stable and are highly accurate even though relatively few particles are
used in each element.

4.2. Accuracy of FVM for a dam-break flow problem

For the validation of the FVM, we consider a dam-break flow
problem over a frictionless flat bottom in the domain [0, 1.0m], which
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Fig. 4. Comparisons of post-failure configurations obtained using the MPM and experimental results (denoted by solid lines with open squares) for the problem of elasto-plastic
tunnel face collapse with 𝐻∕𝐷 = 1.0.
Fig. 5. Time evolution of the total velocity fields 𝑣𝑡𝑜𝑡 at material point positions for the problem of elastoplastic tunnel face collapse.
was previously studied in Aiabadi et al. (2010) and Al-Ghosoun et al.
(2021). The considered initial flow conditions are defined as

ℎ(𝑥, 0) =

{

1.0m, if 𝑥 ≤ 0.5m,
0.5m, elsewhere,

𝑢(𝑥, 0) = 0m∕s.

Note that, for this problem, a barrier is located at 𝑥 = 0.5m to separate
the two initial water heights and at time 𝑡 = 0 s the dam break is
triggered, which causes a shock wave travelling downstream and a
rarefaction wave travelling upstream. The analytical solutions for ℎ(𝑥, 𝑡)
and 𝑢(𝑥, 𝑡) (with their units respectively being m and m∕s) for this
dam-break problem can be derived as (Aiabadi et al., 2010)
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⎧

⎪

⎪
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⎪
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m∕s, and 𝐶𝑠 = 2.9579m∕s. For comparison,

numerical simulations are performed using the adopted FVM solver
on both uniform and non-uniform meshes with 50 and 100 control
volumes. For the uniform meshes, the spatial step 𝛥𝑥 = 0.02m and
0.01m for the meshes with 50 and 100 control volumes, respectively. For
the non-uniform meshes, the spatial steps 𝛥𝑥𝑖 are respectively chosen
as

𝛥𝑥𝑖 =

{

0.016m, if 0.25m ≤ 𝑥𝑖 ≤ 0.75m,
0.03m, elsewhere,

and

𝛥𝑥𝑖 =

{

0.008m, if 0.25m ≤ 𝑥𝑖 ≤ 0.75m,
0.015m, elsewhere.

Fig. 6 compares numerical solutions for the water free-surface and
velocity at time 𝑡 = 0.1 s using the FVM on uniform and non-uniform
meshes. It can be observed that, for both uniform and non-uniform
meshes, the accuracy of the numerical results is improved with a
refined mesh. The numerical solutions obtained using non-uniform
meshes are more accurate than those obtained using their uniform
counterparts. For instance, more pronounced numerical diffusion in
the shock and rarefaction areas can be seen in the results obtained
on uniform meshes than in those obtained using non-uniform meshes.
These features are very important when the shallow water equations
are solved on non-uniform meshes reconstructed directly from the MPM
nodes located on the interface in the coupled model. This would avoid



Computers and Geotechnics 162 (2023) 105673X. Zheng et al.
Fig. 6. Results for the water free-surface (first column) and water velocity (second column) obtained at time 𝑡 = 0.1 s using the FVM on uniform and non-uniform meshes with 50
control volumes (first row) and 100 control volumes (second row).
interpolation procedures for matching MPM and FVM nodes on the
interface which may introduce extra numerical diffusion in the results
obtained for the free-surface solutions.

4.3. Undrained clay column collapse in a body of water at rest

To demonstrate the robustness and capability of the proposed hy-
brid material point/finite volume method, the shallow water flow
caused by the large dynamic collapse of an undrained clay column is
studied. The schematic diagram of the considered problem is depicted
in Fig. 7. As shown in this figure, the total width of the problem domain
is considered to be 𝑙. The column has a width of 𝑙0 and a depth of
ℎ0, with its right end being supported by a perfectly rigid wall of zero
width at the initial stage of the simulation. The depth between the
water free-surface and the bottom of the domain is defined by ℎ𝑤.
The adopted material properties are provided in Table 2 and an initial
aspect ratio 𝛼 (defined by ℎ0∕𝑙0) of 0.5 is considered, corresponding to
a column size of 2.0m×1.0m. The water domain is discretized into 200
control volumes with each having a width of 0.04m. The grid cell size
of the MPM domain is 0.05m × 0.05m, which results in 1600 material
points for the considered domain. The clay column has a fixed bottom
boundary and is supported by rollers on the left lateral boundary. In
order to quantify the influence of dynamic collapse of the soil domain
on the dynamic propagation of shallow water waves, three different
ratios 𝑅𝑤𝑠 between the water depth ℎ𝑤 and column depth ℎ0, namely
𝑅 = 1.0, 1.5, and 2.0, are investigated.
9

𝑤𝑠
Fig. 7. Schematic diagram for the problem of clay column collapse in a body of water
at rest.

