Trouble Shooting Health

Chemical Engineer and a B12 patient

Dr. Ir. Peter J. Daudey

What is it?...

In short....

- Bowel issues after a trip (2011)
- MS-type symptoms
- SIBO? Study together with B12 Institute
- Gabriela Hadiwinoto: B12 Biochemistry
 - Glycine and Glutathione deficiency
 - Vicious cycles discovered
- Acidosis
 - Leads to microbiome shift
 - Methanol from pectins, source of ROS
- Macro-B12 explanation

Hypotheses

Glycine deficiency: Protein damage and collagen issues

Glutathione deficiency: Activation of B12; high oxidative stress

Formaldehyde: Protein/enzyme damage, acidosis

Acidosis, Microbiome switch, loss of methanol detox to methane

Glycine Deficiency

What is glycine and why is it important yet overlooked?

- Smallest amino acid
- The building block of all proteins (e.g. DNA, B12 enzymes, binders)
- Considered non-essential

B12 deficiency leads to folate cycle block, folate cycle block leads to glycine synthesis block

Alves, Anaïs, et al. *Nutrients* 11.6 (2019): 1356. de Paz-Lugo, Patricia, *Amino Acids* 50.10 (2018): 1357-1365.

Glycine deficiency consequences:

- **1. Glutathione** synthesis failure
- → Glutathione deficiency
- → Essential for fighting ROS!

GSH synthesis top priority!!

- 2. Collagen synthesis failure
- Affects muscles, tendons, bone, veins, joints
- → Ageing, wrinkles

3. Other issues

- Sleep deprivation (NMDA receptor)
- Protein point mutations –Synthesis rate

Glycine Deficiency Biomarkers and Treatment

Proposed biomarkers

- Plasma glycine
- Urinary glycine
- Serum 5-L-oxoproline

Cystathionine

Proposed treatment

Glycine supplementing

- Glycine demand depends on age
- Needs to be used together with Nacetyl cysteine (for Glutathione)
- Proper dose is yet to be determined

M. F. McCarty, et al., Ochsner J.,

vol. 18, no. 1, pp. 81–87, 2018.

U. Heresco-Levy, et al., Arch.

Gen. Psychiatry, vol. 56, no. 1, pp. 29–36, Jan. 1999.

CBS = cystathionine beta synthase; CTH = cystathionine γ -lyase; GCL = glutamate-cysteine ligase; GS = glutathione synthase

High Oxidative Stress and Glutathione Deficiency

The notorious vicious cycle:

Glutathione is the major antioxidant;

- Glutathione deficiency leads to oxidative stress,
- Oxidative stress exacerbates glutathione deficiency

Possible biomarkers: blood test

- Reduced glutathione (GSH)
- Oxidized glutathione (GSSG)
- GSH:GSSG ratio
- Malondialdehyde (MDA)
- C-reactive protein (CRP)

E. Ho et al., *Redox Biology*, vol. 1, no. 1. Elsevier B.V., pp. 483–491, 2013. R. V. Sekhar et al., *Am. J. Clin. Nutr.*, vol. 94, no. 3, pp. 847–853, 2011. J. M. May et al., *Biochim. Biophys. Acta - Gen. Subj.*, vol. 1528, no. 2–3, pp. 159–166, Oct. 2001.

Proposed treatment

- N-Acetylcysteine (NAC) and Glycine
 - For de-novo synthesis of GSH
 - Take both to avoid Oxoproline
- Vitamin B6 (pyridoxine)
 - Transsulphuration pathway
 - Leads to Cysteine/Taurine/GSH
 - Requires Glycine to avoid
 Oxoproline (B6 toxicity!!)
- Vitamin C (ascorbic acid)

To support the antioxidant action

The recycling of ascorbic acid from the deactivated form (dehydroascorbic acid) requires GSH

Intestinal bacterial dysbiosis

Bacterial Dysbiosis Biomarkers and Treatment

Common biomarkers/analytical tools

- Stool microbiome analysis Cannot differentiate bacteria from the small or the large intestine
- Endoscopy
 To see the gastrointestinal tract condition;
 invasively uncomfortable

Proposed (indirect) biomarkers: bacterial toxins

- Methanol breath test
- Blood and urinary TMA and TMAO
- Urinary pH and formic acid (formed from formaldehyde)

Proposed treatments

- Antibiotics
 e.g. Rifaximin
 Needed for severe case,
 to eradicate pathogens
- Probiotics?
- Correct Colon pH

• Diet plan
Involve a nutritionist;
Avoid food for bacteria
e.g. reduce protein intake,
avoid pectin-containing
foods, lower carbohydrate,
etc. intake.