Table 2
Domain geometries and material properties for the problem of clay column collapse in
a body of water at rest.

Domain geometries Material properties

Tank width 𝑙 8.0m Young’s modulus 𝐸 1000 kPa
Column width 𝑙0 2.0m Poisson’s ratio 𝜈 0.4
Column depth ℎ0 1.0m Soil unit weight 𝛾 26.5 kN∕m3

Free water depth ℎ𝑤 1.0m, 1.5m, 2.0m Friction angle 𝜙 0 °

Cohesion 𝑐 3.2 kPa

It should be mentioned that the rigid wall at the column face is
simplified as a fully fixed boundary at the initial stage of the simulation
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Fig. 8. Time evolution of the vertical stress contours and water free-surface profiles for clay column collapse in a flow at rest with 𝑅𝑤𝑠 = 1.0.
for the purpose of generating the initial quasi-static stress. This fixed
boundary is suddenly released at the beginning of the simulation in
order to reproduce the sudden removal of the rigid wall. The removal
of the rigid wall can lead to a dynamic motion of the soil domain, which
results in the change of seabed bathymetry and the flowing of shallow
water with the proposed coupled algorithm. The computational domain
is assumed to be closed at both the upstream and downstream edges,
which allows wave reflections once the water flow reaches the walls.

Fig. 8 depicts the time evolution of the vertical stress (𝜎𝑦) contours
attached with the MPs and shallow water configurations represented
by the FVM solution for the depth ratio 𝑅𝑤𝑠 = 1.0. It can be clearly
observed that both the dynamic collapse process of the clay column and
the shallow water flow are well captured using the proposed hybrid
material point/finite volume method. After the removal of the rigid
wall, soil particles gradually move downstream to the right part of tank
and experience large deformations. Due to the dynamic response with
respect to the rapid deformation of the soil column, a water wave is
generated in the local area on the top of the column front face and flows
over the deformed seabed. Subsequently, the generated water waves
gradually propagate to both ends of the tank. Once the water waves
reach the ends, a run-up can be clearly observed. When the simulation
undergoes a longer duration, the clay column gradually reaches an
equilibrium state, while the water system is expected to stabilize to a
steady-state configuration with no further disturbances on the water
surface.

As a comparison, Figs. 9 and 10 show the vertical stress contours
and water free-surface configurations at four different instants for two
values of the ratio 𝑅𝑤𝑠 = 1.5 and 2.0, respectively. As expected,
the shallow water wave is again generated in the local area near the
column front face due to the dynamic response with respect to the
rapid deformation of the column after removal of the rigid wall. From
the comparison, it can be concluded that the amplitude of the shallow
water wave decreases with an increased value of 𝑅𝑤𝑠. However, the
final collapsed soil domain does not show a significant difference for
the considered values of 𝑅𝑤𝑠, which can be related to the fact that
the surface friction is quite small, and it shows little influence on the
dynamic motion of the soil particles.

In Fig. 11, the changes with time of the water free-surface 𝛥ℎ∕ℎ𝑠 at
two different gauges, 𝑥∕ℎ𝑠 = 4 (domain center) and 𝑥∕ℎ𝑠 = 8 (right
end of the tank) are displayed. For both gauges, waves with higher
10

amplitudes on the free-surface are observed for the cases with smaller
values of 𝑅𝑤𝑠. These results give a clear view of the overall wave
patterns and the effect of the bed deformation on the structure of the
propagating waves in the upstream and downstream of the domain. In
addition to the primary wave, a pair of waves with almost the same
amplitudes develop at both sides of the problem domain. As expected,
the sudden deformation in the bed generates a wave propagating across
the computational domain. The wave splits into several waves and,
as time progresses, the waves diminish and the water free-surface
becomes flat at the initial height. This confirms the well-balanced
property of the proposed finite volume method on non-uniform meshes.
It is also important to mention two points concerning the non-uniform
control volumes used in the flow simulations. First, there is no need
for interpolation procedures to pass the information from one mesh to
another in our coupled material point/finite volume method. Second,
there is no need to refine the mesh in the finite volume method to
resolve the wave fronts, as the material points would generate these
refined meshes. Indeed, an important feature of the proposed coupled
material point/finite volume method is that it is able to satisfactorily
handle procedures using adaptive local grid refinement methods to
resolve free-surface wave problems.

To further quantify the results for this problem, we summarize in
Table 3 the values obtained for 𝛥𝑠∕ℎ𝑠, 𝜂𝑚𝑎𝑥∕ℎ𝑠, |�̄�0|𝑚𝑎𝑥 and |�̄�𝑠|𝑚𝑎𝑥
at three different instants using different values of the ratio 𝑅𝑤𝑠.
Here, 𝛥𝑠 is the runoff distance during the collapse of the soil column,
𝜂𝑚𝑎𝑥 is the maximum water surface elevation, |�̄�0|𝑚𝑎𝑥 is the maximum
value of the dimensionless water velocity |�̄�0|∕

√

𝑔ℎ𝑠, and |�̄�𝑠|𝑚𝑎𝑥 is the
maximum value of the dimensionless soil velocity |�̄�𝑠|∕

√

𝑔ℎ𝑠. It is clear
that increasing the value of the ratio 𝑅𝑤𝑠 results in a variation of all
considered variables 𝛥𝑠∕ℎ𝑠, 𝜂𝑚𝑎𝑥∕ℎ𝑠, |�̄�0|𝑚𝑎𝑥 and |�̄�𝑠|𝑚𝑎𝑥 at the three
selected instants. The impact of this ratio on the dynamics of both
the soil and water is also visible in the obtained results, as seen by
comparing the values of |�̄�0|𝑚𝑎𝑥 and |�̄�𝑠|𝑚𝑎𝑥 in Table 3.

4.4. Undrained clay column collapse in a dam-break flow

In this case, the simulation of a clay column collapse in a dam-
break flow is investigated using the hybrid material point/finite volume
method, and its schematic diagram is shown in Fig. 12. The total width
of the tank is defined by 𝑙. The clay column has a width of 𝑙0 and a
depth of ℎ0, with its right end being supported by a perfect rigid wall of
zero width at the initial stage of the simulation. The initial depths of the
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Fig. 9. Same as Fig. 8 but with 𝑅𝑤𝑠 = 1.5.

Fig. 10. Same as Fig. 8 but with 𝑅𝑤𝑠 = 2.0.

Fig. 11. Time evolution of water free-surface profiles for the problem of clay column collapse in a body of water at rest at two different gauges, (a) 𝑥∕ℎ𝑠 = 4 and (b) 𝑥∕ℎ𝑠 = 8.
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Table 3
Computational results for the undrained clay column collapse in a body of water at rest for different values of 𝑅𝑤𝑠.
𝑅𝑤𝑠 𝑡 = 0.5 s 𝑡 = 1.0 s 𝑡 = 5.0 s

𝛥𝑠∕ℎ𝑠 𝜂𝑚𝑎𝑥∕ℎ𝑠 |�̄�𝑠|𝑚𝑎𝑥 |�̄�0|𝑚𝑎𝑥 𝛥𝑠∕ℎ𝑠 𝜂𝑚𝑎𝑥∕ℎ𝑠 |�̄�𝑠|𝑚𝑎𝑥 |�̄�0|𝑚𝑎𝑥 𝛥𝑠∕ℎ𝑠 𝜂𝑚𝑎𝑥∕ℎ𝑠 |�̄�𝑠|𝑚𝑎𝑥 |�̄�0|𝑚𝑎𝑥
1.0 0.717 1.245 0.716 0.218 1.344 1.206 0.482 0.197 1.375 1.221 0.044 0.101
1.5 0.681 1.656 0.657 0.107 1.285 1.617 0.549 0.094 1.319 1.601 0.051 0.087
2.0 0.679 2.107 0.654 0.059 1.286 2.076 0.552 0.054 1.319 2.040 0.052 0.030

𝑎
|�̄�0|𝑚𝑎𝑥 – maximum value of dimensionless water velocity |�̄�0|∕

√

𝑔ℎ𝑠.
𝑏
|�̄�𝑠|𝑚𝑎𝑥 – maximum value of dimensionless soil velocity |�̄�𝑠|∕

√

𝑔ℎ𝑠.
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Table 4
Problem geometries and material properties for the problem of clay column collapse
in a dam-break flow.