Damages by Formaldehyde

HCOH causes **DNA** damages:

- Mono-adduct
- Crosslinking
- Hypermethylation

Glucose oxidation inhibited:

Lactic acidosis

Immune responses, see next slide

S. L. MacAllister, et al., Chemico-Biological Interactions, May 2011, vol. 191, no. 1–3, pp. 308–314.

M. Kawanishi, et al., *Front. Environ. Sci.*, vol. 2, no. SEP, p. 36, Sep. 2014.

HCOH detoxification to formic acid requires glutathione

Immune response on formaldehyde?

- Agglomeration of proteins:
 - Macro B12 (Wolffenbuttel)
 - No cellular uptake
 - Functional B12 deficiency
 - Glycine deficiency → GSH deficiency
 - Albumine, prolactin may also agglomerate
 - Su, Monte (2016) suggest formaldehyde as cause
 - Explains the triggering of the immune system!

2022 Wolffenbuttel, Bruce H R; Muller Kobold, Anneke C.; et al.; Macro-B12 masking B12 deficiency 2013 Fahie-Wilson, Michael; Smith, Thomas P.; Determination of prolactin. The macroprolactin problem 2016 Su, Tao; Monte, Woodrow C.; et al.; Formaldehyde as a Trigger for Protein Aggregation and Potential Target for Mitigation of Age-Related, Progressive Cognitive Impairment

Acidosis

- Formic Acidosis from formaldehyde detox
 - The oxidation of formic acid to CO2 is slow
 - Na-formate in urine (loss of sodium bicarbonate)
- Slow-down of glucose oxidation: Lactic acidosis
 - Oxidative Phosphorylation
 - Formaldehyde reacts with Cytochrome C
 - Causes Hypoxia and Lactic acidosis
 - Mitochondrial acidosis
- B12 related: MMA, Oxoproline
- Acidosis leads to ammonia loss:
 - From protein/glycine break-down (Glycine Cleavage System)
 - Triggers protein wasting and obesity (protein:fat ratio)

Formaldehyde Biomarkers and Treatment

The highly reactive formaldehyde is difficult to trace

Proposed (indirect) biomarkers

- Urine **formic acid and lactic acid** *Products of formaldehyde*
- Urine **pH**Acidic urine (pH < ~5.0) indicates acidosis
- Breath analysis

 Methanol and methylamines, FH precursors
- **CRP** Indicates inflammation

Proposed treatment

- Resolve the intestinal bacterial dysbiosis
 - Correct body acidity in order to eliminate colon acidity
 - Use Na-citrate and Kcitrate, check urine pH
 - Diet: cut back on meat
 - Diet: cut back on sugars

Conclusion – Vicious Cycle – Formaldehyde

- Main trigger of B12 deficiency is macro-B12, blocking cellular incorporation
- Glutathione is a key metabolite in the metabolism of B12
 - For B12 intracellular activation (MMACHC)
 - As the major antioxidant to reduce ROS (formaldehyde)

Glycine deficiency

- Essential for glutathione synthesis
- To keep the intestinal health

Gradual Formaldehyde intoxication

- Main source of oxidative stress
- Causing acidosis (formic/lactic)
 - Colon dysbiosis, loss of protecting bacteria:
 Methanobacters leading to methanol from pectins
 - Other:
 - Osteoporosis
 - Protein point defects and synthesis rate
 - Loss of ammonia for neutralization
- Overwhelms the folate pool and Glutathione

Recommendations for treatment

- Develop protocol against acidosis
 - Optimum gut health
 - May also be implicated in Osteoporosis, CKD, cancer
- Develop screening method based on urine metabolomics
 - Useful for finding deficiencies (Glycine, GSH, etc)
 - Develop Glycine, NAC and vitamin protocols
- Develop protocol against oxidative stress
 - Include dietary measures

Acknowledgements

- Dr Woodrow Monte
 - Worked lifelong on methanol formaldehyde
 - Suggested the role of formaldehyde in protein agglomeration
- Gabriela Hadiwinoto MSc, EngD
 - Spent 1 year on B12 mechanisms
 - Sponsored by Clara Plattèl of the B12 Institute

AT THE BOOKENDS OF LIFE: PREGNANCY, CHILDHOOD, ADULTS, AND THE ELDERLY

B12 related Research and Development Directions	
Organizational	Have working party on B12
	Organize series of web meetings
	Discuss topics and priorities
	Publicity, Training, Advocacy
Research	Study effects on Glycine Deficiency
	Maternal B12, Folate and Glycine, potential cause of
	obesitas?
	Immunology of Macro B12
	Acidosis causes and consequences
Treatment	Life style advice, work with dietitians
7-144	Measuring deficiencies
Jent	Treatment protocols

P.J. Daudey peterdaudey@gmail.com

Overview of hypotheses Gabriela - 1

Overview of hypotheses Gabriela - 2