Problem geometries Material properties

Tank width 𝑙 8.0m Young’s modulus 𝐸 1000 kPa
Column width 𝑙0 2.0m Poisson’s ratio 𝜈 0.4
Column depth ℎ0 1.0m Soil unit weight 𝛾 26.5 kN∕m3

Water depths ℎ𝑙 0.5m, 1.0m, 2.0m Friction angle 𝜙 0 °

ℎ𝑟 1.0m Cohesion 𝑐 3.2 kPa

Fig. 12. Schematic diagram for the problem of clay column collapse in a dam-break
low.

ater free-surface on the left and right sides of the rigid wall are ℎ𝑙 and
𝑟, respectively. The water domain is discretized into 200 finite control
olumes with each having a width of 0.04m. The grid cell size of the
PM domain is 0.05m×0.05m, which results in 1600 material points for

he considered clay domain. The column has a fixed bottom boundary
nd is supported by rollers on the left lateral boundary. Similarly, three
alues of 𝑅, which is the ratio between the water depths on the left
nd right sides of the rigid wall, as given by ℎ𝑙∕ℎ𝑟, are chosen to
uantify the influence of a dam-break on the generation and dynamic
ropagation of shallow water waves. For comparative purposes, the
ater depth ℎ𝑟 on the right side of wall is considered to be exactly

he same as the clay column depth, namely ℎ𝑟 = ℎ0 (see Table 4).
As in the previous numerical example, we present in Fig. 13 the

ime evolution of vertical stress (𝜎𝑦) contours attached with MPs and
hallow water configurations represented by the FVM solution, for a
epth ratio of 𝑅 = 0.5. The results obtained for 𝑅 = 1 and 𝑅 = 2
re displayed in Figs. 14 and 15, respectively. Unlike the previous
lay column collapse in a body of water at rest, the present problem
s challenging because the dam-break flow yields complex patterns
ncluding shocks, rarefaction waves and hydraulic jumps. It is expected
hat these flow features have an impact on the soil dynamics. It can
e clearly seen from the results obtained that the dynamics of both
he dam-break flow and the collapse process of the clay column are
ell captured using the proposed hybrid material point/finite volume
ethod. For this example, stronger hydraulic jumps are detected for

he case with 𝑅 = 2 than for the cases with 𝑅 = 1 and 𝑅 = 0.5. After
he dam breaks, soil particles gradually move to the right part of tank
nd experience large deformations. Obviously, high stresses appear at
he bed surface where the bed deformation is taking place. As can be
een, the deformation of the soil column and the dam-break generate
arefaction waves and hydraulic jumps with different crests and troughs
12
ropagating along the computational domain. The interaction between
hese waves generates reflecting waves with different amplitudes in the
ater free-surface. At a later time, the waves are diminished and the

ystem returns to its initial equilibrium state. Once again, the proposed
oupled material point/finite volume method performs well for this test
roblem, as the deformed bed topography is shown to be accurately
esolved using the material point method and the water wave features
re well captured using the finite volume method on non-uniform
eshes.

Fig. 16 illustrates the changes over time of the water free-surface
ℎ∕ℎ𝑠 at two different gauges, 𝑥∕ℎ𝑠 = 4 (domain center) and 𝑥∕ℎ𝑠 = 8
right-hand end of the tank). Unlike the previous example, the time
eries in the present case exhibits periodic behaviour with high ampli-
udes and frequencies. In addition, compared to the previous case, the
ropagating waves generated by both the dam-break in the water flow
nd the collapse of the soil column persist longer on the free-surface
han those originated by the soil collapse only. It is clear that the total
ater head experiences high values at the gauge 𝑥∕ℎ𝑠 = 8 located at the
ownstream of the domain. The coupled material point/finite volume
ethod captures well the periodic features in the water waves at all

elected gauges for this example.
A quantification of the results for this problem is carried out and the

btained results for 𝛥𝑠∕ℎ𝑠, 𝜂𝑚𝑎𝑥∕ℎ𝑠, |�̄�0|𝑚𝑎𝑥 and |�̄�𝑠|𝑚𝑎𝑥 at three different
nstants using different values of the ratio 𝑅 are given in Table 5.
ere, 𝛥𝑠 is the runoff distance during the collapse of the soil column,
𝑚𝑎𝑥 is the maximum water surface elevation, |�̄�0|𝑚𝑎𝑥 is the maximum
alue of the dimensionless water velocity |�̄�0|∕

√

𝑔ℎ𝑠, and |�̄�𝑠|𝑚𝑎𝑥 is the
maximum value of the dimensionless soil velocity |�̄�𝑠|∕

√

𝑔ℎ𝑠. As in
the previous example, increasing the value of the ratio 𝑅 results in a
variation of all considered variables 𝛥𝑠∕ℎ𝑠, 𝜂𝑚𝑎𝑥∕ℎ𝑠, |�̄�0|𝑚𝑎𝑥 and |�̄�𝑠|𝑚𝑎𝑥
t the three selected instants. The impact of this ratio on the dynamics
f both the soil and water is also evident in the obtained results, as
een by comparing the values of |�̄�0|𝑚𝑎𝑥 and |�̄�𝑠|𝑚𝑎𝑥 in Table 5. The
resented results demonstrate that the proposed computational model
s well suited for the prediction of clay column collapse in a dam-break
low. It should be emphasized that the results from the proposed model
hould be compared with experimental measurements. However, there
re no data available until now to carry out this work. Thus, at the
oment we can only perform simulations and verify that the results

re plausible and consistent.

. Conclusion

This study has presented a hybrid material point/finite volume
ethod for the numerical simulation of shallow water waves caused by

arge dynamic deformations in the bathymetry. The governing equa-
ions consist of coupling the nonlinear shallow water equations for
he water flow and a dynamic elastoplastic system for the seabed
eformation. To allow for large deformations under undrained cases,
he Drucker–Prager elastoplastic relation is implemented in the present
tudy. The proposed hybrid method is formulated based on a coupling
lgorithm along the interface of the material point method and finite
olume method models, and the coupled scheme is achieved by forces
ampled from hydrostatic pressures and surface frictions. It is evident
hat combining the GIMP shape functions and the B method with

a second-order finite volume scheme has proven to produce stable
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a
a

Fig. 13. Time evolution of the vertical stress contours and water free-surface profiles for clay column collapse in a dam-break flow with 𝑅 = 0.5.
Fig. 14. Same as Fig. 13 but with 𝑅 = 1.0.
Table 5
Computational results of the undrained clay column collapse in a dam-break flow with different values of 𝑅.
𝑅 𝑡 = 0.5 s 𝑡 = 1.0 s 𝑡 = 5.0 s

𝛥𝑠∕ℎ𝑠 𝜂𝑚𝑎𝑥∕ℎ𝑠 |�̄�𝑠|𝑚𝑎𝑥 |�̄�0|𝑚𝑎𝑥 𝛥𝑠∕ℎ𝑠 𝜂𝑚𝑎𝑥∕ℎ𝑠 |�̄�𝑠|𝑚𝑎𝑥 |�̄�0|𝑚𝑎𝑥 𝛥𝑠∕ℎ𝑠 𝜂𝑚𝑎𝑥∕ℎ𝑠 |�̄�𝑠|𝑚𝑎𝑥 |�̄�0|𝑚𝑎𝑥
0.5 0.633 1.461 0.651 0.405 1.240 1.297 0.432 0.616 1.230 1.371 0.089 0.032
1.0 0.589 1.943 0.618 1.064 1.186 1.458 0.413 0.762 1.229 1.572 0.085 0.215
2.0 0.560 2.581 0.569 1.816 1.015 1.710 0.386 1.316 1.032 1.606 0.080 0.398

𝑎
|�̄�0|𝑚𝑎𝑥 – maximum value of dimensionless water velocity |�̄�0|∕

√

𝑔ℎ𝑠.
𝑏
|�̄�𝑠|𝑚𝑎𝑥 – maximum value of dimensionless soil velocity |�̄�𝑠|∕

√

𝑔ℎ𝑠.
w
c

nd consistent results during the large deformation analysis of soil
nd it has well captured the generation and propagation of shallow
13
ater waves. In particular, two fully coupled examples, involving clay
olumn-induced shallow water waves and a dam-break simulation,
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Fig. 15. Same as Fig. 13 but with 𝑅 = 2.0.
Fig. 16. Time evolution of water free-surface profiles for the problem of clay column collapse in a dam-break flow at two different gauges, (a) 𝑥∕ℎ𝑠 = 4 and (b) 𝑥∕ℎ𝑠 = 8.
have been used to demonstrate the good performance of the proposed
hybrid material point/finite volume method for problems involving
different inertial and deformation regimes. Future work will be de-
voted to validating the performance of the proposed hybrid method
for large-deformation analyses through comparisons with experimental
and field data. In addition, more challenging large-deformation prob-
lems with an advanced fully coupled MPM solver and allowing water
inflow/outflow through the coupling surface will be beneficial for a
better understanding of landslides that trigger natural hazards such as
tsunamis.
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